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Abstract

Enhancement of the BRICK constitutive model to incorporate viscous soil

behaviour

The Brick model is an advanced elasto-plastic constitutive model for soils and has

become a recognised tool for modelling ground behaviour, following its implementation

into the finite element program Safe. The model can reproduce many essential ele-

ments of soil behaviour, which is viewed from a strain-based perspective. An analogue

for the model is that of a man walking around a room, pulling a number of bricks with

strings of different lengths behind him. The room represents strain space, the man’s

movement is the applied strain and each brick movement is the response of a proportion

of the soil.

The present Brick model, although advanced, does not account for viscous behaviour,

including creep and strain rate dependent stiffness, which can be very significant for clay

soils. The principal aim of the work was to incorporate such behaviour into the Brick

model. Two main approaches were identified manipulating either the velocity of the

bricks or the string lengths. Both approaches were implemented into the Brick model

allowing a series of tests to be conducted into their predictive capabilities. Isotach

strain rate behaviour was investigated with both models by simulating both constant

and step rate of strain tests.

Simulations of past experimental work into the combined effects of creep and recent

stress history on clay soil stiffness were also conducted. It was demonstrated, in ac-

cordance with the experiments, that creep can erase the effects on the initial stiffness

of recent stress history involving relatively short stress paths approaching the current

state, though this was not true for longer approach paths. The experimental results

were more correctly simulated using the model with manipulated, strain rate dependent

string lengths, the SRD Brick model.

The SRD Brick model was then implemented into Safe to allow the analysis of two

case histories, thereby quantifying the influence that viscous effects can have. The first

involved the analysis of surface displacements above the westbound tunnel forming part

of the Jubilee Line extension beneath St James’s Park, London. The second analysis

was concerned with the prediction of heave displacements of a deep basement in Horse-

ferry Road, London. The SRD Brick model was able to significantly improve on the

predictions given by the original Brick model in both cases.
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behaviour Jardine (1992).

Y3 Local boundary surface Jardine (1992).
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1
Introduction

1.1 Background

The accurate prediction of displacements is key to the successful completion of complex

problems in our increasingly crowded urban environment, where much time and effort

needs to be spent to safeguard existing structures from the impact of new construction

projects. Sophisticated finite element analyses can be used to predict deformations,

but the accuracy of these predictions is dependent upon the ability of the underlying

constitutive model to represent the true behaviour of the soil.

The pre-failure deformation of overconsolidated clays is known to be governed by the

highly non-linear, inelastic behaviour of the soil. In recent years a number of constitu-

tive models have been developed to attempt to model the small strain behaviour more

accurately (Stallebrass & Taylor (1997), Simpson (1992b) & Jardine (1992)) with the

results being a large improvement over the predictions of simple linear elastic / per-

fectly plastic models.

These advanced models can be split into three main categories: non-linear elastic, kine-

matic yield surface or ‘bubble’ models and strain-based models such as Brick. Recent

testing conducted on London Clay has shown that not only is the small strain behaviour

inelastic and non-linear but it is also susceptible to the effects of creep and other vis-

cous phenomena (Gasparre (2005) & Sorensen (2006)). Thus a constitutive model that

encompassed small-strain and time-related effects could help improve the predictions

made by numerical modelling. Previous research conducted by Kanapathipillai (1996)

has already shown that the modelling of time related effects can improve the predictions

of currently problematic areas such as surface displacements above tunnels.
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1. Introduction

1.2 Aims of Research

The main aim of the research described in this thesis has been to develop the current

Brick model to be able to deal with viscous effects such as creep, stress relaxation and

strain rate dependency. A review of literature has been carried out to classify those

facets of soil behaviour that were already encompassed by the Brick model and those

that were to be introduced into the model. The detailed workings of the Brick model

and other recent variations have been fully explored to identify areas of behaviour

that were modelled well and those where modelling could have been improved. The

enhanced Brick model has been benchmarked against previous physical tests that

combined the effects of stress history, strain rate and creep (Gasparre 2005) to see if

the enhanced model is able to deal with these features. Finally, the enhanced model

has been implemented into the Arup finite element program Safe, and a set of case

histories has been modelled to see the impact of the enhancements in realistic scenarios.

1.3 Outline of Thesis

The thesis contains seven chapters in total. This chapter (Chapter 1) gives the intro-

duction as well as an overview of the contents of the subsequent chapters.

Chapter 2 presents a detailed review of the published literature. The areas of interest

are those of soil behaviour, including stress history, time and strain rate dependent

effects, and constitutive models for soils. Simple linear elastic / perfectly plastic mod-

els are initially reviewed, before an overview of the critical state framework and some

advanced kinematic hardening models is given. The aim of the literature review is to

assess which factors are likely to govern the behaviour of overconsolidated clays and to

see if and how they have been previously modelled.

Chapter 3 details the internal workings of the Brick model, from the formulation of

the stress and strain components to examples of the predicted behaviour. This chapter

is designed to give the reader the necessary background of the Brick model to allow an

easier understanding of the more complex behaviour modelled in subsequent chapters.

Chapter 4 demonstrates the capabilities of a variation of the Brick model called ‘Bricks

on Ice’ developed by Den Haan (2001). This includes recreating the published test re-

sults and then modifying the code to try to improve the predicted behaviour. A series

of tests was conducted on the modified Bricks on Ice model to assess its capabilities
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when modelling the effects of creep and stress relaxation. The Bricks on Ice model

was also used to simulate the testing conducted by Gasparre (2005). The Bricks on

Ice model has no way of accounting for the effects of strain rate but this was the main

focus of Chapter 5.

Chapter 5 deals with modelling strain rate and time dependent effects simultaneously.

A overview of the relevant strain rate models is presented along with a framework to

allow these effects to be modelled within Brick. Two sets of logic are presented for

the implementation of the strain rate dependency effects into Brick, both being used

to simulate simple tests. The one seen to simulate the tests with most accuracy is

then used to model physical tests from the literature review (Graham et al. (1983) &

Gasparre (2005)).

Chapter 6 presents the finite element implementation of the strain rate dependent

Brick model, along with single element tests to ensure that the code is functioning

correctly in the Arup finite element program, Safe. Two case histories from London

are then described, along with any previous modelling work. The first case history

is that of the construction of the westbound Jubilee Line Extension running tunnel

beneath St James’s Park. The second is a back-analysis of the long term heave experi-

enced due to the construction of the a deep basement in Horseferry Road.

Chapter 7 summarises the findings of the research, highlighting the capabilities of the

enhanced Brick model. Areas for possible future research that have become apparent

during the current work are also identified.
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2
Literature Review

2.1 Introduction

This chapter presents a review of the published literature in relation to the under-

standing and modelling of the deformation behaviour of saturated clays, with particular

attention given to viscous effects. This includes the background to the development of

the Brick model including the key effects that the model incorporated, along with the

equivalent approaches adopted by conventional stress based models and their develop-

ment. A description of viscous effects seen in clays has also been included. For the

purposes of this thesis viscous effects are taken to include both time and strain-rate

dependent behaviour. The literature review has been split into two main sections, those

of soil behaviour and constitutive models for soils.

2.2 Soil Behaviour

2.2.1 Small strain stiffness

In the case of many construction projects fine control over the generated deformations

is required to minimise disturbance to the surrounding area. This is especially true for

deep excavations in heavily overconsolidated soils such as London Clay. It was found

that in this type of project the shear strains governing the movements lie between the

small strain region, < 0.01%, and the large strain region, > 1%, (Simpson et al. 1979).

St. John (1975) compared the stiffness measured in laboratory tests with those back-

calculated from field data and found a considerable variation, seen in Figure 2.1. The

higher stiffnesses observed in the field were attributed to ‘threshold effects’ in the clay,

whereby if the soil is subjected to a small stress probe the stiffness recorded is higher

than that recorded when using a large probe. A comparison of the strains used to

generate the data shown (Figure 2.1) was given in Simpson et al. (1979) who showed

the strains in the field were in the 0.01-0.1% region while conventional laboratory
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2. Literature Review

testing was done using strains greater than 0.2%. This identified the need to measure

the stiffness in the small strain region.

Figure 2.1: Comparison between laboratory and in-situ stiffnesses, St. John (1975)

Jardine, Symes & Burland (1984) set about measuring the small strain stiffness of North

Sea clay using a electrolytic level device that allowed the strains to be resolved down

to 0.01%. The stiffness at small strains was found to be highly non-linear and could be

modelled by the use of an S-Shaped curve as seen in Figure 2.2. In the very small strain

region (<0.001%) the behaviour of the soil is assumed to be perfectly elastic with the

strains being fully recoverable. As further straining occurs the shear modulus degrades

smoothly with increasing strain (Burland 1989). The linear elastic region was identified

accurately by Clayton & Heymann (2001) as being below 0.002-0.003% axial strain in

triaxial tests. It was also noted that a sample should be allowed a period of rest before

shearing to allow the creep strains to decline so as not to affect the measured initial

stiffness. This period ranges from 1-3 days for clay from the Scottish soft clay test site

at Bothkennar to 6-12 days for stiff overconsolidated deposits such as London Clay. As

the stiffness of a soil is dependent on the strain rate, in Figure 2.2 the soil is assumed
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to have been sheared at a constant strain rate to eliminate any associated effects.

Figure 2.2: Approximate strain limits for reliable measurement of soil stiffness, after

Atkinson (2000), Atkinson & Sallfors (1991) and Mair (1993)

The initial shear stiffness shown in Figure 2.2 is normally termed Gmax or G0 and rep-

resents the elastic shear stiffness of the soil. Gmax can be determined in the laboratory

using dynamic testing methods such as bender element or resonant column testing, or

from static triaxial tests conducted at very small strains using very high resolution

local measurement systems. Although Gmax relates to the shear stiffness at very small

strains, it can in fact be determined at any strain level by using a stress path reversal

to develop the elastic shear stiffness, as will be shown in Section 2.2.2.

It was noted by Jardine (1992) that the linear elastic region in stress space can grow in

size as a result of overconsolidation or ageing effects, which has direct implications for

the formulation of the Brick model as explained in detail in Section 3.3.1. The implica-

tions of non-linear soil behaviour for practical design were discussed by Atkinson (2000).

A formulation for the increase in elastic shear stiffness with overconsolidation for clays

was proposed by Hardin (1978):

Gmax = Sf(v)OCRkpa
1−np′n (2.1)

where:

S = dimensionless coefficient which depends on the nature of the soil,
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f(v) = function of the specific volume,

p′ = mean effective stress,

pa = atmospheric pressure,

OCR = overconsolidation ratio and

k & n are material constants.

Equation 2.1 can be simplified by redefining the overconsolidation ratio in terms of the

stress at the intersection of a swelling line with the normal consolidation line, seen in

Figure 2.3.
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Swelling line

Figure 2.3: Definition of p′ and p′p on a plot of specific volume versus mean stress

Viggiani & Atkinson (1995) proposed the following equation based on laboratory tri-

axial compression and extension tests conducted on reconstituted clay samples with

bender elements used to determine Gmax:

Gmax

pa

= A

(

p′

pa

)n

R0

m (2.2)

where:

pa = reference pressure (1kPa),

R0 = overconsolidation ratio p′p/p
′ from Figure 2.3 and

A, n and m are material constants.

This form of equation was shown to be applicable to the behaviour of London Clay by

the tests done by Viggiani & Atkinson (1995) and Jovičić & Coop (1998) as seen in

Figure 2.4. The testing conducted by Viggiani & Atkinson (1995) concentrated on the

measurement of the vertical elastic shear stiffness, whereas Jovičić & Coop (1998) in-

vestigated both horizontal and vertical elastic shear stiffnesses. Figure 2.4(b) shows the
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(a) Normalised results, Viggiani & Atkinson

(1995)

(b) Directional results, Jovičić & Coop

(1998)

Figure 2.4: Variation of Gmax (or G0) for London Clay

cross-anisotropy present in natural samples of London Clay with the horizontal shear

stiffness being greater than the vertical shear stiffnesses, which was also seen in the

Young’s modulus plots in Figure 2.1. This anisotropy is a result of the predominantly

one-dimensional stress history, as would be expected for London Clay.

A framework for the characterisation of the small strain behaviour of soils was intro-

duced by Jardine, Potts, St John & Hight (1991) who proposed an empirical framework

based on triaxial tests done using locally-measured strains. In the Jardine framework,

three sub-surfaces are defined within a bounding surface, each defined by progressively

larger stresses, as seen in Figure 2.5, where p′e is the equivalent pressure on the isotropic

compression line at the current specific volume. The framework uses the three sub-

surfaces to define the behaviour pre-yield, effectively creating three kinematic zones

and a yield surface, which will be discussed later in Section 2.3.3.

a) Y1 Surface

The area inside the Y1 surface defines the zone of linear elastic response. Within this

zone the strains are directly proportional to the stresses applied, and hence the load-

unload paths are expected to coincide giving fully recoverable strains. The real limits

of this zone have only recently been measured and correspond to very small strains,

typically less than 0.002%. This can be seen in Figure 2.6. The position of the Y1

surface can be affected by the influence of creep as the soil strains without any change

in stress giving rise to a stiffer response than expected when straining recommences.

Currently there are no models which dynamically move the position of the Y1 surface
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to account for the rise in stiffness caused by creep or other time related effects.

Figure 2.5: Schematic diagram of kinematic sub-yield surfaces, after Jardine (1992)

b) Y2 Surface

In zone two (between the Y1 and Y2 surfaces) the behaviour changes from linear elastic

to a non-linear but hysteretic behaviour, so that complete load-unload cycles show

fully recoverable behaviour. Jardine (1992) also suggests that, as clays with non-linear

hysteretic loops can return to their original state after unloading, this may be evidence

to support the idea that viscous effects contribute to the non-linear behaviour observed.

c) Y3 Surface

Zone three (between the Y2 and Y3 surfaces) is defined as the area of irrecoverable

plastic strains, which become increasingly important as the stress path approaches the

Y3 (local boundary) surface.

The definition of the yield surfaces used by Jardine (1992) has widely been adopted

when describing stiffness degradation, especially in regard to the features of kinematic

yield surface models.

2.2.2 Stress history

It was shown in Section 2.2.1 that the shear stiffness of an overconsolidated soil depends

heavily upon its previous stress history. From a general point of view this is covered by

the use of the overconsolidation ratio which can be used to calculate the elastic shear

stiffness of an overconsolidated soil based upon the pre-consolidation pressure and the
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Figure 2.6: Comparison of the stiffness of Chalk, London Clay and Bothkennar Clay,

showing linear elastic very small strain region, Clayton & Heymann (2001)

current stresses in the soil. The effects of non-geological or ‘recent’ stress history have

been found to also have a large effect of the stiffness response of a sample under testing,

especially in the small strain region. Atkinson et al. (1990) defined the term ‘recent

stress history’ as the current path undertaken by the soil in relation to the previous

stress path, which might take the form of a change of direction in the stress path or an

extended period of rest.

Atkinson et al. (1990) conducted drained constant effective mean stress, p′, and devia-

tor stress, q, tests on reconstituted overconsolidated London Clay, where the samples

were brought to the same stress state (O in Figure 2.7) by different approach paths

before being sheared along a common load path, OA in the constant p′ tests shown

in Figure 2.7. The approach paths were 90kPa in length and a period of 3 hours was

allowed before loading along path OA. At the end of the holding period it was noted

that the rates of volumetric creep were too small to be measured by the volume gauge.
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Figure 2.7: Stress paths followed in constant p′ tests, after Atkinson et al. (1990)

Atkinson et al. (1990) found that the direction of the stress path immediately before

the shearing phase (OA) of a test dramatically affected the measured stiffness within

the soil during the shearing phase. The degree of rotation in the path was linked to an

increase in shear stiffness, i.e. the greater the rotation of the path, the higher the mea-

sured stiffness would be during the shearing phase, which is demonstrated in Figure 2.8.

It was noted that at small strains of the order of 0.01% the stiffness for the θ = 180◦ test

was approximately an order of magnitude larger than the corresponding stiffness for the

Figure 2.8: Stiffness of reconstituted London Clay versus strain measured in constant

p′ tests, after Atkinson et al. (1990)
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θ = 0◦ test, but at strains of the order of 0.5% the differences had been largely removed.

Tests were also conducted holding q constant, which gave a similar pattern of results as

seen in Figure 2.8, indicating that the variation in bulk modulus was just as dependent

upon the angle of rotation in the approach stress path as the shear modulus.

Yield

surface

q

A

B

p'

C D

E

Compression (BC)

Extension (BE)

Figure 2.9: Stress paths applied to London Clay, after Clayton & Heymann (2001)

One criticism of the Atkinson et al. (1990) tests was that the samples were not allowed

to rest sufficiently to completely rule out the possibility of creep strains affecting the

generated stiffness (Clayton & Heymann 2001). The testing completed by Heymann

(1998) was conducted on natural samples of London Clay and included a much longer

holding period, prior to the loading stage, of approximately 6-12 days. The sample was

consolidated to its in-situ effective mean stress, p′, of 383kPa (A in Figure 2.9) and

then brought to a deviator stress, q, of -200kPa (B), at which point the the sample

was sheared in either compression (BC) or extension (BE). The testing was multi-stage

meaning that both the extension and compression tests were conducted on the same

sample. Hence the length of the compression path BC is of critical importance to the

observed stiffness during the extension test.

Clayton & Heymann (2001) found that allowing the dissipation of creep strains meant

that the measured initial stiffness was independent of the rotation in the stress path.

This dramatically reduced the effects of recent stress history, to the point that it is no

longer necessary to model the change in stress path. This leads to the initial stiffness

of the soil being very close to the elastic Young’s modulus, Emax, independent of the

path taken, which can be seen for tests on London Clay in Figure 2.10. Although the
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Figure 2.10: Strain-dependent stiffness of a single London Clay specimen under two

different loading paths, Clayton & Heymann (2001)

initial stiffness is the same for both tests the reduction in stiffness occurs at different

strain levels for the different rotations, which could be a sign of the persistent effects

of the recent stress history. It can be inferred from the results that the compression

path BC must have been short enough for the effects to be erased by the period of

creep. For tests on Bothkennar Clay also completed by Clayton & Heymann (2001) a

probe length of 10kPa was used which resulted in the same pattern of results as seen

in Figure 2.10. The measured stiffnesses depend upon the magnitude of the creep that

occurs in the soil prior to testing. If this is of sufficient magnitude it may be able to

obscure and even erase the trends observed in creep free testing and thus erase the

variation in the initial stiffness.

The effects of creep and the length of the stress probe were investigated by Gasparre

(2005) to better understand the relationship between creep and the effects of recent

stress history, and to clarify the cause of the contrasting results in Atkinson et al. (1990)

and Clayton & Heymann (2001). Gasparre et al. (2007) found in tests on natural

London Clay samples that a period of creep can eliminate the effects of the recent

stress history (as found by Clayton & Heymann (2001)), if the approach path is less
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(a) Tangential stiffness degradation within the Y2 surface with creep allowed

(b) Within Y2 surface and creep not allowed

(c) Approach path engaging Y2 surface and creep allowed

Figure 2.11: Tangent stiffness degradation curves, Gasparre et al. (2007)
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than 10kPa, Figure 2.11(a). If creep is not allowed during the same short approach

path test then the results show the same reduction in stiffness seen in Atkinson et al.

(1990), Figure 2.11(b). Gasparre et al. (2007) also showed that for a longer (100kPa)

approach stress path the results showed the influence of the recent stress history even

with allowances for creep, Figure 2.11(c). Although both previous authors were correct,

Gasparre et al. (2007) concluded that differences in the measured stiffnesses were due

to the length of the approach path used in the testing. For tests where the Y2 surface

was engaged and moved, subsequent creep was not of a great enough magnitude to

reduce the effects of the approach path and the usual reduction of stiffness due to a

rotation in the stress path was observed.

2.2.3 Time dependent behaviour

Creep and stress relaxation are taken to be those effects that are directly related to

the influence of time, and specifically not the effect of the rate of strain rate, which

is to be discussed in Section 2.2.4. Creep refers to the time dependent shear and/or

volumetric strains that develop at a rate controlled by the ‘viscous resistance’ of the soil

(Mitchell 1993). The magnitude of the creep rate appears to be positively correlated

with an increase in plasticity, water content and stress level.

Primary consolidation is normally attributed solely to the dissipation of excess pore

water pressures within the soil giving rise to changes in effective stress. At the end of

primary consolidation (EOP) the soil continues to strain at a reducing rate under con-

stant stress. This stage is known as secondary compression and is normally attributed

to creep alone as all the excess pore water pressures have dissipated. Hence the soil

is under constant effective stress. Tertiary creep or creep rupture is a phenomenon

observed when the soil creeps close to failure with a sufficiently large deviator stress.

This leads to an acceleration of the creep strains towards failure of the soil.

Among the first studies to look in depth at the creep movements generated within

clays was that of Bishop (1966) who undertook long term constant stress triaxial tests

to develop an understanding of how creep behaviour changes over time. London Clay

samples were loaded up to a specified percentage of their drained shear strength, deter-

mined from previous triaxial tests. This initial loading took place over a period of one

week to allow the primary consolidation to complete.

It can be seen from the results shown in Figure 2.12 that there is a linear relationship
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Figure 2.12: Drained creep tests on undisturbed London Clay, Bishop (1966)

between the axial strain and logarithm of time during the secondary stage of consol-

idation. The sample loaded to 90% of the drained strength can be seen to enter the

tertiary stage of creep, leading to creep rupture and the failure of the clay after only 2

days and 4 hours. Singh & Mitchell (1968) replotted the results shown in Figure 2.12

to demonstrate the linear relationship between the logarithm of strain rate and the

logarithm of time, Figure 2.13. As the initial loading of the samples took place over

a week independent of the load applied, this led to different starting strain rates. The

decay in strain rate is independent of the stress level applied to the sample, leading the

authors to suggest an equation relating strain rate to time, Equation 2.3.

ε̇ = Aeαq

(

t1
t

)m

(2.3)

where:

ε̇ = strain rate,

A = strain rate at some arbitrarily chosen time, t1,

α = constant of integration in the creep function,

q = deviator stress (σ1-σ3),

m = negative of the slope of the relationship between the logarithm of strain

rate and the logarithm of time,

t = increase in time.

It is generally accepted that creep is the cause of secondary compression. It is however

harder to be sure if creep affects the consolidation during the primary stage before all

pore water pressures have been dissipated, as a result of the interdependence between
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Figure 2.13: Strain rate versus time relationships during drained creep of London Clay,

Singh & Mitchell (1968)

the void ratio and both the effective stress and time. Bjerrum (1967) presented tests

conducted on a very sensitive normally consolidated marine clay. In the analysis of the

findings Bjerrum suggested that there may also be another method for describing the

consolidation stages of soft clays, that of ‘instant’ and ‘delayed’ compression. Instant

compression is taken to occur simultaneously with an increase in effective stress and

causes a reduction in void ratio until an equilibrium point is reached. Delayed compres-

sion represents a reduction in volume at unchanged effective stress.

The terms ‘instant’ and ‘delayed’ refer to the effective stresses, as opposed to the

classical terms of primary and secondary which refer to the dissipation of pore water

pressures. It can be noted that the definition of delayed compression is identical to

that of secondary compression, the difference being in the starting point. It is inferred

from Bjerrum (1967) that creep occurs during the primary consolidation phase as oth-

erwise the instant and primary consolidations would be the same. This can be seen in

Figure 2.14.

If creep settlements do occur during primary consolidation then there are two theories
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pertaining to how the creep rate affects it (Ladd 1977).

Instant

Delayed

Primary

Time

Secondary

Pore Water

Dissipation
No Excess

Pore Pressures

Creep

Figure 2.14: Definition of instant and delayed compression, after Bjerrum (1967)

Theory A, assumes that the creep component is independent of the time

taken to reach EOP and therefore that the void ratio to vertical stress

relationship is unique. Thus, the compression curve in the laboratory can

be used directly for settlement analysis in the field, as supported by Mesri

& Choi (1985).

Theory B, assumes the creep component is dependent upon the time taken

to reach EOP and therefore that the void ratio to vertical stress relation-

ship is not unique. This is based on the principle that clays are viscous and

therefore influenced by the effects of strain rate during primary consolida-

tion. The differing approaches are illustrated in Figure 2.15.

Leroueil (1995) examined both theories concluding that, for strain rates encountered

in the laboratory, clays exhibit viscous behaviour during primary consolidation.

Although it is normally assumed that there are no excess water pressures during sec-

ondary compression this cannot be true. As the soil further consolidates any water

contained within the structure will be forced out setting up pore water pressures within

the soil. These pore water pressures are normally assumed to be negligible due to the
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extensive period in which the secondary compression takes place. The rate of secondary

compression can be modelled by the secondary compression index, Cα.

Cα = ∆e/∆log t (2.4)

Figure 2.15: Comparison between theories A and B for secondary compression, after

Hight et al. (1987)

Bjerrum (1967) introduced the idea of ‘isochrones’ which show the predicted amount

of creep based upon a given increase in time, Figure 2.16. The reduction in void ratio

was governed by a logarithmic decay law similar to that in Equation 2.3.
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Figure 2.16: Concept of isochrones, Bjerrum (1967)

Figure 2.17: Gain in undrained strength due to creep, Vaid & Campanella (1977)
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After a period of creep, the stiffness of a soil will be higher than that of an equiva-

lent soil that has not been allowed to creep. This is implied by Figure 2.16 by the

rejoining of the normal consolidation line after a period of creep. The increase in stiff-

ness and also undrained strength post creep was investigated by Vaid & Campanella

(1977), where samples of Haney Clay were allowed to creep for periods ranging from

2-48 days. They were subsequently sheared under identical CRS conditions, giving rise

to the stress-strain plots seen in Figure 2.17. The tests with the creep period can be

seen to exhibit a higher strength and also higher stiffness (steeper gradient at the same

stress) when compared with the test conducted without creep.

The behaviour in this section has focused on the classification and influence of time de-

pendent soil behaviour and the decay of creep with time. None of the results presented

have focused directly on the effect of strain rate on the behaviour of a soil, which is the

focus of Section 2.2.4.

2.2.4 Strain rate dependent behaviour

It was noted by Jardine et al. (1984) that the undrained stiffness depends not only upon

the strain level, stress history and method of formation, but also possibly on strain rate.

Two main types of testing are used to determine the strain rate behaviour of soils. The

first is constant strain rate (CRS) testing, which involves conducting a test with a fine

control over the strain rate to keep it constant as the soil deforms. CRS tests are able

to establish the rate dependent stiffness of the soil, but nothing about the transition

between differing rates of strain can be learned. The soil response during CRS tests

has been idealised in Figure 2.18.

Time, t

Stress, σ´

2ε�3ε� >

εStrain,

εStrain,
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2ε� 2ε�

1ε�
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Figure 2.18: Constant rate of strain (CRS) testing, after Sorensen (2006)
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Figure 2.19: Step-changed rate of strain (SRS) testing, after Sorensen (2006)

The second form of testing is step-changed rate of strain (SRS) testing, where the rate

of strain applied to the soil is varied during a single test. This form of testing is able

to identify the behaviour investigated by CRS testing as well as establishing how the

transition between different rates of strain occurs. This can play an important role in

categorising the strain rate behaviour of a soil (Tatsuoka et al. 2002). SRS testing has

the advantage of being able to identify the strain rate behaviour in a single test, thus

minimising problems with sample variability and the time requirements associated with

low strain rates (Richardson & Whitman 1963). The expected pattern of results for

SRS tests can be seen in Figure 2.19.

Figure 2.20: Stress-strain behaviour of Saint-Jean-Vianney clay in CRS triaxial com-

pression, after Vaid et al. (1979)
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Early work done by Vaid et al. (1979) using a CRS testing system showed that, the

higher the rate at which a soil is strained, the higher the undrained strength of the soil.

Figure 2.20 shows the results of tests done on Saint-Jean-Vianney clay, where a factor

of 175 change in axial strain rate gave an increase in peak strength of 28%.

Graham et al. (1983) conducted a series of triaxial compression tests on lightly over-

consolidated clays, advancing the work done by Vaid et al. (1979) by introducing both

SRS and stress relaxation periods into the test procedure. Figure 2.21(a) shows the

results of the SRS tests with the stepping of the curve between the different strain

rates, each rate associated with a unique parallel path. When compared with CRS test

results shown in Figure 2.21(b) the improvement afforded by SRS testing over CRS

testing is apparent, with the CRS tests showing non parallel paths, probably as a re-

sult of sample variation or disturbance. The relaxation periods in Figure 2.21(a) show

the reduction in stress at constant axial strain, mimicking a considerable reduction in

the strain rate. Upon a recommencement of the applied strain rate the path rapidly

returns to the previously predicted path, demonstrating a unique stress-strain-strain

rate relationship.

(a) SRS with relaxation periods (b) CRS

Figure 2.21: Stress-strain curves for triaxial compression tests, Graham et al. (1983)
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(a) CRS Oedometer tests (b) Creep test deduced curves

Figure 2.22: Stress-strain curves for one-dimensional compression tests, after Leroueil

et al. (1985)

Leroueil et al. (1985) compared the effect of a directly applied volumetric strain rate

with results derived from drained creep tests. The testing was conducted on samples

of Batiscan clay under one-dimensional conditions using an oedometer. The results in

Figure 2.22 show the same stress-strain-strain rate response during CRS testing (Fig-

ure 2.22(a)) as derived from creep tests (Figure 2.22(b)). The 1.07x10−7 (CRS) and

10−7 (creep) tests show a near identical response, establishing that strain rate and

creep rate induced effects are comparable. This demonstrates the fact that it is only

the rate at which the soil is strained which governs the behaviour and not the method

of applying the strain rate. In Figure 2.22 an increase in strain rate leads to a shift to

the right of the normal consolidation line, allowing the soil to sustain a higher effective

stress.

Leroueil et al. (1985) also conducted SRS tests under one-dimensional conditions, allow-

ing the type of relationship seen in Figure 2.21 to be observed under different conditions,

Figure 2.23. All the testing described up to this point has been concerned with the

identification of unique stress-strain-strain rate relationships, also known as isotach be-

haviour. During SRS tests, elastic strains are mobilised upon a change in strain rate,

leading to a jump between isotache lines. Di Benedetto & Tatsuoka (1997) reasoned

it is more accurate to state that the current stress is a function of irrecoverable strain,

εir, and its rate, as seen in Figure 2.24.
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Figure 2.23: SRS oedometer tests on Batiscan Clay, Leroueil et al. (1985)

One of the main distinguishing features of isotach behaviour is the persistent effect of

the changes in strain rate. Advanced testing from the late 1990s onwards on soils other

than clay has identified forms of behaviour in soils that cannot be classified as isotach

(Tatsuoka et al. 2002). Currently, four differing sets of characteristics have been identi-

fied in soils during SRS testing. These are known as isotach, intermediate, temporary

effect of strain rate and strain acceleration (TESRA) and positive and negative (P & N)

viscous behaviour (Tatsuoka 2007). Figure 2.24 illustrates the four types of viscosity.

εir

Isotach

Intermediate

TESRA

P & N

σ

Constant strain rate ε0
·

Step increase in the strain
rate by a factor of 10

Figure 2.24: Different viscosity types for geomaterials, after Tatsuoka (2007)
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Temporary Effect of Strain Rate and strain Acceleration (TESRA)

In undrained triaxial compression SRS tests on Metramo silty sand, Santucci de Mag-

istris & Tatsuoka (1999) observed that at small strains the behaviour followed that of

the Isotach model, but changed at larger strains close to and post peak strength. At

small strains, an increase in strain rate caused a persistent change to the stress-strain

curve, as would be predicted by the Isotach model. At larger strains, the change in

deviator stress experienced after a change in strain rate became temporary and the

stress-strain curve was found to decay to a curve independent of strain rate. This

behaviour was termed TESRA by Tatsuoka, Ishihara & Maruyama (2000).

(a) q − εv relationship (b) Effective stress path

Figure 2.25: Consolidated undrained triaxial tests on Hostun sand, Tatsuoka et al.

(2002)

Tatsuoka et al. (2002) demonstrated TESRA behaviour in clean sand over the full shear-

ing range, until failure. Figure 2.25 shows the behaviour of Hostun sand in undrained

triaxial compression SRS tests. Figure 2.25(a) shows that the stress-strain relationship

is independent of the applied strain rate. Following a change in strain rate an overshoot

or undershoot of the persistent stress-strain curve is experienced before the path rejoins

a unique CRS curve. As the behaviour of Hostun sand is totally independent of the

applied strain rate, being only affected by strain acceleration and deceleration the be-

haviour can be more accurately described as Pure TESRA. Materials that demonstrate

Pure TESRA behaviour can misleadingly be thought to be time and rate independent,

because CRS tests performed at different strain rates yield the same stress-strain re-

lationship (Bodas 2008). Despite the apparent lack of strain rate effects on the CRS

curves, significant creep and stress relaxation have been observed in other materials

that exhibit TESRA behaviour, such as in plane strain compression tests on Toyoura

Sand (Di Benedetto, Tatsuoka & Ishihara 2002).
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Intermediate or General TESRA

Oka et al. (2003) conducted SRS tests on both normally and overconsolidated recon-

stituted samples of Fukakusa clay. Figure 2.26(a) shows that at small strains, the

behaviour can be seen to be isotach but as the straining continues the stress-strain

curve starts to overshoot the persistent CRS curve, before decaying to a strain rate

dependent CRS curve. In Pure TESRA behaviour the paths would decay to a unique

curve not one dependent upon strain rate. Thus the tests showed traits of both isotach

and TESRA behaviour, a combination which has since been termed Intermediate or

General TESRA viscous behaviour (Tatsuoka 2007). In the stress paths shown in Fig-

ure 2.26(b) upon reaching the critical state line, if the strain rate is changed, then the

stress path temporarily either overshoots or undershoots the critical state line. Simi-

lar behaviour has been identified by Sorensen, Baudet & Simpson (2007b) in tests on

reconstituted London Clay. Generally, in soils that show a combination of isotach and

TESRA behaviour, the magnitude of the TESRA effects are found to increase with

strain level (Tatsuoka 2007).

(a) q − εa relationship (b) Effective stress path

Figure 2.26: Undrained triaxial compression tests on normally consolidated clay, Oka

et al. (2003)

Positive and Negative (P & N)

Positive and negative (P & N) viscosity is a very new concept, described in detail

by Tatsuoka (2007). The concept differs from the other types of viscosity in that an

increase in strain rate can lead to a decrease in strength, exactly the opposite behaviour

to that predicted by the isotach concept. Through the development of a new direct shear

apparatus, Duttine et al. (2009) were able to identify P & N viscosity during testing
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of Toyoura and Hostun sands. The testing showed a TESRA stress-strain response at

pre-peak strength, with a gradual transition post-peak from TESRA to P & N. The

most obvious P & N behaviour was observed at the residual state, Figure 2.27, where

an increase of two orders of magnitude in the applied strain rate leads to an initial

peak, followed by a persistent reduction in the stress ratio.

Figure 2.27: Behaviour of Toyoura and Hostun sands at the residual state, after Duttine

et al. (2009)

Sorensen (2006), in a summary of previously published work, established that isotach

behaviour is predominantly exhibited by natural clays, whereas the other forms of

behaviour are demonstrated by reconstituted stiff clays, cemented soils and sands. As

the aim of the current work is to modify a model primarily for predictions of ground

movements in natural clays, it was decided the research should focus on the modelling

of isotach behaviour.

2.2.5 Other influencing factors

There are many other factors that are known to have an influence on the observed

behaviour of soil. The effects that have been described in this chapter thus far relate

either to behaviour currently included in the Brick model or to behaviour that it

is within the scope of this thesis to attempt to include in the Brick model, with

the exception of non-isotach viscous behaviour. In Table 2.1 a brief overview of the

mechanisms that can give rise to time effects is given. In this thesis only the viscous

effects will be considered for implementation into the Brick model.
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Phenomenon Micro-mechanism

Viscous effects
Creep, stress relaxation, strain rate effects,

apparent structuration from creep.

Inherent
Thixotropy, bonding, cementation etc.

Ageing
(no external influence)

Effects Environmental
Weathering, chemical changes to pore water (e.g.

(external influence)
leaching), heat and pressure induced changes to

the soil structure etc.

Table 2.1: Classification of common time effects, Sorensen (2006), modified after Kong-

sukprasert & Tatsuoka (2003)

2.3 Constitutive Models for Soil

2.3.1 Elasto-plastic models

The simplest form of elasto-plastic constitutive model is one that assumes the soil

body is perfectly elastic until the point of yielding at which the soil behaves in a

plastic manner until failure. In the elastic portion of the behaviour the soil deforms

in accordance with Hooke’s law, where the deformation is directly proportional to the

stress applied. This behaviour is limited by either the Tresca or Von Mises failure

criterion, where the plastic phase is modelled as being perfectly plastic, as seen in

Figure 2.28.

ε

Plastic behaviour

Linear elastic
behaviour

τ

Figure 2.28: Elastic perfectly plastic response of a soil leading to failure

The Tresca failure surface takes the shape of a hexagon when plotted in the deviatoric

stress plane, which is perpendicular to the space diagonal where all principal stresses
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(a) Tresca yield surface plotted in 3D space of prin-

cipal stresses

(b) Comparison between Tresca and Von Mises

yield surfaces

Figure 2.29: Total stress yield surfaces

are equal. In comparison the Von Mises model plots as a perfect circle when plotted in

the same plane. Both the Tresca and Von Mises models are suitable for expressing the

undrained shear strength of clay when plotted in terms of total stresses. They can be

visualised as a hexagonal prism or cylinder respectively, Figure 2.29.

The Mohr-Coulomb and Drucker-Prager yield surfaces are variations on the above mod-

els, allowing yield to be dependent on the stress level and thus applicable to effective

stress analysis. The visualised yield surfaces can be seen in Figure 2.30. The models

revert back to the Tresca and Von Mises surfaces respectively for undrained analy-

ses. The yield surface generated by the Drucker-Prager model is used in variations of

the BRICK program (Section 3.5). Currently, the most commonly used model in soil

mechanics, especially for finite element analyses, is the Mohr-Coulomb model as the

parameters are comparatively easy to determine and the generated results are easier to

interpret due to the lack of complexity in the soil model. The problems with using the

Mohr-Coulomb model are numerous, as the model does not account for many facets of

soil behaviour. It is known that soil does not behave purely elastically before failure

and that any overconsolidation of the soil will have a large effect on the pre-failure de-

formations. The Mohr-Coulomb model may be acceptable for use in situations where

failure is reached (such as stability analyses) but the predicted deformations are likely

to be inaccurate compared with more advanced models.
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(a) Mohr-Coulomb yield surface plotted in 3D

space of principal stresses

(b) Comparison between Mohr-Coulomb and

Drucker-Prager yield surfaces

Figure 2.30: Effective stress yield surfaces

2.3.2 Critical state soil mechanics

The critical state framework proposed by Schofield & Wroth (1968) was developed

from triaxial tests done on reconstituted soils at the University of Cambridge in the

1960s. The isotropic normal consolidation line (NCL) is assumed to be a straight line

in v − ln p′ space (see Figure 2.31) and can be expressed as:

v = N − λ ln
p′

p′
0

(2.5)

where:

v = specific volume,

N = specific volume on NCL at a mean normal stress of 1kPa,

λ = gradient of the NCL,

p′ = mean normal effective stress,

p′
0

= initial mean effective stress (1kPa).

It is assumed that the strains generated on the isotropic NCL are largely plastic and

irrecoverable. Any swelling that occurs does so on a line of gradient κ given by the

equation:

v = vk − κ ln
p′

p′
0

(2.6)

where:

vk = specific volume on the swelling line at a mean normal stress of 1kPa.
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Figure 2.31: Critical state framework

As the strains induced during a period of swelling are occurring in an overconsolidated

state, they are deemed to be elastic and recoverable. Projected above the swelling line

in q−p′−v space is the aptly named ‘elastic wall’ which allows purely elastic behaviour

to lead to a boundary surface. For normally consolidated soils this boundary surface

is the Rendulic surface and for overconsolidated soils the Hvorslev surface, shown in

Figure 2.32. The behaviour of the soil inside the boundary surface is effectively elastic

and turns elasto-plastic only as the boundary surface in engaged. The soil becomes

perfectly plastic upon reaching the apex of the boundary surfaces, the critical state

line (CSL). The location of the CSL is given by the equations:

v = Γ − λ ln p′ (2.7)

q = Mp′ (2.8)
where:

Γ = specific volume on CSL at a mean normal stress of 1kPa.

M , Γ and N are material constants that can be determined from triaxial testing.

The components that make up the critical state framework are illustrated in Figure 2.33.

The critical state framework makes the assumption that all sheared soils ultimately

reach a critical state. This is a good assumption for normally consolidated and lightly

overconsolidated clays but lacks the ability to model heavily overconsolidated clays,

especially those with high plasticity. In reality, localisation of the strains will occur

bringing the soil to critical state within shear bands. However the stresses in these

bands cannot be easily measured externally.
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Figure 2.32: Normalised state boundary surface in stress space

Two well known models that utilise the critical state framework are the Cam-Clay

(Schofield & Wroth 1968) and Modified Cam-Clay models (Roscoe & Burland 1968).

The models use mathematical approximations for the shape of the yield locus, which in

the case of the Cam-Clay model is a logarithmic curve and in the case of the Modified

Cam-Clay model is an ellipse. The most widely used implementation of the critical

state framework is the Modified Cam-Clay model of Roscoe & Burland (1968). The

main drawback with both models is the fact that the shape of the boundary surface

bears little resemblance to experimental results from natural soils (Muir-Wood 1990).

Figure 2.33: State boundary surface of the critical state framework in e− p′ − q space,

Burland (1989)
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For soils that remain within the boundary surfaces, the Cam-Clay and Modified Cam-

Clay models assume elastic behaviour until a boundary surface is engaged. In the

case of heavily overconsolidated soils, elasticity is a poor approximation to the highly

non-linear elasto-plastic behaviour that such soils exhibit. Many models have been

generated that attempt to overcome this drawback in the modelling of overconsolidated

soils, examples being described in the next section. It should also be noted that the

critical state framework was based on tests done on reconstituted soils and does not

encompass effects such as structure which are part of natural clay behaviour.

2.3.3 Some kinematic hardening models

The concept of kinematic hardening modelling was originally introduced for the work

hardening of metals (Mroz 1967). This was then applied to soils by, among others,

Mroz, Norris & Zienkiewicz (1979) and Mroz & Norris (1982). An overview of the

history of kinematic hardening models is given by Grammatikopoulou (2004). In this

section selective attention is given to those models developed for analysis of heavily

overconsolidated deposits such as London Clay.

Model LC was developed by Simpson et al. (1979) specifically to model the behaviour

of London Clay. Three ranges of strains were considered in Model LC:

a) Very small strains (within the elastic strain threshold): elastic behaviour, equiv-

alent to the Y1 yield surface of the Jardine et al. (1991) framework.

b) Moderate strains (the linear range measured in the laboratory): intermediate

behaviour giving a reduction in stiffness but still purely elastic behaviour.

c) Large strains, approaching the limiting shear strength of the material: plastic

behaviour accompanying further intermediate behaviour.

Figure 2.34 demonstrates the concept of a kinematic yield surface (KYS) in strain space

that defines the stiffness at very small strains. In Model LC the stiffness within the

KYS was taken to be ten times that taken from laboratory results at intermediate

strains. Straining within the KYS is purely elastic, though non-linear (2.34a). As the

soil is strained further the yield surface moves and the effective stiffness is reduced

(2.34b). If the direction of straining is reversed the higher stiffness again applies (2.34c)

until the KYS starts to move again (2.34d). Simpson et al. (1979) assumed a spherical

yield surface defined within strain space with axes, (εx + εy, εx − εy, γxy). They noted

that the model is initialised with the KYS centralised around the in-situ stress, but
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Figure 2.34: The kinematic yield surface effect, after Simpson et al. (1979)

that the location of the KYS could be affected by factors such as creep. Model LC was

able to improve the predicted surface settlement troughs behind diaphragm walls, as

compared to those predicted by analyses assuming linear elastic behaviour.

The Cam-Clay models provide typically accurate results for tests on normally consol-

idated and lightly overconsolidated clays. However the results generated for heavily

overconsolidated clays do not match those seen in practice (Section 2.3.2). Implemen-

tations originally tried adding a kinematic yield surface within the Cam-Clay framework

to try to model the areas of stiffer response generated by overconsolidated clays. This

was first attempted by Al-Tabbaa & Wood (1989), where the non-linearity is modelled

by an area of higher stiffness, bounded by a kinematic zone lying within the Modified

Cam-Clay boundary surface, as seen in Figure 2.35. As the soil strains so the inner kine-

matic yield zone moves so that upon a change in direction of shearing, the soil shows
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Figure 2.35: Yield locus. Cam clay locus; stable (S) and unstable (U) regions, Al-

Tabbaa & Wood (1989)

an initially stiff response as its path moves through the area of higher stiffness, denoted

by this inner zone. This stiffness reduces to Cam-Clay levels as the soil approaches the

outer Cam-Clay boundary surface. In this way the model takes into account the stiff-

ness increase caused by overconsolidation but fails to account for the more persistent

effects of the stress history (Grammatikopoulou 2004).
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Bounding surface
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Figure 2.36: Sketch of the 3-SKH model in triaxial stress space, after Stallebrass &

Taylor (1997)

At the same time as the development of the Jardine three surface framework (Sec-

tion 2.2.1) came the development of the Stallebrass three-surface kinematic hardening

model (3-SKH). In this model there are two kinematic surfaces within the conventional

Modified Cam-Clay boundary surface. The three surfaces in the 3-SKH model are

named the yield surface (equivalent to the Y1 surface of Jardine et al. (1991)), history

surface and bounding surface, as seen in Figure 2.36. The 3-SKH model is capable of
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modelling the effects of recent stress history on the small strain stiffness of overcon-

solidated soils as seen by Richardson (1988) and Stallebrass (1990). However it was

found that the stiffness predicted by the 3-SKH model reduced dramatically upon the

engaging of the Y1 yield surface after a 180◦ rotation in the stress path, leading to a

step in the normally smooth S-shaped stiffness curve (Grammatikopoulou 2004). This

can be seen in Figure 2.37 which shows the predicted stiffness of the 3-SKH model

having been implemented into the Imperial College finite element program, ICFEP.
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Figure 2.37: Constant p′ loading after four stress path rotations: G against q, predic-

tions of the 3-SKH model as implemented into ICFEP, Grammatikopoulou

(2004)

The modified 3-SKH model known as M3-SKH was developed by Grammatikopoulou

(2004) to smooth the drop in stiffness predicted by the original 3-SKH model, Fig-

ure 2.38. A direct comparison of the stiffness versus strain plots can be seen in Fig-

ure 2.39 (p′i is mean effective stress at the start of shearing) where the step in stiffness

can clearly be seen in the plot for the 3-SKH model. Grammatikopoulou et al. (2008)

showed that the M3-SKH model was capable of enhancing predictions for surface dis-

placements above tunnels. Attempts were made to introduce an allowance for creep by

centralising the two kinematic surfaces around the current point of stress, but this led

to worse predictions of the surface displacements.
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Figure 2.38: Constant p′ loading after four stress path rotations: G against q,

predictions of the M3-SKH model as implemented into ICFEP, Gram-

matikopoulou (2004)
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et al. (2008)
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2.4 The BRICK Model

The Brick model can be regarded as a kinematic yield surface model developed within

strain space. The model itself has an analogue, which is that of a man walking around

a room with a series of bricks tied to him on separate strings. Each brick represents a

proportion of the soil, and each string length represents the amount of strain required

to create plastic deformations in the soil. The walls of the room can be thought of as

axes in strain space. As the man moves through strain space, initially the strings are

slack so the soil strains elastically, but as the man moves further so the bricks start to

move too in the same direction. The more bricks that move the higher the proportion

of soil undergoing plastic deformation and the lower the stiffness of the soil. This rela-

tionship between the soil proportions and strain gives rise to the s-shaped curved used

in the Brick model to recreate small strain stiffness. This can be seen in Figure 2.40.
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Figure 2.40: The S-shaped curve represented in stepwise fashion, after Simpson (1992b)

Defining kinematic zones within the Brick model is done by defining the relative

lengths of the strings. In stress space the Y1 surface of Jardine et al. (1991) is defined

as the zone of fully elastic behaviour. This equates to all the strings being slack in the

Brick model and hence the extent of the Y1 zone is dictated by the shortest string

length in strain space. The Brick model accounts for recent stress history through the

current position of the bricks relative to the man. To allow an accurate representation

of this, the geological history of the soil is modelled back to when the clay was first
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deposited as a slurry, through the deposition and erosion of the various overlying strata

to the present day. The positions of the bricks give a unique stiffness response depen-

dent upon the strain path followed when straining recommences. The failure surface

in the Brick model is loosely defined by the longest string length and the positions of

the bricks relative to the current position of the man, as will be explored in Section 3.4.3.

One of the concepts within the Brick model is that of plastic strain reduction, a process

by which pure plastic strains generated by taut strings can be partially transformed

into elastic strains, which give rise to changes in stress, giving the correct gradient

to the normal consolidation line. This bears a striking resemblance to the work by

Collins (2005) on the concept of stored plastic work or frozen elastic energy. Collins

(2005) argues the case that, due to inter-particle movements, elastic strains can become

trapped within the fabric of the soil, only being released upon further plastic straining.

2.4.1 Variations of BRICK

There have been a number of attempts to manipulate the Brick model to incorpo-

rate viscous effects. Kanapathipillai (1996) modelled the construction of the Heathrow

Express trial tunnel and obtained an under-prediction of the surface settlements when

compared with the field data. He then attempted to simulate the rise in stiffness seen

after periods of rest by halving the string lengths before the start of construction. The

tunnel construction was then modelled with the original string lengths, which has the

effect of causing an elastic response in the soil and hence a higher stiffness than would

be predicted otherwise. Figure 2.41 shows the three runs conducted by Kanapathip-

illai (1996) compared with the field data. The ‘Rankine’ prediction used the Brick

parameters as presented in Simpson (1992b), with the ‘New’ results showing the predic-

tions made by modified Brick parameters as proposed by Kanapathipillai (1996) (see

Section 3.4.1). It can be seen that both these models still under-predict the measured

settlements. The third ‘Ageing’ test shows the effects of halving the string lengths prior

to the construction of the tunnel, with the predictions showing a dramatic improvement

over the initial tests.

Den Haan (2001) introduced the ‘Bricks on Ice’ idea, by which the bricks continue to

move at an ever decreasing rate after the motion of the man has ceased. This in turn

means that upon recommencing the motion of the man, rather than the strings being

all taut and the behaviour plastic, the strings have become slack and therefore the

response is elastic. The continued viscous motion leads to a reduction in stresses at
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Figure 2.41: Surface settlements above the Heathrow trial tunnel, after Kanapathipillai

(1996)

constant volume during a period of rest. It also leads to a higher stiffness after the

period of rest which is the expected trend after a stress relaxation, as can be seen in

Figure 2.42. The deceleration of the bricks is calculated using a simple logarithmic

decay equation and hence only needs a single additional parameter for calculating the

expected continued motion, that being the creep constant, c.

δε = c ln

(

1 +
∆t |ε̇|

c

)

(2.9)

where:

δε = continued motion (strain) in the next increment,

∆t = time increase between Brick increments,

ε̇ = strain rate in the previous increment.

After a period of swelling, the direction of brick movement reverses so that during a

rest period the bricks now carry on moving in the opposite direction to that seen in

a stress relaxation. This leads to a rise in stresses at constant volume and has been

termed ‘strain fixation’ by Den Haan (2001), shown in Figure 2.43. The ideas proposed

in Den Haan (2001) give rise to the expected pattern of stress changes seen during

stress relaxation and strain fixation. This cannot however be said about the patterns

shown in the stress-strain plots. The creep movements of the bricks during normal
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Figure 2.42: Stress relaxation with Bricks on Ice, Den Haan (2001)

Figure 2.43: Strain fixation with Bricks on Ice, Den Haan (2001)
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consolidation lead to non-parallel isotache lines.

Sorensen (2006) introduced the idea of strain rate dependent string lengths, where the

effects of step changes in strain rate (Section 2.2.4) can be modelled in the Brick

model by varying the string lengths as a function of the strain rate. The work done by

Sorensen (2006) concentrated on the theoretical implementation of isotach and TESRA

behaviour into the Brick model and not specifically the modelling of the effects of

creep.

2.5 Discussion

In this chapter, it has been shown that viscous effects have an observable impact on soil

behaviour. These viscous effects were divided into two main categories to help define

the framework that will be developed later in Chapter 5. These categories were:

(a) time dependent behaviour, such as creep and stress relaxation,

(b) strain rate dependent behaviour, as characterised by Tatsuoka (2007).

The time dependent behaviour was seen to govern the stiffness of the soil after a holding

period, in which the strains could increase at constant stress (creep) or the stress can

decrease at constant strain (stress relaxation). In both cases the the time dependent

behaviour causes a movement away from the normal consolidation line with an increase

in time. The viscous strains developed are seen to decay linearly with the logarithm of

time.

The strain rate dependent behaviour can be subdivided into four categories: isotach,

TESRA, intermediate or general TESRA and positive and negative viscosity. Isotach

behaviour, where a unique stress-strain-strain rate response is predicted, was estab-

lished as being able to encompass the behaviour seen in natural clay deposits. The

strain rate for use in the Isotach model can either be a directly applied strain rate or

one deduced from creep testing, as seen in the work done by Leroueil et al. (1985).

The constitutive models reviewed in Section 2.3.3, although advanced, are unable to

account for viscous effects. There are many models for both time and rate dependency

(Bodas 2008) which have not been included in this literature review due to their in-

ability to model the fundamental aspects of soil behaviour that the Brick model can

model. These models are almost always formulated within stress space making their
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interpretation for use with Brick difficult.

The aim of the current work will be to introduce the ability to model time dependent

effects and isotach strain rate effects into the existing Brick model. To enable the

reader to distinguish between native ‘Brick’ effects and those introduced by the new

implementations into the Brick model, the behaviour shown by the unmodified Brick

model will be explored in detail in Chapter 3.
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The BRICK Model

3.1 Introduction

The Brick model, as stated in Section 2.4, can be regarded as a kinematic yield surface

model developed within strain space. The model has an analogue, which is that of a

man walking around a room with a series of bricks tied to him on separate strings. Each

brick represents a proportion of the soil and each string length represents the amount of

strain required to generate plasticity in that proportion of soil. The walls of the room

can be thought of as axes in strain space. As the man moves through strain space,

initially the strings are slack so the soil strains elastically; as the man moves further

the bricks start to move too, in the same direction. The more bricks that move the

higher the proportion of soil undergoing plastic deformation and the lower the stiffness

of the soil. This relationship between the soil proportions and strain gives rise to the

s-shaped curved used in Brick to model the progressive reduction in stiffness with

strain, which can be seen in Figure 2.40 on page 39.

Defining kinematic zones within the Brick model is done by defining the lengths of the

strings. The Y1 surface (Section 2.3.3) is defined as the zone of fully elastic behaviour

and corresponds to all the strings being slack in the Brick model. Hence, the extent of

the Y1 zone is defined by the shortest string length. The Y2 surface cannot be defined

directly in the Brick model. Recent stress history is accounted for by the current

positions of the bricks relative to the man. To allow an accurate representation of

stress history, the geological history of the soil is modelled back to when the clay was

first deposited as a slurry, through the deposition and erosion of the various overlying

strata to the present day. The positions of the bricks give a unique stiffness response

which is dependent upon the path followed when straining recommences. This approach

is able to simulate the results seen by Atkinson et al. (1990). The failure surface in

the Brick model is loosely defined by the longest string length and the positions of
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the bricks relative to the current position of the man. All the strings must be taut in

shearing (i.e. representing plastic shear strain) for the model to predict ‘failure’. This

will be discussed further in Section 3.4.3.

3.2 Parameters used in the BRICK Model

3.2.1 Two-dimensional BRICK

To simplify the explanation of the Brick model, the two-dimensional (plane strain) ver-

sion will be initially explored. This version lacks the extra three components of shear

strain and three of shear stress that give Brick its full three-dimensional functionality.

This model was described in the 1992 Rankine Lecture, Simpson (1992b).

The three component, two-dimensional Brick model was developed within a framework

of volumetric and shear strains rather than principal strains for ease of application to

geotechnical problems. With reference to the analogue described in Section 3.1, the

axes of the room in the plane strain model are volumetric strain, v, and shear strain,

γ. The shear strain is taken to be the diameter of the Mohr’s circle of strain as seen in

Figure 3.1.

εy

εx

(ε , γx xy / 2)

(ε γy xy, - )/ 2

½ v

½γ

ε

Figure 3.1: Mohr’s circle of strain

Therefore:

γ =
√

(εx − εy)2 + γxy
2 (3.1)
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Since γ is the vector sum of two components, along with v these form the three strain

components (v, εx − εy, γxy) used in the plane strain Brick model, (Simpson 1992b),

where εx and εy are the horizontal and vertical strain respectively. Thus the three

strain components used in the Brick model can be defined as:

Volumetric strain = v = εy + εx

Shear strain component 1 = εy − εx

component 2 = γxy (3.2)

The three stress components are:

Mean stress = s =
(σx + σy)

2

Shear stress component 1 = t =
(σy − σx)

2

component 2 = τxy (3.3)

In elastic materials the strain components can be related to the corresponding stress

components through the shear modulus, G, and the Poisson’s ratio, ν.

3.2.2 Three-dimensional BRICK

In a continuous elastic material the stresses are related to the strains through the

thirty-six elastic constants, grouped in the ‘compliance matrix’, which can be written

in general terms as:
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(3.4)

It should be noted that only twenty-one of the elastic constants need to be defined

for any isotropic soil as the compliance matrix is symmetric. The values contained

within the compliance matrix can be found by substituting in the generalised form of
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the equations that form Hooke’s Law:

εx = σx/E − νσy/E − νσz/E,

εy = −νσx/E + σy/E − νσz/E,

εz = −νσx/E − νσy/E + σz/E,

γxy = τxy 2(1 + ν)/E,

γyz = τyz 2(1 + ν)/E,

γzx = τzx 2(1 + ν)/E (3.5)

These equations can be written in matrix form as:
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(3.6)

where the elastic shear modulus:

G = E/2(1 + ν) (3.7)

As the Brick model operates within strain space it is more useful for these relationships

to be manipulated to give stresses from strains:
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(3.8)

where:

A =
E

(1 − 2ν)(1 + ν)
(3.9)

The Brick model does not use the six components of stress and strain shown in Equa-

tion 3.8. Instead Brick uses six components, relating to mean and shear stresses or

volumetric and shear strains. The subscript y is used to denote the vertical direction,
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with the z direction being the second horizontal component. The six components of

strain are:

Volumetric strain = v = εx + εy + εz (3.10)

Shear strain component 1 = gzx = εz − εx (3.11)

component 2 = gy =
(2 εy − εx − εz)√

3
(3.12)

component 3 = γxy (3.13)

component 4 = γyz (3.14)

component 5 = γzx (3.15)

The six components of stress are:

Mean stress = p =
(σx + σy + σz)

3
(3.16)

Shear stress component 1 = tzx =
(σz − σx)

2
(3.17)

component 2 = ty =
(2 σy − σx − σz)

2
√

3
(3.18)

component 3 = τxy (3.19)

component 4 = τyz (3.20)

component 5 = τzx (3.21)

In elastic materials the shear stress components are again related to the corresponding

shear strain components through the shear modulus G (see Section A.1).

3.2.3 Derivation of geotechnical parameters

In common geotechnical scenarios, such as the triaxial test, parameters such as deviator

and mean stress can be derived from the Brick parameters.

Calculation of triaxial stresses

In the three-dimensional model, the mean normal stress, p, is part of the Brick formu-

lation but the value of the deviator stress, q, needs to be calculated. In terms of the

triaxial stresses:

q = σa − σr (3.22)

where, σa is the axial stress and σr is the radial stress.

As both σx and σz are in the horizontal direction, σr = σx = σz, leaving σa = σy.

These stresses can expressed as follows:

σy = p +
2ty√

3
(3.23)
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σx = σy −
√

3ty − tzx (3.24)

Therefore:

q =
√

3ty + tzx (3.25)

Octahedral shear strain

The Brick model uses the root sum of the squares of its shear and volumetric com-

ponents to calculate the changes in stress. The formulation of the Brick vectorial

strain (Section 3.3) resembles the formulation of the octahedral shear strain as given

in Atkinson & Bransby (1978):

γoct
2 =

4

9

[

(εx − εy)
2 + (εy − εz)

2 + (εz − εx)2 +
3

2
(εxy

2 + εyz
2 + εzx

2)

]

(3.26)

It can be shown that the Octahedral shear strain can be written in terms of the Brick

components of shear strain, Equation 3.27, the proof of which can be found in Ap-

pendix A.2.

γoct
2 =

2

3

(

gy
2 + gzx

2 +
γxy

2

4
+

γyz
2

4
+

γzx
2

4

)

(3.27)

3.2.4 Strain paths to simulate common geotechnical scenarios

To allow the Brick model to simulate specific scenarios, a strain path vector can be used

to specify the required behaviour. The vector consists of three or six values depending

on whether the two or three-dimensional model is being used, with the values being a

ratio of applied strains rather than absolute values.

Isotropic compression

The simulation of isotropic conditions is very simple in Brick. The strains in all

directions are equal and therefore the only non-zero variable is the volumetric strain, v.

In the case of the two-dimensional Brick model the strain path vector, [v, εx−εy, γxy],

becomes [1, 0, 0], while in the three-dimensional Brick model the strain tensor becomes

[1, 0, 0, 0, 0, 0].

One-dimensional compression

To simulate one-dimensional conditions the vertical strains are allowed to increase while

the horizontal strains are kept at zero. The volumetric strain now equals the vertical

strain. Therefore for the two-dimensional model, [v, εx − εy, γxy] needs to be specified

as [1, 1, 0] to maintain one-dimensional conditions. With the three-dimensional Brick

model the strain tensor, [v, gzx, gy, γxy, γyz , γzx], must be specified in the ratio [1, 0,

1.1547, 0, 0, 0].
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Undrained triaxial compression and extension

In an undrained triaxial test on saturated soil, the volumetric strain v = 0. The vertical

strain, εy, and horizontal strain, εx, also sum to zero. Therefore, εy = -2εx and the

shear strain component gxy = 2εy . In this case γxy is also equal to zero so in the two-

dimensional (plane strain biaxial test) formulation the three components of strain, [εv,

εx − εy, γxy], need to be specified as [0, 1, 0] for compression or [0, -1, 0] for extension.

In the three-dimensional Brick model the same conditions apply but the six component

strain path vector is now defined as [0, 0, 1, 0, 0, 0]. Under these conditions the applied

axial strain, εa or εy can be simplified to gy/
√

3 and the shear strain εs = 2gy/
√

3.

3.3 BRICK Computations

The basic concept of Brick has been introduced at the beginning of this chapter. This

section shows how calculations are implemented in the Brick model, to enable a discus-

sion of more complex predicted behaviour in subsequent sections. The code is easiest to

understand when visualised in a flow diagram, as in Figure 3.2. The Brick model was

originally programmed in FORTRAN, but to allow a more sequential implementation,

the Brick code was first translated into the scientific programming code, Matlab.

The full Matlab code for the Brick model is given in Appendix B.1 along with a

comparison of the results generated by the original FORTRAN code and the Matlab

translation.

Figure 3.2 shows the linear flow of the program, with a progression in each increment

from the top to the bottom of the diagram, looping where required. The FORTRAN

version of the Brick model uses ‘goto’ loops to dictate the program flow. Although

these fulfil the same purpose as ‘for’ and ‘while’ loops, it is more difficult to visualise

the flow of the program. For the purposes of this section, the three component Brick

model will be discussed, thus mean stress and shear stress are represented by s and t

respectively.

The first stage in the Brick model is to initialise the variables and supply a strain

increment. These parameters are passed from a control routine which can take the

form of another Matlab script. The gradient of the swelling line (in ln v− ln p′ space),

κ*, and elastic constant, ι, are then modified to account for the effects of overconsoli-

dation, referred to in Brick as the ‘beta effect’. (The formulation of this is explained
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Figure 3.2: Flow chart showing internal workings of the Brick model
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in Section 3.3.1). The program then performs a check on the mean stress to ensure the

stresses are still positive, before applying a reduced strain increment (applied strain

minus the plastic strain reduction, explained in Section 3.3.2) to the position of the

man, shown in Equation 3.28.

εvec =
√

∑

(εi + δεi − εbi − εei)
2 (3.28)

for i = 1 : the number of components in the model, where:

εvec = vectorial strain (separation of man and brick),

ε = current strain (position of the man),

δε = strain increment,

εb = position of the brick,

εe = plastic strain reduction.

The vectorial distance from each brick to the man is calculated and for each brick com-

pared to the relevant string length. If the vectorial distance from the man to the brick

is greater than the string length then the brick must be moved and therefore must be

behaving plastically. If the vectorial distance between the man and the brick is less

than the string length, the string has not yet become taut and the behaviour of that

brick is elastic and thus the brick remains stationary.

From the individual changes in plastic strain the volumetric plastic strain reduction can

be calculated, which is fed back into the calculations during the next iteration. This

leads to the calculation of the change in mean stress in the soil, based on the change

in elastic strain, as seen in Equation 3.29.

δs = sδve/ι (3.29)

where:

s = mean normal stress,

ι = elastic constant,

ve = elastic volumetric strain (v − plastic volumetric strain, vp).

The plastic shear strain reduction can then be calculated based on the increment of

mean stress using Equation 3.36, which is explained in Section 3.3.2. The change in

shear stress can be computed based on the new increased capacity for elastic shear

strain, γe, generated by the plastic shear strain reduction.

δt = s δγe(1 − 2ν)/ι (3.30)
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3.3.1 The beta effect

As a soil becomes overconsolidated it demonstrates stiffer behaviour at a given normal

stress level. In the Brick model the beta effect is used to define the increase in stiffness

for a given change in overconsolidation ratio:

βmod = 1 + β

(

v − v0 − λ∗ ln

(

s

s0

))

(3.31)

where:

βmod = beta modification factor,

β = beta constant,

v0 = initial volumetric strain,

λ* = gradient of the NCL plotted as ln v versus ln s,

s0 = initial mean normal stress.

This formulation gives similar results to the equation proposed by Viggiani (1992),

who conducted a series of small strain triaxial tests using Hall effect transducers and

bender elements for the measurement of Gmax. Viggiani (1992) suggested a relationship

between stiffness and overconsolidation ratio in the very small strain region (<0.001%)

of:

Gmax oc = Gmax nc R0

m (3.32)

where:

R0 = overconsolidation ratio as defined from Figure 2.3 on page 7,

m = 0.25 for London Clay.

Figure 3.3 shows a comparison between equations 3.31 and 3.32, where the predicted

overconsolidated stiffness, Gmax oc, is compared to the normally consolidated stiffness

at the same stress level Gmax nc. For this purpose Equation 3.31 has been modified to

directly compare the effect of the overconsolidation ratio by neglecting the small strain

effects as unloading starts:

βmod = 1 + β (λ∗ − κ∗) ln (OCR) (3.33)

where:

βmod = Gmax oc/Gmax nc,

β = 4, λ* = 0.1 and κ* = 0.02.

A comparison of the plots in Figure 3.3 shows that both the beta effect and the Viggiani

(1992) equations give similar results for overconsolidation ratios up to around ten, with
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Figure 3.3: Comparison between models for the effect of overconsolidation on stiffness

the plots diverging for higher overconsolidation ratios. It should be noted that the

values used in the beta effect equation have not been fitted to the Viggiani (1992)

equation, the values used being typical for London Clay. Although the trends are similar

there is no mathematical equivalence between the two equations (Simpson 2006).

3.3.2 Plastic strain reduction

In the Brick model elastic movements lead to changes in stress, whereas plastic move-

ments do not. When all the bricks are moving, the soil behaves perfectly plastically and

without modification the stress increment would be zero. The plastic strain reduction

acts to increase the elastic capacity for strain in an increment, thus allowing stress

changes to be generated even when all the bricks are moving. The amount of plastic

strain reduction is dependent upon the direction of the applied strain. The volumetric

plastic strain reduction generates the compression and swelling lines by reducing the

plastic strain by an amount depending upon the position of the man relative to the

normal consolidation line. When the soil is normally consolidated:

δve =
( ι

λ∗

)

δv (3.34)

When the soil is overconsolidated:

δve =
( ι

κ∗

)

δv (3.35)

The formulation of the shear plastic strain reduction is computed differently to the

volumetric plastic strain reduction, Equation 3.36. This enables Brick to predict a

unique point of failure depending upon the stress history of the soil, which is explained

in more detail in Section 3.4.3.
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δγe =

(

t

s

)

δve(1 − 2ν) (3.36)

3.4 BRICK Behaviour

In this section the concepts behind the model are explored with illustrated examples

where applicable to show how Brick models soil behaviour. This will include how the

bricks aid the modelling of stress history and how the Brick model predicts failure.

3.4.1 String lengths

The relationship between string lengths and the stiffness degradation curve has been

briefly explained in Section 2.4. The original parameters for the Brick model (Ta-

ble 3.1) were given in Simpson (1992a), (1992b).

London Clay Singapore Clay

String String length G/Gmax String String length G/Gmax

1 8.3e−5 0.92 1 8.0e−5 0.92

2 2.1e−4 0.75 2 2.0e−4 0.75

3 4.1e−4 0.53 3 4.0e−4 0.53

4 8.3e−4 0.29 4 8.0e−4 0.29

5 0.0022 0.13 5 0.002 0.13

6 0.0041 0.075 6 0.004 0.075

7 0.0082 0.044 7 0.008 0.044

8 0.021 0.017 8 0.018 0.017

9 0.041 0.0035 9 0.036 0.0035

10 0.08 0 10 0.075 0

Table 3.1: Rankine Brick string parameters, Simpson (1992b)

The parameters contained within Table 3.1 were derived from a combination of the

triaxial testing conducted by Richardson (1988) and back analysis of case histories at

Arup Geotechnics. This allowed a relatively high degree of confidence to be placed in

the string lengths, as was shown for example in the modelling of the British Library

deep basement in Simpson (1992b).

Kanapathipillai (1996) modified the string lengths for London Clay to reflect the back
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analysis of the Heathrow Trial tunnel monitoring data and advanced laboratory testing.

This led to a reduction in the original string lengths to those seen in Table 3.2.

London Clay

String String length G/Gmax

1 3.040e−5 0.92

2 6.0863e−5 0.75

3 1.0143e−4 0.53

4 1.2106e−4 0.29

5 8.200e−4 0.13

6 0.00171 0.075

7 0.00352 0.044

8 0.00969 0.017

9 0.02223 0.0035

10 0.0646 0

Table 3.2: Modified Brick string parameters, Kanapathipillai (1996)

It was previously discussed in Section 2.4 that each string length relates a proportion of

the soil to the amount of strain required to develop plasticity in that specific proportion.

What is not initially apparent, is that the string lengths also determine the angle of

shearing resistance in the soil. If the S-shaped curve (Figure 2.40) is plotted using

shear modulus, G, assuming the stiffness is proportional to mean stress, s, then the

area under the curve, A, is equal to sinφ′ for normally consolidated soils. This is shown

in Equation 3.37 for the case s = constant.

A =

∫ (

G

s

)

dγ

=

(

1

s

)∫ (

dt

dγ

)

dγ

=
t

s
= sin φ′at failure (3.37)

For overconsolidated soils, the beta effect acts to increase the area under the S-shaped

curve which also causes an increase in sin φ′. Hence the Brick model automatically

accounts for the increase in strength seen in overconsolidated soils. In the original

version of the Brick model (Simpson 1992b) the same β value used to calculate the

increase of stiffness was used to calculate the increase in sin φ′. In later revisions, which
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will be discussed in Section 3.5, the calculations for G and sin φ′ were split, giving rise

to two independent β parameters known as βG and βφ respectively. Setting βG =

βφ allows the program to use the original theory. In general βφ < βG, (Oasys 2001).

Typical values for London Clay are βG = 4 and βφ = 3.

Strength and string length

The link between strength and the beta effect has been established. This principle can

be extended to relate the strength to changes in the string lengths directly. If the string

lengths are reduced, in accordance with Equation 3.37 the angle of shearing resistance

also decreases, as shown in Figure 3.4.
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Figure 3.4: Reduction in string lengths

As the strings shorten not only does the angle of shearing resistance reduce, but so does

the undrained strength of the soil. Conversely, if the string lengths increase so does the

capacity for elastic straining, and hence the stiffness and ultimate strength are higher

than for a soil with shorter string lengths. This principle is utilised in Chapter 5 where

equations for undrained strength are used to govern the increase in string lengths.

3.4.2 Modelling stress history

The use of bricks and string lengths in the Brick model has another predictive ability

other than the degradation of stiffness. As the predicted stiffness of the soil is depen-

dent upon which bricks are moving, if the direction of the straining changes so a unique
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stiffness response will be generated in the soil by the relative positions of all the bricks.

This is a key factor in the modelling of stress history, especially in the case of heavily

overconsolidated soils such as London Clay with a complex geological history of sedi-

mentation, loading and unloading. Brick models the soil from the original deposition

through to the current day, allowing the stiffness of the soil to be a product of its

complex stress history.

γ γ

γ γ

v v

vv

(a) (b)

(c) (d)

Man = applied strain

Brick

String slack - elastic behaviour

String taut - plastic behaviour

Figure 3.5: How Brick models stress history

The initial one-dimensional consolidation stress ratio, K0, is also derived from the S-

shaped curve, as the Brick model does not take K0 as an input parameter (K0 =

horizontal effective stress, σ′

h / vertical effective stress, σ′

v). Figure 3.5a shows the

gradient of the one-dimensional normal consolidation line in strain space, with the

man and the bricks aligned at a 45◦ angle. The elastic shear strain, which governs

the increase in shear stress, will be cos(45◦) times that developed in a pure shear fail-

ure. Hence in one-dimensional consolidation the angle of shearing resistance mobilised,

sin φ′

mob = sin φ′/
√

2 leading to Equation 3.38, (Simpson 1992b).
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K0 =
1 − sinφ′/

√
2

1 + sinφ′/
√

2

=

√
2 − sin φ′

√
2 + sin φ′

(3.38)

Using the analogue Figure 3.5 demonstrates how Brick models stress history. As the

soil swells, the direction of the man’s movement in strain space is reversed, as seen in

Figure 3.5b, and initially all the strings are slack, giving rise to a purely elastic response

controlled by ι. As the strings become taut, so the bricks start to move in the new

direction and the stiffness of the soil is reduced. The more the soil swells, the more

bricks lie to the right of the man in the figure. In Figure 3.5c the undrained shearing in

compression phase commences. Again, due to the rotation in the strain path, the initial

stiffness will be purely elastic, with the bricks starting to move as straining continues,

as seen in Figure 3.5d. The stiffness response and the stress path followed during the

undrained shearing are a product of the positions of the bricks relative to the man.
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Figure 3.6: Stress path plots for differing overconsolidation ratios

When the bricks lie to the right of the man in strain space, as shearing occurs, they

move with increasing shear strain but decreasing volumetric strain. Following Equa-

tion 3.29, a decrease in brick volumetric strain leads to an increase in mean stress, as
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δve = δv − δvp, and δv is determined by the volumetric movement of the man. There-

fore δv = 0. As the bricks are experiencing a decrease in plastic volumetric strain,

δvp is negative and δve is positive leading to an increase in mean stress. This can be

seen in Figure 3.6, where the the plots for overconsolidation ratios greater than one

show an increase in mean stress during the initial undrained shearing. In the normally

consolidated case the bricks lie at a 45◦ angle in strain space (Figure 3.5a), with all the

strings taut (if the amount of vectorial strain is greater than the longest string length).

In this case when the soil undergoes undrained straining all the bricks lie to the left of

the man in strain space, leading to a positive plastic volumetric strain and hence, by

the previous reasoning, a decrease in mean stress.

The complete stress path followed for each overconsolidation ratio can be made up of

any combination of these two behaviours, depending on whether the bricks lie at a

higher or lower volumetric strain than the man in strain space. In Figure 3.6 it can be

seen that for the test with an overconsolidation ratio of two, the path initially displays

an increase in mean stress (brick volumetric strain decreasing) but as straining contin-

ues, bricks that have longer string lengths and are lying at a lower volumetric strain

are engaged, leading to the stress path curving to the left, the mean stress decreasing

as the brick volumetric strain increases.

Computed examples of the paths of the bricks in strain space are given in Figure 3.7

where the OCR is changed for the different tests. The figure shows the bricks being

engaged from both the left and the right side of the path of the man. For the generation

of the plots shown in Figure 3.7 the original string parameters were used as stated in

Table 3.1. The man’s one-dimensional compression path is at a lower angle than the

45◦ that it represents due to the use of unequal scales on the axes required to display

the full range of motion of the bricks. The longest string length used was 8% or 0.08,

which gives the brick path that takes the largest shear strain to converge on the path

of the man.

3.4.3 Predicting failure in BRICK

In the Brick model failure of the soil is defined as the point in stress space which the

model converges upon under large scale shear strains, that is, the point at which, no

matter now much further shear strain occurs, the soil will act perfectly plastically and

effectively has a stiffness of zero.
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Figure 3.7: Brick paths for differing overconsolidation ratios
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In Brick, if there is any element of volumetric strain, then there will be either an

elastic stress change or a plastic strain reduction in the volumetric direction, leading

to a change in mean stress, as seen in Equation 3.29. The two methods by which

volumetric strains can be generated are:

1. Direct changes in applied volumetric strain (movement of the man).

2. Indirect changes in volumetric strain caused by taut strings moving the bricks.

The first method will obviously not apply to undrained shearing of saturated soils. The

second method involves movements of the bricks as discussed in Section 3.4.2. These

movements affect the change in mean stress, but as the bricks approach the path of the

man in strain space, as seen in Figure 3.6, the amount of volumetric strain movement

is reduced.

The changes in mean stress are directly linked to changes in volumetric strain, as are

the changes in shear stress. No change in mean stress implies no elastic volumetric

strains. If there is no change in elastic volumetric strain, there is no change in elastic

shear strain, (Equation 3.36) and hence no change in shear stress. In the Brick model

this occurs in undrained shearing when all the bricks are in line behind the man in

strain space. Hence the Brick model can predict a unique point of undrained failure

for any soil based upon the previous positions of the bricks and the amount of strain

required to bring them into line behind the path of the man in strain space.

3.4.4 Prediction of the critical state line

In critical state models for any given initial stress state and stress path there will be

a unique critical state predicted for the soil, and this will be met independent of the

current soil state. Normally consolidated soils on the ‘wet’ side of the critical state line

(CSL) are relatively loose and have to compress under shearing to reach the critical

state. Overconsolidated soils, being dense, sit on the ‘dry’ side of the CSL, having to

dilate to reach the CSL under shearing. The principle of wet and dry soils is shown in

Figure 3.8

Brick does not predict a unique CSL for each soil, but the model does predict a unique

CSL for each overconsolidation ratio (OCR). Figure 3.9 shows a study of the CSLs pre-

dicted by Brick in undrained test simulations. For both the normally consolidated soil

(NC) and the overconsolidated soil, the soil is taken to the same volumetric strain on

the normal compression line (NCL) and then sheared under undrained conditions in the
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Figure 3.8: Wet and dry states defined by the critical state framework

case of a normally consolidated test and swelled back to the required stress and then

sheared in the case of an overconsolidated test. This was repeated for five volumetric

strains ranging from 10% to 50% with 10% increments. Joining the predicted failure

points shows the predicted CSL for each test set. In Figure 3.9 the predicted CSLs

are relatively close to each other, showing that, although there is not a unique CSL,

for lightly overconsolidated soil the difference is relatively small. Figure 3.10 shows

corresponding results with a higher OCR, leading to a much greater degree of swelling

before the undrained shearing commences. The dilative tendency in the OCR=10 case

is greater than in the OCR=2 case in Figure 3.9. However, this is still not enough to

bring the soil back to the same CSL as predicted by the normally consolidated tests.

In practice failure of overconsolidated soils often occurs on the dry side of the CSL,

which leads to failure on the Hvorslev surface before the CSL is reached, as seen in the

Brick predictions in Figure 3.6. This behaviour can also be seen in the biaxial testing

done by Sketchley & Bransby (1973) on Spestone Kaolin, shown in Figure 3.11. The

normally consolidated and lightly overconsolidated tests (40 & 34) show a similar point

of failure, but the overconsolidated test (37) fails well before reaching a similar point.

This can usually be attributed to rupture in the sample with localised drainage and

non-uniform deformations occuring.
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Figure 3.11: Stress paths from plane strain undrained shearing, Sketchley & Bransby

(1973)

3.4.5 Initial brick positions

The magnitude of the stresses generated by the Brick model are dependent upon

whether the bricks are moving or not. One thing that must be considered is the initial

position of the bricks in strain space, for which there are two main possibilities:

1. The bricks are all placed on the origin in strain space at the start of the modelling.

2. The bricks are placed along the volumetric strain axis at a distance from the

origin equal to the string length for that brick.

The two scenarios are illustrated in Figure 3.12, where the symbols are the same as

used in Figure 3.5. In Figure 3.12a all the bricks have an initial purely elastic stage

before the strings become taut. Conversely in Figure 3.12b there is no purely elastic

phase as the string lengths are initially taut along the volumetric strain axis. In the

figure the man would start at the origin also but has been moved an arbitrary distance

for illustrative purposes.

γ

v

(a) (b)

γ

v

SL

Figure 3.12: Diagram of plausible initial brick positions
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Figure 3.13: Effect of initial brick positions - v versus s

To demonstrate the effects that the initial brick positions have on the Brick model

predictions a simple one-dimensional consolidation test has been simulated. The soil

was one-dimensionally compressed to 50% volumetric strain in both cases. The plot of

volumetric strain, v, versus mean normal stress, s, shown in Figure 3.13 clearly shows

the effects of the initial brick positions. The ‘Initially taut’ test shows nearly linear

behaviour, whereas in the ‘Initially slack’ test the generated stresses are much higher

with an initial stiffer period as the bricks are engaged.

The two extremes are presented in Figure 3.13 with the strings either initially completely

slack or taut. Parallel stress paths that lie between those plotted can be generated by

moving the bricks along the volumetric strain axis by a proportion of their string length.

For example to generate a path that lies in the middle of those plotted in Figure 3.13,

initial brick positions equal to half the string length along the volumetric axis could be

specified.

The magnitudes of the stresses generated can be seen clearly in Figure 3.14 where the

ratio of s/t is very similar for both tests. However, whereas the ‘Initially slack’ plot

reaches a mean normal stress of 450kPa, the ‘Initially taut’ one only reaches 290kPa, a

35% reduction for the same increase in volumetric strain.
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Figure 3.14: Effect of initial brick positions - stress path plot

The stiffness degradation curve for the current tests is shown in Figure 3.15, where the

main differences between the curves are the smoothness of the curves and the initial

predicted stiffness. The plot shows the normalised tangential stiffness, Gt/s, versus

shear strain during the one-dimensional compression. The ‘Initially slack’ curve shows

the stepwise nature of the approximated stiffness degradation curve. The steps relate

to points at which another brick is engaged and the stiffness drops accordingly. The

‘Initially taut’ curve is much smoother due to the fact that all the bricks move as soon

as compression starts, thus the drops in stiffness associated with the engagement of

the stationary bricks never occur. There is no point at which a new string becomes

taut and the stiffness drops stepwise. The smoothness of the ‘Initially taut’ curve is

only demonstrated in the initial phases of compression, due to the initial brick posi-

tions. If the soil were allowed to swell after a period of one-dimensional compression,

the predicted stiffness degradation curve in the new direction would be stepwise rather

than smooth due to the reversal in strain direction. This means that, although the

initial brick positions look to have a relatively large effect on the initial behaviour, the

residual effect in the modelling of stress history and large degrees of overconsolidation

is relatively small. The initial stiffness in the ‘Initially taut’ test is slightly less than

that predicted in the ‘Initially slack’ test. The correct initial stiffness can be derived

from the input parameters (Simpson 1992b), shown in (Table 3.1). For an ι value equal
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Figure 3.15: Effect of initial brick positions - normalised stiffness

to 0.0041 and a Poisson’s ratio ν = 0.2, the theoretical value of Gt/s = 146 which is

the same as predicted in the ‘Initially slack’ test.

In the BRICK program (see next section) and Safe, the brick positions have been

initialised with the string lengths taut in volumetric strain (approach(2)), as this gives

a smoother stiffness degradation for the applications to work with. For the purposes

of this thesis, in the Matlab implementation of the Brick model, where many of the

demonstrations of Brick behaviour are purely conceptual, the initial brick positions

have mostly been taken to lie at the origin in strain space (approach(1)). This allows

the stepwise nature of the stiffness degradation curve to be observed, allowing visual

checks on the predicted behaviour to be completed more easily during the initial stages

of compression.

It should be noted that aligning the bricks at a 45◦ angle in negative strain space (so

that the string lengths are initially taut in both shear and volumetric strain) causes

the model to predict no increase in shear stresses during one-dimensional consolidation

as there is no initially generated shear stress. Obviously this behaviour is nonsensical

and the approach has not been considered further.
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3.5 The BRICK Program

The Brick model has been implemented into both the Arup finite element program

Safe and another program, BRICK. The BRICK program allows the Brick model to

run without being incorporated in a finite element program and is capable of running

laboratory test simulations, allowing the model to be calibrated. Inside the BRICK

program are three main routines, of which two control the behaviour of the Brick

model. The third, BrickC, contains constitutive models other than Brick. BrickA

is the control routine for the BRICK program that passes the parameters to the Brick

model for calculation. BrickA also has a stress path hunting routine built into it allow-

ing the strain formulated Brick model contained within BrickB to follow a specific

stress path. The BRICK program is capable of simulating any combination of stresses

and strains.

SAFEBRICK

B ARICK

B BRICK

B CRICK

SAFBRK

B BRICK

SAFINC

SAFBRO

SAFMAT

more...

Figure 3.16: Routines within BRICK and Safe

Figure 3.16 illustrates the main routines contained within the Safe and BRICK pro-

grams. The BRICK program allows the Brick model parameters to be fully tested

before implementation into finite element analysis. The implementation process has

been massively simplified by Arup with the same BrickB routine being employed in

both Safe and BRICK allowing the routine to simply be copied across. The imple-

mentation into Safe will be further discussed in Section 6.2.

Currently, within the BRICK program there are 4 complete versions of Brick theory

that are available for use:

1. Original plane strain theory, Simpson (1992b).

70



3. The BRICK Model

2. As Theory 1 but with enhancements to remove iterative anomalies. Also contains

a different formulation for κ* creating a linear v − ln(s) line for swelling. The

differences in the code between Theories 1 and 2 are listed in Appendix B.2.

3. 3D theory, with linear v − ln(s) line for swelling and modified Drucker-Prager

shape for the failure surface, determined by current stresses. Working model not

intended for external release.

4. As Theory 3 but with the failure surface determined by the ratios of brick positions

and the predicted stress change relative to the Drucker-Prager yield surface.

The main work in this thesis has used Theories 1 and 2, but with modifications to

the code to allow for full 3D analysis. This allows the native behaviour of Brick to

be observed rather than having to determine what part of the predicted behaviour is

dependent on changes to the workings of Brick and what is a product of external

forcing functions such as the Drucker-Prager failure surface.

The BRICK program keeps no direct record of time, unlike Safe, but specifying differ-

ent size strain increments using an arbitrary time step of 1 allows the BRICK program

to demonstrate time effects.

A check was conducted to test the correct translation and implementation of the Mat-

lab code (Appendix B.1). This was done by comparing the Matlab results directly

with those generated by the BRICK program.

The implementation of the models developed in later chapters into the BRICK program

is given in Appendix C. More details on the workings of the BRICK program are given

in Oasys (2001).
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Bricks on Ice

4.1 Introduction

The Bricks on Ice idea was originally put forward by Den Haan (2001) whose paper,

although only ever internally published, demonstrated a possible implementation of

time dependent viscous effects into the Brick model. In the Brick model analogue

the current strain is represented by the position of the man and the bricks are attached

to the man by a series of strings of different lengths. In the Bricks on Ice (BOI)

approach, the velocity of each brick is individually calculated and allowed to continue

into the next Brick increment. If, for example, the man were to stop moving the

bricks would keep moving at a logarithmically decreasing rate which would lead to the

distance from the man to the bricks reducing. This movement would generate negative

elastic strains which decrease the stresses. Such behaviour is known as stress relaxation

and is one amongst a number of effects that can be simulated by the BOI approach.

In this chapter the theory behind the BOI approach will be explained before being

implemented into the Matlab recreation of the Brick model. The BOI model will

then be benchmarked against the results given in Den Haan (2001), before being tested

under a wider range of conditions to assess its capabilities.

4.2 Brick-led Viscous Motion

In the BOI approach, as described in Den Haan (2001), time dependent viscous effects

were accounted for by allowing the motion of the bricks to continue from one Brick

increment to the next, generating viscous strains. These viscous strains acted to re-

duce the stresses at any given point as less of the applied strain was treated as being

elastic, effectively turning what would be elastic strains into viscous strains. In the

original Brick model the strain applied in any one increment, δε, could be split into

its corresponding elastic, δεe, and plastic, δεp, components:
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δε = δεe + δεp (4.1)

In the BOI approach viscous strains, δεvisc, were developed by reducing the amount of

previously available elastic strain while keeping the generated plastic strain the same,

therefore Equation 4.1 becomes:

δε = δεe + δεp + δεvisc (4.2)

Viscous strains were treated by the Brick model in the same way as the plastic strains,

the difference being the cause of the strain.

4.2.1 Introducing time

In the original Brick model there was no ability to account for the passage of time

in any given increment, as predicting time dependent behaviour was not part of the

model’s capabilities. The model operated solely upon the increment of strain, either

predefined or generated by the stress-path hunting routine BrickA (Section 3.5).

The introduction of time into the Brick model meant that the strain increment became

dependent on both time and a new variable, strain rate. For any given Brick increment

the strain increment was given by the strain rate, ε̇, multiplied by the time increment

between steps, δt.

δε = ε̇ δt (4.3)

4.2.2 Generating brick velocities

The introduction of individual brick velocities was key to generating the movement of

the bricks in the next increment. In any Brick increment the current velocity of a brick

can be calculated from the velocity of the brick in the previous increment, multiplied by

the time increase between increments and a logarithmic decay function. In the original

BOI model, the logarithmic decay was applied separately to the volumetric and vectorial

shear components of strain (Section 3.2.1), referred to by Den Haan (2001) as a coaxial

deceleration model:

δε̇i = ε̇i,0 δt

(

Llog

Llin

)

(4.4)

where:

i = 1 - Nc, relating to the individual brick components (Section 3.2.1) and:
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Llog =

√

[

c ln

(

1 +
v̇0δt

c

)]2

+

[

c ln

(

1 +
γ̇0δt

c

)]2

(4.5)

Llin =
√

v̇0δt2 + γ̇0δt2 (4.6)

ε̇i,0 = strain rate at the end of the previous increment,

c = creep constant,

v̇0 = rate of volumetric strain in the previous increment,

γ̇0 = rate of shear strain in the previous increment.

The formulation of the deceleration of the bricks shown in Equation 4.4, termed CoAD

v1, calculated accurate results for most cases. The main exception was the case where

the continued motion of the bricks and the motion of the man were in opposite directions.

In this case there were multiple solutions leading to the motion of the bricks being

underestimated. This issue was resolved by using the resultant velocity from the end

of the previous increment instead of the separate components of strain. Thus, the

formulation of the coaxial deceleration model was modified to use resultant, rather

than component brick velocities. This model is referred to as CoAD v2. Equation 4.6

remained the same while the calculation of Llog was modified to reflect the new coaxial

relationship:

Llog = c ln

(

1 +
Llin

c

)

(4.7)

In both versions of the coaxial deceleration model the c parameter is a creep constant.

The calculation of the deceleration of the bricks along with the method of implementa-

tion into the Brick model is shown in Figure 4.1. It should be noted that the creep

constant must be different in the two coaxial deceleration models for the generated

stresses to be the same. By comparison it can be found that the ratio of c values

between CoAD v1 and CoAD v2 is 1:
√

2 for one-dimensional compression.

4.2.3 Including viscous brick strains

The calculation of the viscous brick strains was discussed in Section 4.2.2. In this sec-

tion a detailed description of how these viscous strains are included in the calculations

of the Brick model is presented.

For each brick the viscous movements are calculated, using one of the coaxial deceler-

ation models, and added to the current position of the bricks. This has the effect of
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Figure 4.1: Calculation of brick velocities
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reducing the distance between the man and the bricks, thus giving a reduced capacity

for elastic strains. The effects of this movement are dependent upon whether the soil

is predicted to behave elastically (slack strings) or plastically (taut strings).

Visco-elastic strains

When the strings are slack, no plastic strains are generated. The calculated viscous

strains are treated as plastic strains by the Brick model except that the plastic strain

reduction does not apply. This can be termed a visco-elastic response. In this scenario

the reduction in the distance between the man and the bricks caused by the viscous

strains causes a reduction in the predicted change in stresses for a given strain level.

Visco-elasto-plastic strains

When the strings are taut, the viscous strains act to reduce the amount of plastic strain

generated. This leads to a reduction in the elastic strains generated by the plastic strain

reduction and hence, reduced stress changes. This form of deformation can be termed

visco-elasto-plastic behaviour as the plastic strains induce a reduced element of elastic

strain via the plastic strain reduction.

The velocity of the bricks is governed by the movement of the man (applied strain, δε)

and is automatically updated every increment. In some scenarios updating the velocity

of the bricks would be necessary even if there were no strain increment. One such

circumstance would be when the velocity of the man reduces to zero and the soil enters

a stress relaxation stage. The man is then stationary but the bricks continue to move,

which will be discussed further in Section 4.3.1.

4.3 Recreating results of Den Haan (2001)

To test the implementation of the BOI approach into the Brick model, a set of results

was produced for comparison with Den Haan (2001). Simulations of stress relaxation

and strain fixation behaviour seen in CRS oedometer tests were presented by Den Haan,

as well as biaxial shearing simulations done with different creep constants. From a

digital analysis of the original figures in Den Haan’s paper, the strain rate was calculated

as 0.175% per hour, except during the biaxial test where the rate went up to 0.641% per

hour. The digital analysis involved a program called Plot Digitiser (see Appendix E.2)

which allows an image of a plot to be opened and the scale of the x and y axes to

be measured and specified. Once the scales have been calibrated, the plot is selected

using the mouse and the coordinates of the points selected are generated. It has been
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assumed that the Brick parameters used by Den Haan (2001) were the same as those

given in Simpson (1992b).

4.3.1 Stress relaxation

Stress relaxation was demonstrated in Den Haan (2001), Figure 4.2, using the BOI

model. In the simulation the soil was one-dimensionally compressed to 42% volumet-

ric strain and then held at constant strain for a period of twelve hours. The one-

dimensional compression was then continued to 51% volumetric strain, at which point

an undrained shear compression stage was initiated.

During the constant strain period the position of the man stays constant and the mo-

tion of the bricks continues in the previous direction towards the man. This means that

the strings are slack and that plastic strains are being generated by the movement of

the bricks. As the applied strain is zero, a positive plastic strain requires a negative

elastic strain, leading to a reduction in stresses at constant strain.

Upon the recommencement of straining the soil exhibits stiffer behaviour due to the

slack strings. This allows the soil to return to the stress path generated before the

relaxation commenced. Figure 4.3 shows a plot generated by the Matlab recreation

of Den Haan’s work. The plot shows the stresses and strains generated versus the time

taken in days. It can be seen that up to the ten day point the volumetric (Sn(1))

and shear (Sn(2)) strains increase at the same rate, as expected for one-dimensional

compression. After ten days the sample is held at constant strain, while the continued

motion of the bricks means that the stresses decrease, seen in the sudden drops in the

mean stress (Ss(1)) and shear stress (Ss(2)). Upon the recommencement of straining

the stresses jump back to magnitude that was reached before the relaxation occurred.

This ‘jump’ results from a much higher stiffness generated by the relaxation period.

After twelve and a half days, the soil is sheared in undrained conditions. This is shown

by the volumetric strain remaining constant while the shear strain increases at a higher

rate. This period of shearing leads to a drop in both mean and shear stresses as the

soil shears towards failure, as predicted in the normally consolidated test simulations

shown in Figure 3.6 on page 60.

From a comparison of Figures 4.2 and 4.3 it can be seen that the current implementation

of the BOI approach is giving the same magnitudes of stresses and behaviour patterns

during the relaxation phase as Den Haan (2001). Thus the Matlab recreation can be
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Figure 4.2: Stress relaxation during 1D compression, Den Haan (2001)
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Figure 4.3: Stress relaxation during 1D compression, Matlab recreation
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said to be correctly implemented.

4.3.2 Strain fixation

Strain fixation was a term originally coined by Den Haan (2001). It refers to an increase

in stresses while the strains are held constant and occurs after a period of unloading. In

the BOI model this equates to the bricks moving towards the man from a higher strain

level. This generates negative plastic strains, leading to positive elastic strains and an

increase rather than a decrease in stresses. Upon the recommencement of straining in

the positive direction, the stresses return to the pre-fixation level.

In the strain fixation simulation, Figure 4.4, the soil was one-dimensionally compressed

to 42% volumetric strain and then one-dimensionally swelled to 40% volumetric strain.

The strains were then held constant for twelve hours after which the one-dimensional

compression recommenced taking the soil to 50% volumetric strain, at which point an

undrained shear compression test was conducted.

The results of the Matlab recreation shown in Figure 4.5 show a similar pattern to

those seen in Figure 4.4 from Den Haan (2001). However, the stresses generated in the

fixation period are much higher in Figure 4.5 than in Figure 4.4. Den Haan does not

explicitly state which deceleration model was used to generate his plots. In Figure 4.5

it was assumed that the original coaxial logarithmic deceleration model (CoAD v1) was

implemented by Den Haan (2001) with a creep value c = 0.0001, which was found by

iteration as the value of c was not given in his paper. While this value of c led to

accurate results during the stress relaxation test simulation in Figure 4.3, using CoAD

v1, this was not the case for the strain fixation test simulation.

For the above reason it was decided to run an equivalent strain fixation test with the

CoAD v2 model. As was noted in Section 4.2.2, the c value has to be multiplied by

the square root of 2 to get the same magnitude of stresses for normal consolidation as

found by using CoAD v1, so for the CoAD v2 tests c = 0.000141 was used. The pattern

shown in Figure 4.6 during the fixation period after the swelling shows a much better

fit to that shown in Figure 4.4.

4.3.3 Biaxial testing

The biaxial test simulations were conducted by isotropically compressing the soils to

a mean stress of 240kPa at which point undrained shear compression tests were con-
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Figure 4.4: Strain fixation with BOI, Den Haan (2001)
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Figure 4.6: Strain fixation with BOI, Matlab recreation using CoAD v2

ducted, each with a different creep rate, taking the soil to failure. A comparison between

Figure 4.7 (Den Haan 2001) and Figure 4.8 (Matlab recreation) shows a minimal dif-

ference between the predicted results.

One difference, however, is that the Den Haan plots for different creep rates follow the

same path before diverging, whereas the plots in Figure 4.8 diverge immediately. This

is assumed to be due to small undefined differences in the initial conditions assigned in

Den Haan (2001) and the current work.

It can be deduced that, because all the paths start from the same isotropic stress, the

effects of creep in the initial compression up to 240kPa have been ignored. This means

that upon the start of the biaxial shearing the strings would be taut. This approach

was was used in Matlab recreation. If creep were allowed to occur during isotropic

compression to a given volumetric strain, the starting stress for each creep rate would

be different, with the higher creep rates lowering the stress at which shearing starts

(Section 4.2).
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Figure 4.7: CIU tests with variation of creep parameter, Den Haan (2001)
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Figure 4.8: Plane strain biaxial testing with variation of creep parameter
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4.4 Comparing Coaxial Deceleration Models

The comparison of the results obtained with CoAD v1 (Figure 4.5) and CoAD v2 (Fig-

ure 4.6) shown in Section 4.3.2 does not show any marked differences except in the

region of strain fixation. However further comparison is required to investigate any

consequences of the difference between the models.

A swelling and recompression test was performed with each CoAD model. This in-

volved one-dimensionally compressing the soil to 42% volumetric strain then swelling

the soil to 40% volumetric strain. The soil was then recompressed to 51% volumetric

strain. The parameters used in the comparison were the same as those given in Simpson

(1992b) with a creep constant c = 0.0001 used with CoAD v1 and c = 0.000141 with

CoAD v2. The results of the tests can be seen in Figures 4.9 and 4.10. Figure 4.9 com-

pares the stress path plots and highlights the problem with the CoAD v1 methodology.

During the recompression the plot for CoAD v1 does not rejoin the original K0 path

but overshoots, predicting a higher shear stress for the same mean stress. This should

not occur. The plot for CoAD v2 rejoins the original K0 line soon after compression

recommences and continues on a line of equal gradient.
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Figure 4.9: Stress path plots for swelling and recompression tests showing the compar-

ison between the two CoAD models

83



4. Bricks on Ice

Figure 4.10 shows another comparison between CoAD v1 and CoAD v2 results, this

time as a plot of volumetric strain versus mean normal stress. It can be seen that after

the swelling period the plot for CoAD v1 overshoots the NCL predicting a higher mean

normal stress for the same volumetric strain. This again is unrealistic behaviour which

is corrected by the use of CoAD v2. The lack of coaxial behaviour shown by CoAD

v1 leads to higher stiffnesses generated in the tests, especially in the overconsolidated

region. For these reasons CoAD v2 has been used for the current modelling with BOI.
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Figure 4.10: Volumetric strain versus mean stress plot for swelling and recompression

tests, for both CoAD models

4.5 Testing the Capabilities of the Bricks on Ice Model

A series of tests was carried out to assess the ability of the BOI model to predict specific

soil test results. These tests were intended to determine the ability of the model to

cope with implementation into a finite element package such as Safe.

4.5.1 Test sequence

The following test simulations were conducted. For each test series the simulations

were run with three different creep rates.
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� One-dimensional swelling and recompression

� Undrained shearing (after isotropic and 1D compression)

� Undrained shearing with varying overconsolidation ratios (after 1D compression)

� Undrained shearing with holding period prior to shearing (after 1D compression)

� Constant stress* (virgin creep)

* These test simulations require a secondary component to the Brick model to

allow a designated stress path to be followed using strain increments.

In Den Haan (2001) the effect of the magnitude of creep was investigated by using two

different creep rates. From a back-analysis of the plots demonstrating the effects of

these two creep rates, it was found that the creep parameters required to give similar

results were c=5e−5 and c=5e−6. The other parameters for the model used have been

derived from a combination of Simpson (1992b), Den Haan (2001) and Oasys (2001)

and are defined in Table 4.1.

4.5.2 Swelling and recompression tests

The swelling and recompression tests were conducted by compressing the soil to 42%

volumetric strain in one-dimensional conditions and then allowing the soil to swell by

4%, to 38% volumetric strain. The soil was then recompressed to 46% volumetric strain,

to show the full behaviour during a swelling and recompression loop. Each individual

test is repeated three times with the creep parameter being the only variable between

each test. For the purposes of these tests the soil is modelled as if it has been reconsti-

tuted from a slurry in the laboratory prior to testing.

Under one-dimensional conditions Figure 4.11 demonstrates the established effect that

creep lowers the stresses, while the gradient of the K0 line remains unchanged (Den Haan

2001). The main difficulty with the introduction of creep can be seen in Figure 4.12,

being the steeper gradient of the NCL where the effects of creep are included. This

is due to the fact that the viscous strains reduce the capacity for elastic strains. The

expected pattern is that of a parallel NCL for the creep case, with the offset being

dictated by the creep rate (Bjerrum 1967).
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Figure 4.11: Stress path plot for 1D swelling and recompression
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BRICK parameters used in Chapter 4

Brick parameter Code name Value

Initial strains Sn(Nc) 2D - [0, 0, 0], 3D - [0, 0, 0, 0, 0, 0]

Initial stresses Ss(Nc) 2D - [2, 0, 0], 3D - [2, 0, 0, 0, 0, 0]

String lengths SL(Nb) [8.3e−5, 2.1e−5, 4.1e−4, 8.3e−4, 2.2e−3,

4.1e−38.2e−3, 0.021, 0.041, 0.08]

Stiffness reduction GGmax(Nb) [0.92, 0.75, 0.53, 0.29, 0.13, 0.075,

0.044 0.017, 0.0035, 0]

Initial conditions Zero(2) [0, 2]

Lambda* λ* 0.1

Kappa* κ* 0.02

Iota ι 0.0041

Beta constant βG 4

Number of bricks Nb 10

Number of components Nc 3 - 2D (Plane strain, biaxial testing)

6 - 3D (Triaxial testing in Section 4.7)

Note: The string lengths are initially slack and the original position for all the

bricks is the origin in strain space.

The Brick theory adopted is Theory 1, as this gives the most realistic results

when combined with the BOI model.

Table 4.1: Brick parameters used with Bricks on Ice

4.5.3 Undrained shearing

The undrained shearing tests were completed by straining the soil along the K0 or

isotropic compression line to 42% volumetric strain. The soil was then sheared in

either compression or extension until no further stress changes were induced by the

shear strain increments (Section 3.4.3).

Isotropic

Figure 4.13 shows that creep lowers the stresses and that the results in both compres-

sion and extension are identical. Creep also has the effect of increasing the failure angle,

θ (which is equal to tan−1(t/s)) due to the equivalent overconsolidation of the soil when

compared with the c=0 test. The apparent OCR is 1.15 for the c=5e−6 case and 2.13

for the c=5e−5 case. The reason that θ is the same in both extension and compression

is that, as the bricks are moving along the volumetric strain axis during compression,
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the brick movements required to shear against the creep motion are the same in both

directions. This principle is demonstrated in Figure 4.14a.
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Figure 4.13: Stress path plot for undrained isotropic shearing
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Figure 4.14: Schematic diagram for undrained shearing in strain space
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One-dimensional

Figure 4.15 shows the increased lowering of the stresses due to an increase in creep rate.

The patterns of results for the c=0 and c=5e−6 tests are similar, with both tests failing

at the same θ in both extension and compression. Again the c=5e−5 test shows a higher

θ. However, in this test the θs are no longer the same in extension and compression.

Rather, the extension test demonstrates a higher θ. This is due to the amount of

movement required against the creep motion of the bricks to bring the soil to failure.

In the compression test the continued motion of the bricks is in the same direction as

the shear strains, leading to a similar θ to that found in the c=0 test. For the extension

test the creep strains are in the opposite direction, so more brick movement is needed

to reverse the creep motion leading to a higher θ, Figure 4.14b.
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Figure 4.15: Stress path plot for undrained shearing following 1D compression

Figure 4.16 shows a comparison between normalised isotropic and one-dimensional

compression tests followed by undrained shearing to failure (s0 is the stress on the

normal consolidation line before shearing commences). It can be seen that θ is the

same no matter which test is used. When creep is included in the comparison (a c of

0.0002 has been used to emphasise the effects of creep), Figure 4.17, it can be seen

once again that the angle is equal in ‘isotropic’ extension and compression, but not in

the ‘one-dimensional’ compression tests. The increase in θ is also clear when compared

with the c=0 envelope superimposed from Figure 4.16.
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Figure 4.16: Comparison between the angle of failure in both extension and compression

after isotropic or 1D compression
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Figure 4.17: Comparison between the angle of failure in both extension and compression

after isotropic or 1D compression with the effect of creep
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Stress-strain plots

In this section, the shear stress developed during the undrained shearing phase has been

plotted against shear strain to allow the effect of creep to be studied. Figure 4.18 shows

the identical stiffnesses seen in the undrained compression and extension tests following

isotropic consolidation. It can be seen that creep has the effect of increasing the pre-

peak stiffness and also the undrained strength, as was found experimentally by Vaid

et al. (1979). Figure 4.19 shows the ‘one-dimensional’ stress-strain plots. The trend

shown by the extension tests shows a great similarity to that shown in the ‘isotropic’

extension tests in Figure 4.18. The compression tests show a completely different trend.

As much shearing as already occurred during the one-dimensional compression, the gen-

eral trend is for the stresses to decrease. However, there is a small rise in shear stress in

the small strain region before the stress decreases, which can be seen in Figure 4.20 (t0

is the shear stress on the one-dimensional compression line before shearing commences).
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Figure 4.18: Stress-strain plot for shearing following isotropic compression

4.5.4 Undrained shearing with varying overconsolidation ratios

The effect of varying the overconsolidation ratio (OCR) was explored by conducting

undrained shearing tests with four different OCRs: 1 (normally consolidated), 2, 4 and

8. Each test was initially one-dimensionally compressed to 42% volumetric strain before

being swelled to the predefined OCR. Undrained shear tests were then simulated in
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Figure 4.19: Stress-strain plot for shearing following 1D compression
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both extension and compression. This test sequence was repeated for the three different

creep rates to investigate the interplay between creep and OCR.

Figure 4.21 shows the results of the overconsolidation tests. It can be seen that the

main effect of increasing the creep rate is the overall reduction of the stresses generated

in the test, while modestly increasing θ. The paths for the low OCR tests show a

striking resemblance to the results obtained in the overconsolidated plane strain tests

completed by Sketchley & Bransby (1973) (Figure 3.11 on page 66). The failure angles

are the same in both extension and compression, for each overconsolidation ratio, in the

c = 0 tests. As the creep rate increases so the θ in extension becomes greater than that

in compression. The failure angle also increases with OCR, as the soil demonstrates

stiffer behaviour, which is explored further in Section 4.6.1. This is consistent with the

characteristics of the Hvorslev surface. Figure 4.22 shows the corresponding plots of

volumetric strain versus mean stress. The gradient of the normal consolidation line is

different in all three tests due to the influence of creep, as seen in Figure 4.12. The

prediction of a unique critical state line is not to be expected, as was discussed in

Section 3.4.4, and is not in evidence.

Stress-Strain plots

Figure 4.23 shows the comparison of the normalised shear stresses versus shear strain

tests. The beta effect, described in Section 3.3.1, means that the compression tests

with the higher OCRs should exhibit a higher stiffness during straining. This effect is

observed with the creep rate serving to increase the stiffness further. For the extension

tests the pattern is a little harder to decipher. A magnified view of the extension test

results is shown in Figure 4.24. If the path of the man and the bricks is taken into

account the pattern can easily be rationalised. If the soil is overconsolidated, it has to

go through a stage of swelling to reach the desired OCR. In the reference OCR=1 test

this is not the case. This means that the bricks still lie upon a line inclined at 45 ◦ to

the left and below the man in strain space. As the shearing then occurs in extension,

the stiffness in this direction has not been fully developed and the test shows a very

stiff response. In the OCR>1 tests swelling causes some bricks to lie still on a 45 ◦ line

but above and to the right of the man. The number of bricks aligned in this way is

dictated by the amount of straining required to swell the soil back to a specific OCR.

Initially only the bricks with short strings will follow the man but as the straining

advances so all the bricks will eventually line up again behind the man. This means

that the direction of the brick movement is now in generally the same direction as the
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Figure 4.21: 1D stress path plots showing the effects of overconsolidation and creep
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shearing that commences during the next (extension) phase. Thus some of the stiffness

has already been developed in the direction of the shearing so the initial response is

lower that that seen in the OCR=1 test.

The longest string length is 8%, so it can be seen from the shearing plots that all the

bricks will be in motion by the end of the test; hence the entire soil has reached its

failure state.

4.5.5 Undrained shearing with holding period prior to shearing

The holding period tests were conducted by straining the soil under one-dimensional

conditions to 42% volumetric strain at which point the soil was held at constant strain

for a holding period of five Brick increments. As creep continues after the straining of

the soil has stopped, any holding period during the test has an effect upon the stresses

and the stiffness generated directly after the holding period. This is because the bricks

are still moving in the previous direction of straining, causing a stress relaxation and a

stiffer response in the soil upon the recommencement of straining.

The effects of the holding period on the stress path taken during shearing can be seen

in Figure 4.25. The relaxation in stresses takes the form of a small loop underneath the

K0 line, which leads to a steepening of the gradient of the initial section of the shearing

plot. This loop can be just seen in the c=5e−6 test, but clearly seen in the c=5e−5 test.

The c=0 plot does not show any loop as there is no creep.

Figure 4.26 shows the effects of changing the holding period on the stress path during

shearing. As the deceleration of the bricks is logarithmic, most of the movement occurs

within the first few increments, which in this case was five. With a waiting period of

one hundred increments, the stress path was only marginally different to that shown in

the five-increment holding period test. If fewer than five increments were to be used the

path would simply branch off the loop and join the shearing path earlier than currently

indicated in Figure 4.26. The loop for the c=5e−6 test can be seen more clearly in

Figure 4.26 than in Figure 4.25.
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4.5.6 Constant stress (virgin creep)

The constant stress tests involve one-dimensionally compressing the soil to 42% vol-

umetric strain and then allowing creep to occur while keeping the stresses constant.

The compression was then continued to see if the stress path returned to the NCL. To

simulate a constant stress test the Brick model needs to be able to follow a specific

stress path. As the Brick model is calculated within strain space, it uses strain incre-

ments and thus stress paths cannot be specified directly. This means for stress defined

analyses a secondary control component is required to ‘hunt’ for the combinations of

strains to generate the stress path required. In the BRICK program this is known as

BrickA (Section 3.5). The tests for constant stress involved using an iterative stress

path routine to find a strain increment that leads to no increase in stress.

The Brick model has no real concept of the NCL built into it. This means that the

model needs to be ‘told’ that the soil is no longer normally consolidated. Otherwise,

after virgin creep the soil state continues along a line parallel to the NCL without

returning to it. This is achieved by making the Brick model think the soil is overcon-

solidated to a degree equivalent to that created by the virgin creep, which is achieved

by adding in a factored creep strain into the section of the Brick model that monitors

overconsolidation. Upon the continuation of normal straining the model returns to the

NCL, thus correcting the path.

Figure 4.27 shows the effects of the modification and the path generated in a volumetric

strain versus mean stress plot. Figure 4.28 shows how the period of virgin creep affects

the stiffness of the soil. During the creep period, as the soil is straining without any

change in stress, the stiffness falls to zero. Upon the recommencement of straining the

soil displays a stiffer response as it returns to the NCL. This can be seen in the peak

in stiffness at the 42% shear strain mark. The high stiffness to the left of the plot is

the initial (small-strain) stiffness of the soil.

The tests reported in Section 4.5 form the current background into the feasibility of

using the BOI model in a finite element program. It can be concluded that the model

responds well to the scenarios applied here, but that there are still deficiencies, such as

the modelling of normal consolidation. However, normal consolidation can be modelled

adequately without the use of the BOI model, leaving the model free to be used for the

modelling of creep, stress relaxation and strain fixation. These capabilities of the BOI

model will be tested in Section 4.7 against experimental data.
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4.6 Manipulating the Bricks on Ice Model

It has been shown in Section 4.5 that the BOI model shows potential for implementation

into a finite element program. The case for the model’s use could be made even stronger

if the BOI model were able to recreate the parallel isotache lines with different creep

rates as seen by Leroueil et al. (1985) in Figure 2.22 on page 24. This section is

dedicated to further manipulation of the BOI model to see if this behaviour can be

generated.

4.6.1 Failure angle increase due to Bricks on Ice

To see if the apparent increase in θ caused by an increase in creep rate (Section 4.5.3)

was similar to the effects caused by overconsolidation a parametric study was conducted.

The creep analysis was achieved by compressing the soil isotropically to 42% volumetric

strain before shearing the soil. Different creep rates were used and the apparent OCR

was calculated by dividing the mean stress predicted on the isotropic compression line

prior to the shearing phase, including the effects of creep, by the mean stress predicted

without the effects of creep. The overconsolidation tests were compressed to 42% volu-

metric strain then swelled back to a specified OCR before being sheared. Figure 4.29

shows a comparison between creep and overconsolidation effects on θ. They show simi-

lar trends but the magnitude of the overconsolidation effects is much greater than that

of the creep rate effects.

As βφ was introduced in Theory 2 to control the increase of θ with OCR, another

parametric study was conducted to assess whether βφ could also control the increase

caused by creep. Differences between the theories were also investigated as the BOI

model was first formulated within Theory 1. It can be seen in Figure 4.30 that the

Brick theory used does have a large effect on the increase in θ generated by a fixed

creep rate. The results have been generated by varying the creep constant and are

plotted as an increase in θ versus creep rate. This allows the direct comparison of the

effects caused by changes in the Brick theory. Theory 1 produces the most satisfactory

results showing a comparatively low increase in θ and the fewest anomalies.
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4.6.2 Modifications to the initial brick positions

The main difficulty with the results generated by the BOI model is the change in the

gradient of the NCL with creep, shown in Section 4.5.2. In reality the NCL generated

with creep should be parallel to the NCL without creep, with a different origin that

allows the parallelism of the lines. The BOI model has no way of allowing a step change

in the stresses to manipulate the origin of the NCL. However, by changing the initial

brick positions the origin of the NCL can be manipulated, this has a knock on effect on

the gradient of the NCL. It must be stressed that this manipulation is only possible by

back analysis of the correct NCL gradient and spacing relative to the NCL generated

without creep.

In a normal analysis using the BOI model the strings are all initially slack (Section 3.4.5)

so that the bricks and the man start at the origin in strain space. In the current mod-

ification the bricks are moved to a location lying on the negative volumetric strain

axis. This means the capacity for elastic volumetric strains is reduced. By reducing

the amount of initial elastic strain, the rise in stresses can be manipulated to generate

parallel isotache lines. Each of the bricks is moved a distance equal to a proportion

of the string length attaching that brick to the man. For example, assume the longest
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Figure 4.31: Modifications to the initial brick positions
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string length is 8%, belonging to brick 10. If the initial positions of the bricks were set

to 50% of the string length, brick 10 would lie at the point (-0.04, 0, 0) in the space (v,

εx − εy, γxy).

The effects of this modification are shown in Figure 4.31, it can be seen that by matching

the increase in creep rate with a more negative brick starting position, the NCLs with

different creep rates can be manipulated to be parallel.

4.7 Benchmarking Bricks on Ice with Experimental Data

In Gasparre et al. (2007) it was shown that creep can have a dramatic effect on the

stiffness of the soil due to the recent stress history. A set of three tests was conducted

to attempt to assess the true nature of recent stress history combined with the effects of

creep as previously explored by Atkinson et al. (1990) and Clayton & Heymann (2001).

To demonstrate the capability of the BOI model, a simulation of Gasparre et al. (2007)’s

tests was conducted. Due to the fact that the BOI model is unable to correctly predict

isotach behaviour during normal consolidation, the creep rate was set to zero during

this stage. As the emphasis was on recent stress history, the lack of creep modelling

during the geological history was thought not to have a significant effect upon the re-

sults. To allow the modelling of a triaxial test, the BOI model was expanded to work

within the six component framework (Section 3.2.2). An element of stress path control

was also required which was implemented, as mentioned in Section 4.5.6.

As Brick models the entire stress history of the soil, the simulation of laboratory tests

can be rather complex. Gasparre (2005) gave the in-situ mean effective stress of the

samples used as being 330kPa. This was calculated based on a K0 value of 1.88, as-

suming the water table to lie at the surface of the London Clay at a depth of 6m. It is

known from, among others, King (1981) that the estimated maximum thickness of the

stratum in the Thames Valley is around 200m. This leads to an overconsolidation ratio

of around 8.5 at the sampling depth of 17 metres in the current London Clay formation,

assuming removal of around 125 metres of overburden due to weathering and erosive

forces.

As well as the stress history required to generate the effect of overconsolidation on the

stiffness of the clay, the effects of the sampling process must be taken into account
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before the laboratory test can be considered. From Gasparre (2005) it is known that

the initial mean effective stresses in the samples before the triaxial tests started were

171kPa for sample 17SH and 136kPa for 17.3SH. The effects of sampling were modelled

in a simple fashion. This involved swelling the soil to the observed pre-test mean effec-

tive stress and reducing the deviator stress, q, to zero. The soil was then isotropically

compressed back to the in-situ mean effective stress of 330kPa. Details of the stages in

the modelling process are given in Table 4.2.

N
at

u
ra

l

Strain

control

Stage 1

1D compression up to the geological maximum

mean effective stress of 2805kPa (based on an

OCR of 8.5).

Stage 2
1D swelling to the in-situ mean effective stress

of 330kPa.

S
am

p
li
n
g

Stress

control
Stage 3

Stress path directly taking the soil from the in-

situ mean stress (330kPa) to the pre-test mean

stress of 171kPa (17SH) or 136kPa (17.3SH)

with a deviator stress of zero. Creep strains are

generated during this stage.

T
ri

ax
ia

l

Stress

control

Stage 4

Isotropic consolidation back to the in-situ mean

stress of 330kPa with a small deviator stress

being applied dependant on the test to be con-

ducted. Creep allowed.

Stage 5a

Outgoing approach paths conducted under con-

stant mean stress. This affects the magnitude

and direction of the approach path for the final

stage stiffness. Creep allowed.

Stage 5b Incoming approach path. Creep allowed.

Strain

control

Stage 6a
Dissipation of creep strains generated during the

approach paths, if allowed (12 hours).

Stage 6 Undrained extension or compression test.

Table 4.2: Test stage analysis
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Figure 4.32: Creep strains before undrained shear tests- 17SH, Gasparre (2005)
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Figure 4.33: Dissipation of creep strains before undrained shear tests
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4.7.1 Calibration of the Bricks on Ice model

The parameters used here for the BOI model were mainly taken directly from Oasys

(2001), shown previously in Table 4.1 on page 87. These parameters were developed

by Arup Geotechnics for use in the modelling of London Clay. The one additional

parameter for use in the model was the creep constant, c. This was found by com-

paring the creep rates (Stage 6a in Table 4.2) published in Gasparre (2005), shown in

Figure 4.32 with those from the Matlab simulation, shown Figure 4.33. It can be seen

the magnitude of the creep strains is of the same order in both figures. The value of

the creep constant that led to these results is c = 1e−4. The creep dissipation period

was taken to be 12 hours.

The tests conducted by Gasparre (2005) used just two soil samples for the tests. This

necessitated the use of a multi-stage testing process. The first sample, 17SH, was used

in ‘short approach path with creep’ tests, being subjected to two extension undrained

shear stages. Sample 17.3SH was used for ‘short approach path without creep’ and ‘long

approach path with creep’ tests, with two undrained shear stages being conducted in

both sets of tests. After each undrained shear stage the sample was returned to the

in-situ effective mean stress of 330kPa.

4.7.2 Short approach path with creep (17SH)

In Gasparre et al. (2007), tests on the first sample, 17SH, consisted of taking the

soil from the initial mean stress point of 171kPa to the in-situ mean stress of 330kPa

and a deviator stress of -10kPa. Isotropic conditions would have been ideal, but due to

problems with the Imperial College load cell a deviator stress of -10kPa was necessitated.

The outgoing approach path was then followed to a point just inside the Y2 yield surface

(either increasing or decreasing q) under constant mean stress, with the soil then being

brought back to the previous deviator stress of -10kPa. The radius of the Y2 surface

was found to be around 10kPa from earlier tests. Here the soil was allowed to creep

and was held until the creep strains had fallen to unrecordable levels. At this stage

the sample was subjected to an undrained extension test which due to the differing

directions of the approach paths led to a rotation in the stress path. The undrained

nature of the shearing stages led to stress path rotations of 23◦ and 157◦ being created.

The specific stages for the 17SH tests are given in Table 4.3, where the steps are defined

in terms of strain increments for stages 1, 2 and 6, and in terms of the number of stress

increments, #, in stages 3-5.

107



4. Bricks on Ice

S
ta

ge
17SH-23 17SH-157

0 330

-10

-20

Resting period
after approach
stress paths

q

p’
Target(kPa)

steps
Target(kPa)

steps
q p′ q p′

1 - 2805 0.001 - 2805 0.001

2 - 330 -.001 - 330 -.001

3 0 171 #10 0 171 #10

4 -10 330 #10 -10 330 #10

5a 0 330 #8 -20 330 #8

5b -10 330 #8 -10 330 #8

6a Creep - Creep -

6 Extension -1e−5 Extension -1e−5

Table 4.3: Specific stages for the 17SH tests

Figure 4.34 shows the stiffness degradation curves from Gasparre (2005) measured

during the undrained shearing stages. Previous literature about recent stress history

suggests that the higher the rotation from the approach stress path, the stiffer the soil

should be, Atkinson et al. (1990). The effects of creep in this context have never been

systematically investigated, except by Gasparre (2005). The results show that creep

is able to increase the stiffness seen in the low stress path rotation case, effectively

erasing the effects of the recent stress history as seen previously by Clayton & Hey-

mann (2001). It seems clear that creep can have the ability to remove the effects of

the recent stress history if that history lies within the Y2 surface. It can be seen from

Figure 4.35 that the BOI model is able to recreate the lack of difference between results

for the two degrees of rotation. Although the patterns are very similar, the magnitude

of the strains required to cause a marked drop in stiffness is an order greater in the

simulations. The initial stiffness in the low rotation test is greater that that generated

during the high rotation test, and this goes against the pattern seen in the physical tests.

In the current BOI implementation, if a brick is moving in the same direction as the man,

then upon the man stopping and allowing the creep strains to dissipate, its string will

become slack. The soil will then develop elastic, stiffer behaviour upon the continuation

of straining in that direction. The more bricks that are moving in the same direction as

the man, the more strings will become slack and the more elastic and stiff the response

will be upon continuation of straining in that direction. If the direction of the path of

the man is reversed after a period of rest, the stiffness would be expected to be close

to Gmax, as all strings would be slack. In this case the continued motion of the bricks

108
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Figure 4.34: Stiffness degradation curves for 17SH, Gasparre (2005)
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Figure 4.35: Stiffness degradation curves for 17SH, BOI model
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acts to reduce the amount of elastic strain in the soil upon straining as the bricks and

the man are moving towards each other. This has the effect of reducing the measured

stiffness. The consequence of this is that no matter how long the stress path, if the

shorter string lengths are of the same order of magnitude as the creep strains, then

creep will always make the path with the least rotation to its shearing path stiffer

than an equivalent path with a high rotation between the paths. This goes against

the established trends seen in the modelling of the recent stress history (Clayton &

Heymann 2001), leading to the conclusion that not only can creep remove the effects of

the recent stress history but that in specific circumstances it can actually reverse the

expected pattern.

4.7.3 Short approach path, no creep allowed (17.3SH)

The 17.3SH tests demonstrate the effect of removing the holding period after the ap-

proach paths. The exact stages in the modelling of the 17.3SH tests are given in

Table 4.4. In Figure 4.36 the effects of the recent stress history can be clearly seen as a

lower stiffness in the case of the low rotation stress path. Although the general trends

in the plot can be accepted, the appearance of the peak in stiffness for the 105◦ rotation

path is harder to accept. The stiffness would be expected to be greatest initially and

then to reduce continuously as the sample is strained, as seen in Atkinson et al. (1990).

This feature in the curve could be due to a ‘flat spot’ in the Imperial College load cell as

mentioned in Gasparre (2005). The ‘flat spot’ was seen to cause a jump in stiffness in

the small strain region during feasibility tests for the imposition of recent stress history

(Gasparre 2005). Therefore, this could be the cause of the unrealistic stiffness response

seen in Figure 4.36. The trends shown in Figure 4.37, generated by the BOI model, are

more realistic and show that the lack of creep allows a longer elastic period in the 105◦

path rotation test. As the approach paths are within the Y2 zone, the strains required

to generate the approach paths are relatively small. Therefore, there is no reason for

the stiffness of the soil in the intermediate strain region to be affected by the approach

path. This can be seen by comparing Figures 4.35 and 4.37, where the paths are are

very similar for shear strains greater than > 4e−3%.

Another anomaly in the testing procedure is to be found in the approach paths them-

selves. The tests were intended to investigate the effects of creep on the recent stress

history. Therefore, apart from the length of the approach paths and the holding period

for creep, the remainder of the test should have remained identical. In comparing the

stress paths followed in the two pairs of tests (17SH & 17.3SH) it can be seen that there
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S
ta

ge
17.3SH-75 17.3SH-105

20

330

10

0

No resting period
after approach
stress paths

q

p’

Target(kPa)
steps

Target(kPa)
steps

q p′ q p′

1 - 2805 0.001 - 2805 0.001

2 - 330 -.001 - 330 -.001

3 0 136 #10 0 136 #10

4 0 330 #10 0 330 #10

5a 10 330 #8 20 330 #8

5b - - - 10 330 #8

6a - - - -

6 Compression -1e−5 Compression -1e−5

Table 4.4: Specific stages for the 17.3SH tests

were many other differences. These include:

� The position of the stress path in absolute terms. The 17SH tests were conducted

in negative deviator stress space where as the 17.3SH tests were done in positive

deviator stress space.

� The total length of the approach paths. Both paths were of identical length in the

17SH tests but in the 17.3SH tests, the low rotation approach path (17.3SH-75)

was three times shorter than in the test with the high rotation approach path

(17.3SH-105).

� The use of undrained shearing tests in different directions. In the 17SH tests

the shearing was in extension, whereas in the 17.3SH tests the shearing was in

compression. This would not be a problem if the soil were a reconstituted sample

that had only been isotropically consolidated. The fact that the soil is a natural

sample means that the 1D compression and swelling history may have a noticable

impact on the relative stiffnesses in the two shearing directions.

These points have been addressed by the repeating the simulation of Test 17.3SH using

the exact same methodology as in the 17SH tests.
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Figure 4.36: Stiffness degradation curves for 17.3SH, Gasparre (2005)
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Figure 4.37: Stiffness degradation curves for 17.3SH, BOI model
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4.7.4 Repeat simulation of the 17.3SH tests (17.3SH-B)

In this simulation the approach paths and initial conditions are exactly the same as in

test 17SH, but without the influence of creep. The stages for this test are the same as

given in Table 4.3 minus stage 6a.
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Figure 4.38: Stiffness degradation curves for 17.3SH-B, BOI model

It can be seen from Figure 4.38 that the effects of the different test sequences are

relatively small; the trends are the same as those seen in Figure 4.37. The main

difference is the higher initial stiffness in the low rotation approach path test. The

lower initial stiffness seen in Figure 4.37 may be due the direction of the undrained

shearing stage being in the same direction (compression) as the stress path required to

remove the deviator stress during the sampling process. Thus in the 17.3SH-75 test the

measured initial stiffness may be slightly lower than would have been measured had

the methodology been the same as in the 17SH tests.

4.7.5 Long approach path, creep allowed (17.3SH-L)

In the 17.3SH-L tests, long (100kPa) approach paths were used, the results of which

are shown in Figure 4.39. The details of the simulated test stages are given in Table 4.5.

It can be seen that the approach stress paths, in both positive and negative directions,

are of equal length and that the direction of shearing is in extension, as in the 17SH

tests.
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Figure 4.39: Stiffness degradation curves for 17.3SH-L, Gasparre (2005)
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Figure 4.40: Stiffness degradation curves for 17.3SH-L, BOI model
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S
ta

ge

17SH-L30 17SH-L150

100

320
0

-100

Resting period
after approach
stress paths

q

p’340

Target(kPa)
steps

Target(kPa)
steps

q p′ q p′

1 - 2805 0.001 - 2805 0.001

2 - 330 -.001 - 330 -.001

3 0 136 #10 0 136 #10

4 0 330 #10 0 330 #10

5a 100 330 #50 -100 330 #50

5b 0 330 #50 0 330 #50

6a Creep - Creep -

6 Extension -1e−5 Extension -1e−5

Table 4.5: Specific stages for the 17.3SH-L tests

The BOI results generated, Figure 4.40, show a overall similarity with the experimental

results, Figure 4.39, with the high rotation approach stress path giving generally higher

stiffness than the path with the low rotation. However in the BOI simulation, the low

rotation path test has a marginally higher initial stiffness (seen and explained previously

in Section 4.7.2). The stiffness in the low rotation test shows a considerable drop in

stiffness after the creep strains have become relatively small. The low stiffness after

the drop is attributed to the long approach path using up a large proportion of the soil

stiffness.

4.7.6 Overview

It can be seen from preceding sections that, although the BOI model does have its

shortcomings, in the modelling of recent stress history effects, including creep, the

trends shown are very promising. The BOI model can recreate well the medium strain

stiffness seen here with regard to the effects of creep. However, the model produces

inaccurate predictions at very small strains when the effects of creep are included. The

strain-rate dependant string lengths concept developed in the next chapter incorporates

elements of the BOI model and is able to model the isotach behaviour that is difficult

to simulate with the BOI model.
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Strain Rate Dependent String Lengths

5.1 Introduction

In this chapter a new model for predicting the strain rate behaviour of soils is presented,

with a demonstration of its accuracy when compared with previous research. The strain

rate dependent (SRD) approach is an advance on the Bricks on Ice (BOI) approach in

that it is able to model both creep and strain rate effects. The BOI approach has no way

of modelling the effects of changes in strain rate. The form of the normal consolidation

lines with various creep rates was also incorrect with the model predicting diverging

lines with increases of stress, when plotting volumetric strain versus the logarithm of

mean normal stress (Section 4.5). It is generally accepted that the normal consolidation

line and isotache lines should be parallel. The SRD model simulates both creep and

strain rate effects by allowing the soil state to step between these lines upon a change

in strain rate or an increase in time, as seen in Figure 5.1.

v

log p’

Increase in strain rate

Increase in time

Decrease in strain rate
or

NCLref

Figure 5.1: Framework for the strain rate dependent approach
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5.1.1 Model components

SRD modelling laws can be split according to their two main areas of influence, strain

rate behaviour and time dependent behaviour, with both sets of laws being formulated

within the same framework, shown in Figure 5.1.

Strain rate behaviour

Some laws that have been proposed to govern the increase in strength of a soil with an

increase in strain rate are listed below. Although this is not a definitive list, it includes

those laws that would be easily applied in the SRD framework.

Biscontin & Pestana (2001):

su = su,ref

(

γ̇

γ̇ref

)β∗

(5.1)

Graham et al. (1983):

su = su,ref

[

1 + λ log

(

γ̇

γ̇ref

)]

(5.2)

Einav & Randolph (2006):

su = su,ref

[

1 + λ′arc sinh

(

γ̇

γ̇ref

)]

(5.3)

where:

su = undrained shear strength,

su,ref = undrained shear strength measured at the reference strain rate, γ̇ref,

γ̇ref = reference strain rate,

γ̇ = applied strain rate,

β∗, λ and λ′ are soil constants.

The above equations relate strain rate to strength. It was shown previously in Sec-

tion 3.4.1 that the undrained strength is directly related to the string lengths, thus

the above forms of equation can also be used to govern the string lengths. The power

law shown in Equation 5.1 has been shown to be most applicable to soils undergoing

very high rates of shearing such as in shear vane testing (Biscontin & Pestana 2001).

The semi-logarithmic relationship shown in Equation 5.2 was adopted by Graham et al.

(1983), among others, who showed that the equation was valid for many soils in the

range of strain rates normally experienced in the ground. This semi-logarithmic rela-

tionship has no lower limit or asymptote to the minimum value, so when the strain

rate drops below the reference strain rate, the modification to su,ref becomes a reduc-

tion rather than an increase. The Arcsine relationship shown in Equation 5.3 does not
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5. Strain Rate Dependent String Lengths

generate strength reductions. No matter how low the strain rate drops, the ultimate

strength will never reduce below su,ref (Einav & Randolph 2006).

Equations 5.1 and 5.2 do not converge on a single solution for rates below the refer-

ence strain rate. This is a problem in terms of the Brick model. As the laws will

be used to govern the length of the strings connecting the man to the bricks, there

needs to be a lower bound limit to avoid a zero stiffness being generated and to allow

modelling of the geological stress history, which involves unusually low strain rates.

However, the equations that have no lower bound can be modified so that each con-

verges on a single solution for su as the strain rate drops below the reference strain rate.

Biscontin & Pestana (2001) modified:

su = su,ref

(

γ̇

γ̇ref
+ 1

)β∗

(5.4)

Graham et al. (1983) modified:

su = su,ref

[

1 + λ log

(

γ̇

γ̇ref
+ 1

)]

(5.5)

Sorensen (2006) also postulated variations of the Graham et al. (1983) law by formu-

lating it with a natural logarithm rather than base ten based on the work of Tatsuoka

et al. (2002), where β replaces λ.

Sorensen (2006) A:

su = su,ref

[

1 + β ln

(

γ̇

γ̇ref

)]

(5.6)

Sorensen (2006) B:

su = su,ref

[

1 + β ln

(

γ̇

γ̇ref
+ 1

)]

(5.7)

Figure 5.2 shows a comparison between the strain rate dependency laws for a reference

strain rate γ̇ref = 10−6(%/hr). For the equations with no lower bound a reduction

in strength is predicted for rates lower than the reference strain rate. It should be

noted that, although in Figure 5.2 the gradients of the Einav & Randolph (2006) and

Graham et al. (1983) curves are shallower than those of Sorensen (2006), due to the

use of the same value for both λ and β in the calculations, λ can be changed so that

the same magnitude of strain rate effects would be seen. The reference strain rate, for

the equations with a lower bound, is essentially the minimum strain rate at which the
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effects of changing the strain rate can be seen.
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Figure 5.2: Comparison between strain rate dependency laws

The equations for strain rate behaviour do not account for time independently of the

strain rate. If the NCL shown in Figure 5.1 is generated when the strain rate is equal

to the reference strain rate, increases in strain rate lead to the NCL shifting to the right

in a single increment. If the strain rate then decreases back to the reference strain rate,

this also occurs in a single increment. The movement between isotaches is governed

only by the strain rate. To model time dependent behaviour this movement between

isotaches needs also to be governed by time.

Time dependent behaviour

The relationship between creep strain rate and increase in time is generally accepted to

be linear when both strain rate and time are plotted on logarithmic scales, as seen in

Figure 2.13 on page 17. The governing equation for this behaviour was given in Singh

& Mitchell (1968), a simplification of which is shown here in Equation 5.8.

ε̇ = A

(

t1
t

)m

(5.8)

where:
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A = strain rate at some arbitrarily chosen time t1,

m = negative of the slope of the relationship between the logarithm of strain

rate and the logarithm of time (see below),

t = time.

∆log(ε̇) = −m ∆log(t) (5.9)

Written in terms of logarithms, Equation 5.8 becomes Equation 5.9. Singh & Mitchell

(1968) suggest a range of values for m of between 0.75 and 1. Ali (1984) expanded on

this range suggesting a value of m of marginally over 1 for Kaolin.

The time dependency equation (Eq. 5.8) allows the transition between the isotache lines

to be controlled. This is visualised in Figure 5.3. Stress relaxation can be predicted by

holding the soil at constant volume. As the applied strain rate is zero, the strain rate

equations alone would predict an immediate drop to the reference NCL. By controlling

this movement with the time dependent model the reduction of stress with increasing

time can be predicted. It should be noted that the equation presented here for time

dependent behaviour has no lower limit on the strain rate, meaning that creep can

go on indefinitely. Although this may be the case in reality, it makes the modelling

of geological stress history much more complex, as the time periods involved need to

be accurately known. The implications of this will be discussed further in Section 5.3.2.

Reference

rate 1e %/s
-6

v

log p’

Increase in strain rate

Time dependent
decrease in strain rate

NCLref

δt

Stress relaxationStress relaxation

CreepCreep

Figure 5.3: Time dependent behaviour within the SRD framework
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To predict creep behaviour the soil can be held at constant stress while the straining

continues at a logarithmically decreasing rate. This leads to the form of behaviour

described by Bjerrum (1967) shown in Figure 2.16 on page 20. Bjerrum refers to the

isotaches of time as isochrones, each separated by a constant distance relating to an

order of magnitude of time. During the ‘perfect consolidation test’ (illustrated in Fig-

ure 2.16) the soil has to be strained at a relatively high rate so that the effects of creep

can be minimised. If the applied rate of strain is stopped and the soil is maintained

at constant stress, as noted above, the straining of the soil will continue at a logarith-

mically decreasing rate. As Singh & Mitchell (1968) showed that logarithm of strain

rate is linearly related to the logarithm of time, the isotaches of strain rate shown in

Figure 5.3 directly relate to the isochrones in Figure 2.16.

In this section the basic framework for the SRD approach has been presented along

with the governing equations. All the effects discussed here can be classified as visco-

plastic effects and do not take account of any gains in strength in the soil with time

by other processes such as ageing. Before the components presented in this section

are incorporated into the SRD framework, the methods of their formulation within the

Brick model will be explored.

5.2 Man-led Strain Rate Dependency

It was explained in Chapter 3 that the Brick model works by taking the strain applied

to the soil and letting this equate, in the analogue, to the movement of the man. As

the man moves so the strings attaching the man to the bricks become taut. While

the strings are slack the movement is totally elastic and as the strings become taut so

plasticity is developed in the soil and the stiffness of the soil drops. When all the bricks

are moving the soil can be said to be behaving plastically and the stiffness will be at

the lowest possible level.

In the Brick model the string lengths are directly related to the strength of the soil, as

a longer string length allows more elastic straining before the string becomes taut and

the brick behaves plastically. This leads to a higher soil stiffness at any given stress level

and hence a greater strength. If string length is directly proportional to the strength of

the soil, then the equations given in Section 5.1.1 can be directly applied to the string

lengths in the Brick model. It has been decided to use the form of the equations given

in Sorensen (2006), but instead of the parameters relating to an increase in strength
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they now relate to an increase in the string lengths as in Equation 5.10.

SL = SLref

[

1 + β ln

( |ε̇|
ε̇ref

+ 1

)]

(5.10)

where:

SL = predicted string length,

SLref = reference (shortest) string lengths,

ε̇ref = reference strain rate,

ε̇ = applied strain rate.

To allow this equation to operate, a reference set of string lengths (SLref) must be

specified, along with a reference strain rate (ε̇ref). Sorensen (2006) suggests a value

of 1e−6%/hr as a value for the reference strain rate, a rate below which the effects of

changing the rate of straining are negligible. In practice the string lengths are obtained

from a stiffness degradation curve which is generated by measuring the stiffness after a

180◦ change in the direction of the stress path in a laboratory test. Such tests are done

at a much higher strain rate than the reference strain rate to minimise the influence of

time effects such as creep. So long as the strain rate (ε̇test) at which the test takes place

is known, the reference string lengths can be back calculated using Equation 5.11.

SLref =
SLtest

1 + β ln (ε̇test/ε̇ref + 1)
(5.11)

where:

SLtest = string lengths calculated from testing.

In the man-led strain rate dependency approach the current strain rate, ε̇, in Equa-

tion 5.10, is taken to be the vectorial movement of the man, or the root sum of the

squares of the components of applied strain rate described below in Equation 5.12. This

means that the movement of the man directly affects the string lengths and hence the

stiffness of the soil.

ε̇ =
√

(v̇)2 + (γ̇)2 (5.12)

Thought must be also be given to the mechanism for stepping between different rates

of straining. If there is no controlling function to help govern the change in string

lengths in any given time increment, then the change becomes effective immediately.

This can lead to oscillations within the routine as the full stiffness change is applied

over a relatively small period of time. To minimise these oscillations an exponential

function to help govern the rate of change of string lengths is introduced:
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δSL

δt
= α (SLtarget − SLprevious) (5.13)

where:

SLtarget = target string length set by the strain rate equations in that Brick

increment,

δt = time step for the current increment,

α = exponential decay factor.

The string length for the increment is given by SLprevious +δSL. Equation 5.13 controls

the change of the string lengths during both strain accelerations and decelerations.

5.2.1 Implementing the SRD approach into BRICK

The governing equations for man-led SRD model were implemented into the Brick

model. One of the advantages of a man-led approach is that the movement of the man

is specified outside the iterative Brick routine. This allows the change in string lengths

to be easily calculated at the start of the iteration and passed on through the routine.

The alternative to this approach is to allow the strain rates of the individual bricks to

control the individual string lengths; this brick-led approach is discussed in Section 5.3.

The code created in Matlab to implement the man-led approach is contained within

Appendix B.4.1.

5.2.2 Initial tests

To check that the current formulation of the model was working correctly a set of

one-dimensional compression tests was devised. The tests were:

� Constant rate of strain tests, varying rates between tests

� Step rate of strain tests, varying rates within tests

� Stress relaxation tests

� Gradual change in strain rate (GCS) test

The parameters used in the man-led SRD model are given in Table 5.1, where the string

lengths are half those given in Simpson (1992b). During some of the SRS and GCS

tests the α value was changed to 1 for strain decelerations to allow an investigation

into the time decay model.
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BRICK parameters used in Section 5.2

Brick parameter Code name Value

Initial strains Sn(Nc) [0, 0, 0, 0, 0, 0]

Initial stresses Ss(Nc) [2, 0, 0, 0, 0, 0]

Reference string lengths SLr(Nb) [4.2e−5, 1.1e−5, 2.1e−4, 4.2e−4, 1.1e−3,

2.1e−34.1e−3, 0.011, 0.021, 0.04]

Stiffness reduction GGmax(Nb) [0.92, 0.75, 0.53, 0.29, 0.13, 0.075,

0.044 0.017, 0.0035, 0]

Initial conditions Zero(2) [0, 2]

Lambda* λ* 0.1

Kappa* κ* 0.02

Iota ι 0.0041

Beta constant βG 4

Number of bricks Nb 10

Number of components Nc 6 - Full 3D (Triaxial testing)

Exponential decay factor α 0.5 for strain accelerations

0.05 for strain decelerations*

Reference strain rate ε̇ref 1e−6%/hr

Viscous constant β 0.25

Notes: The string lengths are initially slack and the original position for all the

bricks is the origin. *α = 1 was used in some of the SRS and GCS tests.

Table 5.1: Brick parameters for man-led SRD model testing

5.2.3 Constant rate of strain (CRS) tests

The strain rates used for the tests were 1e−2%/hr, 1e−3%/hr and 1e−4%/hr. The CRS

tests were designed to demonstrate the isotach behaviour seen in the framework illus-

tration in Figure 5.1. The expected result would be three equally spaced parallel lines

when plotted as the logarithm of mean normal stress versus volumetric strain.

Figure 5.4 shows that the current formulation of the SRD model did indeed exhibit the

expected behaviour during CRS tests. It was postulated by Sorensen (2006) that the

initial volumetric strain would have to be varied for the Brick model to demonstrate

isotach behaviour correctly. He formulated an equation that would govern the initial

volumetric strain to allow the isotaches to be stepped apart, as given in Figure 5.5.

In the current approach this modification was not used, as the initial elastic stiffness
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Figure 5.4: Man-led SRD model CRS tests, v − log p′ plot

Figure 5.5: Schematic diagram of isotach isotropic compression curves with lower limit

of initial volumetric strain, Sorensen (2006)
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Figure 5.6: Man-led SRD model CRS tests, stress path plot

accounts for the differences in volumetric strain. The string lengths all start off equal

to the reference string lengths. As the applied rate of strain causes the string lengths to

lengthen, the higher the rate of straining, the larger the initial elastic region becomes.

This leads to a larger region of high stiffness and higher stresses being generated at

equivalent volumetric strains, enabling the model to recreate isotach behaviour with-

out the modification seen in Figure 5.5.

The stress path plots for the constant rate of strain tests seen in Figure 5.6 show the

relationship between strain rate and mobilised angle of shearing resistance, φ′

mob. The

higher the rate of strain, the higher the angle in the current tests. The high φ′

mob angles

are not meant to represent a real soil at this stage as the model has not been calibrated.

Although the link between undrained strength and rate of shearing is well established,

no data are available of both mean and shear stresses in one-dimensional compression

under constant rate of strain conditions.

5.2.4 Step rate of strain (SRS) tests

The transition between the isotaches identified in the CRS tests was explored in the

SRS tests. These were conducted by initially straining the soil at the lowest rate used
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Figure 5.7: Man-led SRD model SRS tests, v − log p′ plot

in the CRS tests (1e−4%/hr) until 15% volumetric strain was reached, then increasing

the applied strain rate in a single increment to 1e−3%/hr. Straining continued at this

rate until a volumetric strain of 20% was reached, at which point the rate was increased

again to 1e−2%/hr. Once 30% volumetric strain was reached, the rate of straining was

reduced back to the lowest rate, 1e−4%/hr.

Figure 5.7 shows the isotach behaviour predicted by the man-led SRD model. The

step increases in stress are caused by the lengthening of all the strings, leading to an

increase in elastic straining and an increase in the stiffness of the soil. This increase

in stiffness allows the soil state to step between the isotaches for the different rates

of straining. Similarly, when the straining decelerates, the strings shorten leading to

a decrease in stiffness and stresses. It can be seen during the strain deceleration the

stresses undershoot the isotache predicted from the CRS test. This is due to the

removal of the influence of the damping factor, α, by setting its value to 1 for strain

decelerations. This was done to show the necessity of the exponential damping equation

(Equation 5.13). The curve does rejoin the CRS predicted result but only after a small

number of oscillations. The stress paths can be seen in Figure 5.8 which shows the

accurate stepping between the different CRS stress paths upon a change in strain rate.
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Figure 5.8: Man-led SRD model SRS tests, stress path plot

5.2.5 Stress relaxation tests

To demonstrate the ability of the model to simulate periods of stress relaxation, the

strain rate applied to the soil was temporarily reduced to zero. This reduces all the

string lengths to the reference values, creating a large negative stress change. Figure 5.9

shows the effect of allowing the soil to relax. It can be seen in all three tests that the

stresses reduce to the same value, equivalent to that of an isotache created at a rate

of 1e−6%/hr. As Gmax is unaffected by the SRD model, the intial stiffness for all the

tests after the relaxation is the same. The test at the highest strain rate takes the

largest amount of strain to reach the previous stress levels; the stiffness is constantly

reducing as the straining continues making it harder to reach the previous stress. This

reduction in stiffness greatly affects the stress paths as seen in Figure 5.10. The shear

stresses after the relaxation period do not climb back to the same magnitude as was

experienced before the relaxation occured. On the other hand the mean stresses recover

relatively, quickly leading to the correct trends being exhibited in Figure 5.9.
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Figure 5.9: Man-led SRD model stress relaxation tests, v − log p′ plot
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Figure 5.10: Man-led SRD model stress relaxation tests, stress path plot
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Figure 5.11: Man-led SRD model gradual change in strain rate tests, v − log p′ plot

5.2.6 Gradual change in strain rate (GCS) tests

The GCS tests were devised to explore how the predicted soil state could transit be-

tween isotaches more gradually than in the SRS tests. The procedure for these tests

was to initially perform a SRS test to establish the trends then to gradually reduce

the strain rate to that of the reference strain rate and monitor the results. The initial

portion of the test was stepped between 1e−3%/hr and 1e−4%/hr and then the rate

was linearly reduced to 1e−6%/hr, over a period of 24 hours. Two versions of the same

test have been included in this section: one with a decay constant α of 1 for strain

decelerations, giving instantaneous relaxations between strain rates, the other with an

α value of 0.05 for decelerations, allowing an exponential decay.

Figure 5.11 shows the effects of the step rate of strain initial section of the test followed

by a gradual reduction in strain rate. The ‘No time’ test used an α of 1 and the ‘Time

dependant SL’ test an α of 0.05 for strain decelerations. The time dependent string

length plot shows the effect of varying the α value in eliminating the undershoot in the

stresses generated after a strain deceleration. The effects of the exponential damping

model can be seen clearly in Figure 5.12, where the string length modification factor

is defined as the current string length divided by the reference string length. A mod-

130



5. Strain Rate Dependent String Lengths

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Volumetric strain, (-)v

S
L

/
S

L
re

f

Time dependent SL

No time

Figure 5.12: Changes in string length modification factor during the gradual change in

strain rate tests

ification factor of (1 + ln(2)β)=1.173 would equate to the soil being strained at the

reference strain rate, with the modification factor converging on a value of 1 as the

strain rate drops below the reference rate (Equation 5.10). It can be seen that the

strain accelerations are reflected immediately in the string lengths, while for the strain

decelerations under time dependent control the string lengths exponentially reduce to

the target string length. The time dependency (α value) can be seen not to affect

the gradual relaxation of the string lengths as the relative change in string length in

any one increment is much smaller than those generated by a step change in strain rate.

The stress paths seen in Figure 5.13 show that under step changes of strain rate the

paths exhibit similar behaviour to that seen in Figure 5.8, with the path returning

to the same stress level after a period of straining at a lower strain rate through the

mobilisation of a higher stiffness in the soil. The gradual change in strain rate phase

starts at a mean stress of 250kPa, with the stiffness reducing at an increasing rate

leading to the curved path in stress space.
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Figure 5.13: Man-led SRD model gradual change in strain rate tests, stress path plot

5.2.7 Discussion

Although the man-led SRD approach shows realistic behaviour in the production of

parallel isotaches during the CRS and SRS tests, the behaviour predicted in other cir-

cumstances leaves room for improvement. This is especially true of the stress path

predicted after a period of stress relaxation, with the man-led approach predicting a

persistent drop in shear stress. It is likely from the testing done by Den Haan (2001)

that this should not be the case and that the shear stress should return to the previ-

ous level, as shown in Figure 4.2 on page 78. On a fundamental level there is some

behaviour that the man-led approach will never be able to model accurately.

The string lengths are dependent on the movement of the man, that is all the string

lengths, including those which are currently not taut and thus where the corresponding

bricks are not moving. For strain accelerations this does not prove to be too much of a

problem as an increase in rate increases the string lengths, giving a larger elastic zone.

The current point of strain will always lie inside the elastic zone upon an increase in

strain rate. For decelerations, on the other hand, a shortening of all the string lengths

will lead to the yield surface contracting and some bricks that may not have been mov-

ing prior to the deceleration could be caused to move, leading to a reduction in stresses
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in future accelerations, as seen in Figure 5.10.

If the man controls all the string lengths globally, the behaviour of the soil is entirely

dictated by the strain rate applied. If instead the strain rate dependency is dictated

by the movement of the individual bricks then different proportions of soil (bricks) can

behave differently simultaneously. For example, imagine a period where the entire soil

body is experiencing creep and all the bricks are moving with an ever decreasing rate

of strain. If then a small strain acceleration is applied to the soil, only the shortest

strings would become taut and hence the attached bricks experience the effects of the

acceleration. The longer strings would not become taut and hence the behaviour of the

attached bricks would still be that of continued creep, with the strain rate decreasing.

Thus at one point in time two bricks could be experiencing different strain rate effects,

with any combination of direct strain rate and time dependent effects possible.

The brick-led approach leads to a more flexible model for the strain rate dependency

and will be fully explored in Section 5.3.

5.3 Brick-led Strain Rate Dependency

In the brick-led strain rate dependency model the string length in any increment is a

product of the strain rate of the individual bricks during that increment, rather than

being globally defined by the movement of the man. Strain rate dependency was the

main focus of the man-led approach and the prediction of time dependent behaviour

was not focused upon. In the brick-led model this too will be investigated to show that

the framework is able to account for both strain rate and time effects.

5.3.1 Iterative approach

As the string lengths are dependent upon the strain rate of the individual bricks, and

the strain rate is dependent on the string lengths, in any increment there must be an

iterative process. The initial movement of a brick is calculated using the reference

string length as this is the shortest the strings can become. As the string lengths are

at their shortest the brick is then moving at its maximum rate for that increment, so

the string length increases in response to the increase in strain rate compared with the

reference strain rate. As this happens, slack is introduced into the system as the brick

moves to a point where the string is no longer taut and the initial estimate is shown

to introduce too much movement. For the next iteration the movement of the brick is
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reduced and thus the strain rate is reduced, shortening the strings, and increasing the

strain rate for the next increment. This iteration repeats until the difference between

the current and previous string lengths has become sufficiently small in comparison to

the length of the string itself.

This iterative process of finding the string lengths can lead to unstable oscillations in

the calculations, so that damping factors have to be introduced into the routine. The

damping factors include only applying half the calculated change in string length in any

one increment and an exponential damping factor on the calculation of strain accelera-

tions to limit the maximum change in string length in any one iteration. These factors

have a negligible effect on the generated stresses; they just allow the SRD routine to

reach a point of convergence more easily.

As described in Chapter 3, the Brick program calculates the movements of each brick

after subtracting the plastic strain reduction from the current string lengths. This pro-

cess allows purely plastic movements to still generate elastic strains and hence stress

changes. The calculation of the plastic strain reduction is done iteratively, as it is es-

sentially calculated from the movement of the individual bricks, but is applied globally

to them in the next iteration. If the string lengths were to be iteratively calculated in

the same way, there would be a problem with the effects of the plastic strain reduction

interfering with the calculation of the string lengths and vice versa.

In the first Brick iteration the plastic strain reduction is set to zero as the brick move-

ments have not been calculated before the point at which the plastic strain reduction

needs to be applied. This means that the first brick movement calculation is devoid

of the effects of the plastic strain reduction. The SRD routine calculates the new rate

dependent string lengths in the first iteration only, leaving subsequent iterations free

to account for the effects of the plastic strain reduction.

The Matlab code containing the formulation of the brick-led SRD model can be found

in Appendix B.4.2.

5.3.2 Accounting for time

It was established in Section 5.1.1 that the decay in strain rate during creep should be

linear with the logarithm of time (equations 5.8 and 5.9) in Figure 5.14. The man-led

SRD model runs with an exponential rather than a logarithmic decay for all strain
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Figure 5.14: Visualisation of Equation 5.8

decelerations, as seen in Equation 5.13. To make accurate long term predictions of the

effects of creep the formulation of the time dependent effects must be of a logarithmic

form. The Brick model is implemented in an incremental routine with no monitoring

of the passage of time apart from the incremental time increase, i.e. cumulative time is

not tracked. This leads to a difficulty when calculating the logarithmic decay as there

is no value of t1 (as defined in Figure 5.14) to use in the calculations.

Although t1 is unknown, the string lengths during the previous time increment (SLprev)

are known. Knowing the previous string lengths allows the current decay to be back-

calculated, using the reference strain rate and an estimated time to reach this rate. Each

strain rate can be associated with a unique time as shown in Figure 5.14. The previous

strain rate (ε̇prev) can be calculated by rearranging Equation 5.10 and substituting ε̇prev

for ε̇ creating Equation 5.14.

ε̇prev = ε̇ref(e

(

(SLprev/SLref) − 1
β

)

− 1) (5.14)

If the period over which creep is decreasing is set to have an upper limit and a specific

strain rate is associated with that limit, then the previous time can be calculated from

Equation 5.15. It is assumed that the upper time limit for creep is 108 seconds which

equates to roughly 31 years and 8 months, sufficiently long for most practical problems.

Using the results from Bishop (1966), it can be shown that for London Clay this time
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would relate to a strain rate of 1e−13-/s. This is adopted as the reference strain rate,

ε̇ref.

tprev = 10

⎛

⎝log
(

108
)

−
(

log

(

ε̇prev

ε̇ref

)

1

m

)
⎞

⎠

(5.15)

where:

tprev = time in seconds at the end of the previous Brick increment.

It should be noted that time in the Arup finite element program Safe is computed

in seconds so the reference strain rate and associated time have both been specified in

seconds. As the time increment is known so the current time is simply the previous

time plus the time increment, Equation 5.16.

t = tprev + δt (5.16)

The current strain rate predicted by the logarithmic decay (Equation 5.8) can then be

calculated using the current time, t, by Equation 5.17.

ε̇ = 10

log (ε̇ref) + max

(

0,

(

log
(

108
)

− log (t)

1/m

))

(5.17)

The string lengths for use in the current increment are adjusted in the usual way using

Equation 5.10. The back calculation of the previous time and the current strain rate

is visualised in Figure 5.15.
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Figure 5.15: Framework for the calculation of the current strain rate
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5.3.3 Initial tests

As the formulation of the strain rate dependency has not changed between the man-led

and brick-led models it should be safe to assume that the basic test results (CRS etc.)

will exhibit similar behaviour. The testing in this section will therefore concentrate on

behaviour that was problematic with the man-led model. The tests include:

� Step change in strain rate tests

� Stress relaxation tests

� Swelling and recompression tests

The parameters used for the brick-led formulation of the model are given in Table 5.2.

BRICK parameters used in Section 5.3

Brick parameter Code name Value

Initial strains Sn(Nc) [0, 0, 0, 0, 0, 0]

Initial stresses Ss(Nc) [2, 0, 0, 0, 0, 0]

Reference string lengths SLr(Nb) [4.2e−5, 1.1e−5, 2.1e−4, 4.2e−4, 1.1e−3,

2.1e−34.1e−3, 0.011, 0.021, 0.04]

Stiffness reduction GGmax(Nb) [0.92, 0.75, 0.53, 0.29, 0.13, 0.075,

0.044 0.017, 0.0035, 0]

Initial conditions Zero(2) [0, 2]

Lambda* λ* 0.1

Kappa* κ* 0.02

Iota ι 0.0041

Beta constant Beta(1) 4

Number of bricks Nb 10

Number of components Nc 6 - Full 3D (Triaxial testing)

Time decay constant m 1.0386

Reference strain rate ε̇ref 1e−13/s

Viscous constant β 0.23

Note: The string lengths are initially slack and the original position for all the

bricks is the origin in strain space.

Table 5.2: Brick parameters for the brick-led SRD model testing
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5.3.4 Step change of strain rate (SRS) tests

These tests were designed to check that the brick-led SRD model still exhibits the

correct behaviour during 1D consolidation SRS tests. The results have been overlaid

on those of CRS tests.
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Figure 5.16: Brick-led SRD model SRS test results, v − log p′ plot

Figure 5.16 shows the SRS tests plotted as volumetric strain versus the logarithm of

mean effective stress. The isotach behaviour is clearly observable with the the strain

accelerations causing a near immediate increase in stress, comparable to the behaviour

observed in Figure 5.8 for the man-led model. During the strain decelerations the

behaviour is also similar when compared to the man-led results generated with an

α = 0.05 (Figure 5.11). Both models predict a convergence upon the new CRS path

with increasing strain. This agrees well with the behaviour observed in Batiscan clay

by Leroueil et al. (1985), as seen in Figure 2.23 on page 25. This figure shows the

step changes of strain rate leading to a rapid convergence of the test path upon the

new isotache. The stress paths for the CRS tests in Figure 5.17 show a very different

trend to that seen in Figure 5.6. The brick-led model predicts no change in gradient

for an increase in strain rate whereas the man-led model did. Although there is no

experimental data to support either case, the theoretical relationship between strain

rate and the current stiffness is coaxial, being the same for both shear and volumetric
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Figure 5.17: Brick-led SRD model SRS test results, stress path plot

strain. It could be argued that due to the coaxial relationship the stresses should follow

the same gradient independent of the strain rate. The stress path for the SRS test, also

shown in Figure 5.17, shows a divergence from the paths from the CRS tests. This

is most probably an effect caused by the incremental approach incorporated in the

Brick model, with the change in mean stress being related to the current stress level

(Equation 3.29 on page 53). That is, if the path undershoots the previously predicted

stress path, there is no way for it to return to it without an increase in stiffness.

5.3.5 Stress relaxation tests

The tests were conducted in a similar way to those done in Section 5.2.5 with the soil

being one-dimensionally compressed to 20% volumetric strain then being held at con-

stant volume for 5000 seconds, after which the compression recommenced. This was

repeated with three different strain rates.

Figure 5.18 shows the the relaxation behaviour as the stresses fall at constant volume,

as seen previously in Figure 5.9. Although the duration of all the tests is the same,

the amount of relaxation each test undergoes varies. This can be more clearly seen in

Figure 5.19 where the minimum stresses generated in the relaxation phases are different
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Figure 5.18: Brick-led SRD model stress relaxation tests, v − log p′ plot
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Figure 5.19: Brick-led SRD model stress relaxation tests, stress path plot
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for each test. As the test conducted at 1e−4-/s is already following the lowest isotache,

the relaxation period generates the lowest stresses. Conversely, the 1e−2-/s test exhibits

the highest stresses both in isotach behaviour and in relaxation. It should be noted

that in the current tests the stresses rejoin the same, approximately constant gradient

stress path as they did in the tests by Den Haan (2001), illustrated in Figure 2.42 on

page 42. This was one of the main flaws of the man-led model as the stress paths

generated did not rejoin the path predicted without the relaxation (Figure 5.10).

5.3.6 Swelling and recompression tests

One final check was carried out to check that the SRD model was not adversely affect-

ing the prediction of behaviour in simple one-dimensional compression, swelling and

recompression tests, as explored with the BOI model in Section 4.5.2. In this test the

soil was first one-dimensionally compressed to 20% volumetric strain at a strain rate

of 1e−4-/s. The soil was then swollen back to an OCR of 20, approximating the in-situ

conditions found in surface deposits of London Clay (King 1981). The soil was then

recompressed to 40% volumetric strain to ensure that the NCL was correctly rejoined.

The recompression phase was run at three different rates.
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Figure 5.20: Brick-led SRD model swelling and recompression tests, v − log p′ plot
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Figure 5.21: Brick-led SRD model swelling and recompression tests, stress path plot

From Figure 5.20 it can be seen that the isotache NCL lines are still created, as seen in

Figure 5.16. The test conducted at a constant strain rate (1e−4-/s) shows the correct

behaviour with the recompression line rejoining the previous NCL at the correct stress.

The stress path plot, Figure 5.21, also shows the rapid regaining of the preconsolidation

stresses during the recompression phase of this test.

It should be noted that the above tests using the brick-led SRD model are based on

Theory 2 of the Brick model. The new code could therefore be directly imported into

the finite element program Safe (which uses a version of Theory 2).

5.4 Benchmarking the SRD Model

Section 5.3 has focused upon examining the trends shown by the brick-led SRD model.

On the plots of volumetric strain versus mean stress the isotach behaviour was always

shown correctly. The stress path plots are harder to interpret as there are no experi-

mental plots available for comparison. In this section the model has been benchmarked

against other information that is available in previous literature. This includes results

of SRS shearing tests and shear stiffnesses in undrained triaxial compression and exten-

sion tests. The aim of this is to show that the work done in Section 5.3 can be applied
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to the modelling of a variety of soils in undrained shearing as well as one-dimensional

compression.

5.4.1 Graham et al. (1983)

Graham et al. (1983) presented an undrained shear test conducted with step changes

in strain rate on a natural sample of Belfast Clay. To undertake a simulation of this

test, where the data was available to calibrate the model, such as the applied rates of

straining it was used directly, but where such data was not available it was sourced

elsewhere. The stiffness degradation curve was taken to be the same as that of London

Clay. The duration of each test stage was back calculated from Figure 5.22(a). Table 5.3

gives details of the step changes in strain rate and Table 5.4 the Brick parameters used.

Location of step changes in strain rate

Strain rate Strain limit

(%/h) (% Axial strain)

0.5 6

Relaxation -

0.5 7.8

5 10

0.5 12.5

0.05 13.5

5 15.8

0.5 18

0.05 18.5

0.5 19

Relaxation -

0.5 20

Table 5.3: SRS data from Graham et al. (1983)

Figure 5.22 shows a comparison between the stress strain curves presented in Graham

et al. (1983) and those generated by the brick-led SRD model. It can be seen that

generally the comparison is very good with similar behaviour during the step changes

in strain rate being observed. This proves that the SRD model is able to recreate strain

rate dependent behaviour in undrained shearing. The strain softening of the soil is not

predicted well, although this is a product of the Brick model rather than the SRD

adaptation. The stress history of the Belfast clay was modelled by consolidating the soil

to an effective vertical stress of 60kPa, then allowing it to swell back to the estimated
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SRD model parameters used in Section 5.4.1

Brick parameter Code name Value

Initial strains Sn(Nc) [0, 0, 0, 0, 0, 0]

Initial stresses Ss(Nc) [2, 0, 0, 0, 0, 0]

Reference string lengths SLr(Nb) [4.2e−5, 1.1e−5, 2.1e−4, 4.2e−4, 1.1e−3,

2.1e−34.1e−3, 0.011, 0.021, 0.04]

Stiffness reduction GGmax(Nb) [0.92, 0.75, 0.53, 0.29, 0.13, 0.075,

0.044 0.017, 0.0035, 0]

Initial conditions Zero(2) [0, 2]

Lambda* λ* 0.372

Kappa* κ* 0.054

Iota ι 0.0041

Beta constants Beta(2) [4, 3]

Number of bricks Nb 10

Number of components Nc 6 - Full 3D (Triaxial testing)

Time decay constant m 1.0386

Reference strain rate ε̇ref 1e−13/s

Viscous constant β 0.1

Note: The string lengths are initially slack and the original position for all the

bricks is the origin in strain space.

Table 5.4: Brick parameters for Graham et al. (1983) simulation

in-situ stress of 40kPa (the sample was taken from a depth of 4m and the water table

was at the surface). This gives an overconsolidation ratio of 1.5 which lies within the

range of 1.2-1.8 given by Crooks & Graham (1976). The viscous constant β (Table 5.4)

was calibrated by an iterative approach, attempting to fit the observed behaviour. Cur-

rently this is the only way of assessing what the β value will be. The λ* and κ* values

were back calculated from the data given in Crooks & Graham (1976) and are higher

than those of London Clay. As already noted, the shape of the stiffness degradation

curve was assumed to be the same as that of London Clay, although the magnitude

of the strains for the reference string lengths were calculated with Equation 5.11 using

the London Clay string lengths as the testing string lengths (SLtest) and an assumed

strain rate of 0.5%/h for the testing rate (ε̇test).

Figure 5.23 shows the engaged tangential stiffness of the soil during the SRS tests, with

a Gmax of 12MPa being predicted for Belfast Clay. During the relaxation phases at
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(a) Stress-strain curves for triaxial compression

tests with step-changed strain rates and relax-

ation procedures
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(b) Stress-strain curves generated by SRD model

Figure 5.22: Graham et al. (1983) comparison
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Figure 5.23: Stiffness developed during SRS tests
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6% and 19% axial strain the soil regained 40% of its original stiffness over a relatively

short stress relaxation period.

5.4.2 Gasparre (2005)

It was shown in Section 4.7 that the BOI time dependency implementation into the

Brick model was able to recreate the trends shown in the Gasparre (2005) tests. As

the brick-led SRD model combines the effects of time dependency with strain rate de-

pendency, it too should be able to simulate the trends seen in Gasparre’s work.

The SRD model needs more information about the strain rate dependency of London

Clay than was presented in Gasparre (2005). The necessary information was taken

from other sources, namely Sorensen (2006) and Sorensen et al. (2007a). To allow a set

of parameters for the SRD model to be developed two sets of data need to be present,

these being a SRS test showing the soil’s susceptibility to strain rate effects and a creep

or stress relaxation test over a stated time period to allow the time dependency and

reference strain rate to be calibrated. The exact shape of the stiffness degradation

curve in regard to the proportion of soil represented by each brick is not crucial. It

has been shown by Sorensen et al. (2007a) that the magnitude of the viscous effects in

both natural and reconstituted London Clay are the same even though their stiffness

degradation curves have different shapes. This can be seen in Figure 5.24 where α

defines the relationship between the axial strain rate, ε̇a, and deviator stress, q, in

Equation 5.18 (Sorensen et al. 2007a), where As is a material constant.

log(q) = α log(ε̇a) + As (5.18)

Most of the SRS and CRS tests presented in Sorensen (2006) were conducted on re-

constituted London Clay samples and hence the presence of TESRA behaviour (see

Section 2.2.4) was unrepresentative of the behaviour of natural samples. There were

however two tests conducted on natural London Clay using a SRS approach, these

being tests S1LC and S2LC. The London Clay samples for test S1LC were taken from

between 13.95m and 15.45m below ground level at the Heathrow Terminal 5 site. From

Gasparre (2005) the unit weight of London Clay is 19.4kPa. This equates to an in-situ

mean effective stress of between 283 and 303kPa for sample S1LC, assuming a K0 value

of 1.88 and the water table to lie at the surface of the London Clay layer at a depth

of 6m. Sorensen estimated that the previous overburden pressure was around 2MPa.

This gives the Brick model sufficient information to model the geological history of the
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Figure 5.24: Viscosity index from tests on London Clay, Sorensen et al. (2007a)

sample in preparation for modelling the laboratory tests conducted on sample S1LC.

Rather than model the test as a SRS test, CRS tests were simulated with the maximum

and minimum strain rates to give the zone of possible effects. Figure 5.25(a) shows the

pre-peak behaviour of sample S1LC during SRS tests and Figure 5.25(b) shows the

bounding envelope generated by the SRD model. It can be seen that the two are very

compatible. For the purposes of this test the viscous constant, β, was set to 0.23 which

equates to a viscosity index, α, of 0.023 over the relevant stress range.

(a) Stress-strain behaviour during triaxial com-

pression tests on London clay
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(b) Stress-strain behaviour predicted by the

SRD model

Figure 5.25: Sorensen (2006) test comparison
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Figure 5.26: Fitting the Brick parameters to Gasparre (2005)

Figure 5.27: Stiffness degradation for samples from sub-unit B2(c) sheared from their

in situ stress state, Gasparre (2005)
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The stiffness degradation curve could be fitted directly to the stiffness degradation curve

given in Gasparre (2005). Although the sample from which the curve was generated

was not the same sample used for the stress path rotation test, it is from the same

lithological unit (King 1981). A comparison between the string lengths for the original

Brick model (Simpson 1992b) and those used in the current modelling is presented

in Figure 5.26. The stiffness degradation curve derived by Gasparre (2005) has also

been included for comparison (see Figure 5.27). It should be noted that the number of

bricks for the test was increased from 10 to 18 to give a smoother tangential stiffness

degradation curve.

The time dependency parameter, m, was calibrated with the long term creep tests done

by Bishop (1966) on natural samples of London Clay as seen in Figure 2.13 on page

17, which also shows that the gradient (m) is independent of the initial strain rate.

Table 5.5 gives a list of all the parameters used when modelling the Gasparre tests.

The testing sequence for each test was unchanged since it was modelled using the BOI

approach, so the sequence can be found in Table 4.2 on page 105. The duration of the

holding periods in Gasparre (2005) was variable, being dependent upon the measured

strains in the sample. The tests involving creep were held for a number of days while

those without creep were only held for three hours so as to keep the testing procedure

the same as used by Atkinson et al. (1990).

Figure 5.28: Strain rates for Sample 17SH during approach paths, Gasparre (2005)
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SRD model parameters used in Section 5.4.2

Brick parameter Code name Value

Initial strains Sn(Nc) [0, 0, 0, 0, 0, 0]

Initial stresses Ss(Nc) [2, 0, 0, 0, 0, 0]

Reference string lengths SLr(Nb) [5e−7, 1.5e−6, 3.125−6, 5e−6, 1e−5,

1.75e−5, 2.5e−5, 3.5e−5, 5e−5, 0.0001,

0.0002, 0.00035, 0.0005, 0.001, 0.002,

0.004, 0.01, 0.0323]

Stiffness reduction GGmax(Nb) [0.9, 0.85, 0.815, 0.79, 0.74, 0.69,

0.61, 0.5, 0.4, 0.3, 0.22, 0.17,

0.13,0.09,0.06,0.02,0.009,0]

Initial conditions Zero(2) [0, 2]

Lambda* λ* 0.1

Kappa* κ* 0.02

Iota ι 0.0054

Beta constants Beta(2) [4, 3]

Number of bricks Nb 18

Number of components Nc 6 - Full 3D (Triaxial testing)

Time decay constant m 1.0386

Reference strain rate ε̇ref 1e−13-/s

Test strain rate ε̇test 6.95e−8-/s

Viscous constant β 0.23

Note: The string lengths are initially slack and the original position for all the

bricks is the origin in strain space.

Table 5.5: SRD Brick parameters for modelling Gasparre (2005)

As brick-led SRD simulations are affected by the rate of straining, the rate at which the

testing in Gasparre (2005) was conducted also needed to be known. Figure 5.28 plots

the applied axial strain rate, ε̇a, for increasing axial strain, εa. As the brick-led SRD

model has a logarithmic relationship to strain rate, the variation in the plots shown in

Figure 5.28 would have little effect on the string lengths. If the plots were replotted

on a log scale of strain rate, the variation would be negligible. The applied axial strain

rate, ε̇a, was taken to be -0.0025%/h. Applying Equation 5.11, the string lengths from

the stiffness degradation plots shown in Figure 5.26 could be converted to the reference

values to account for the effects of strain rate as follows:
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SLtest

SLref
= 1 + β ln (ε̇test/ε̇ref + 1)

SLtest

SLref
= 1 + 0.23 ln

(

(0.0025/(100 ∗ 60 ∗ 60))/1e−13 + 1
)

SLtest

SLref
= 3.564 (5.19)

The λ* and κ* values were taken directly from the Brick model as presented in Simpson

(1992b) but, as the Iota value affects the maximum predicted stiffness of the soil, it

was changed to fit the maximum stiffness seen in the Gasparre (2005) tests shown in

Figures 5.26 and 5.27.

Short approach path with the effects of creep (17SH)

These were the first stress history tests run by Gasparre (2005) and aimed to investigate

the results shown by Clayton & Heymann (2001), with the stress history effectively be-

ing erased by the effects of creep, Figure 5.29. The modelling procedure was the same

as stated in Section 4.7 (see Table 4.3 on page 108). The modelling of the geological

stress history was done without modelling viscous effects as, due to the large times

involved, the effects of creep, if modelled, would lead to the string lengths relaxing

back to their shortest values. It is with these short string lengths that the geological

history was modelled. The laboratory testing was done at a constant rate of strain as

stated in Table 5.5.

The holding period conducted in the 17SH tests was modelled as a period of creep,

with the string lengths shortening with increasing time. After a period of straining, in

normal circumstances the strings attached to bricks that were previously moving are

still taut in the next increment. With the effects of creep shortening the string lengths

and thus moving the bricks, when the man continues to move the strings lengthen again

and the response of the soil is initially elastic. The response is stiffer than the plastic

response that would have occurred had it not being for the holding period.

The tangential stiffness, G, was plotted against shear strain, εs, Figure 5.30, for com-

parison with the experimental data, Figure 5.29. The approach paths were followed in

both compression and extension directions before the stiffness was measured during the

extension undrained shearing stage. Figure 5.30 shows that the brick-led SRD model

can successfully simulate the erasing of the recent stress history by creep. This is shown
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Figure 5.29: Shear stiffness during the undrained shear tests on sample 17SH, Gasparre

(2005)
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Figure 5.30: Stiffness degradation following 10kPa approach paths with creep allowed
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in both the initial stiffness and in the close match of the curves in Figure 5.30. The

predicted stiffness is now independent of the stress path rotation as shown by Clayton

& Heymann (2001) (see Figure 2.10 on page 13).

Short approach path without the effects of creep (17.3SH)

The second test run by Gasparre (2005) was designed to confirm that the equal stiff-

nesses during the 17SH tests were due to the effects of creep. The detailed simulation

procedure is contained in Table 4.4 on page 111. It was mentioned in Section 4.7.3

that the two sets of tests, 17SH and 17.3SH, were not conducted under exactly the

same conditions. For the purposes of the current modelling a direct simulation of the

17.3SH tests has been completed using the data in Table 4.4. The 17.3SH tests involve

a short approach path as in the 17SH tests, but without the holding period to allow for

the occurrence of creep. The 17.3SH tests were able to recreate the results shown in

Atkinson et al. (1990) where a period of rest was not allowed and the stiffness measured

was dependent on the rotation of the stress path (see Figure 2.8 on page 11).

The results generated by Gasparre (2005), Figure 5.31, show the degree of rotation in

the stress path acting to control the measured stiffness. The results of the simulation of

the 17.3SH tests are shown in Figure 5.32. It can be seen that the initial stiffness agrees

with the trends shown in the physical test results. The scatter in Figure 5.31 makes the

plot harder to interpret but the separation of the plots for the high and low rotation

tests is clearly visible down to 1e−3%, at which point the scatter becomes too great to

draw any clear conclusions. The amount of strain required to cause a marked drop in

stiffness also agress well between the numerical and physical modelling, about 0.005%

in both cases. The simulation results also agree well with the trends seen in Atkinson

et al. (1990). Due to the lack of a holding period, upon the continued straining in the

same direction (low rotation) the Y1 yield surface is already engaged giving a lower

stiffness.
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Figure 5.31: Shear stiffness for the undrained shear test on sample 17.3SH, Gasparre

(2005)
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Figure 5.32: Stiffness degradation following 10kPa approach paths with no creep al-

lowed
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Long approach path with the effects of creep (17.3SH-L)

The final tests run by Gasparre (2005) were designed to investigate the effects of creep

after a long approach path. In the 17SH and 17.3SH tests the approach paths were

always within the Y2 yield surface with applied stress deviations of 10kPa. For the

17.3SH-L tests the approach paths were 100kPa long, allowing the soil to engage the

Y2 yield surface. The simulation procedure is contained within Table 4.5 on page 115

and the experimental results are shown in Figure 5.33. The effects of creep can be seen

in the relatively high stiffness for the low rotation test, which is much higher than the

stiffness seen in the 17.3SH tests without the effects of creep. In the short approach

path tests with creep (17SH) the degradation in stiffness was similar in both high and

low rotation cases. This is due to the persistent effect of the geological stress history,

with the recent approach paths not being of sufficient magnitude to erase these effects.

When the same tests are run with long approach paths (17.3SH-L) it can be seen that

the magnitude of the approach paths was sufficient to erase much of the geological

stress history, leading the soil to show different stiffness degradation curves depending

on the rotation of the path while at the same time showing a high initial stiffness due

to the effects of creep.

The simulation results are shown in Figure 5.34. It can be seen that the initial stiffnesses

match the physical results reasonably well, allowing for the scatter in the physical test

results. Similar degradation trends are evident in both the physical and numerical

tests.

5.4.3 Comparing the SRD model with Bricks on Ice

The tests conducted by Gasparre (2005) have now been simulated using both the SRD

and Bricks on Ice (BOI) models. This section directly compares the simulation results

to assess the effect of changing the model.

In the 17SH tests with the inclusion of the holding period after a short approach path,

the physical tests results showed that creep can erase the effects of the recent stress

history, with both high and low rotation paths showing a similar initial stiffness (Fig-

ure 5.29). This pattern of results was simulated very well by the BOI model with both

rotations showing very similar initial stiffnesses (Figure 5.35), although the low rota-

tion path (LR) shows a higher initial stiffness than the high rotation stress path (HR),

which is incorrect. The SRD Brick model results showed all the features seen in the

physical testing. The initial stiffnesses for the high and low rotation tests were very
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Figure 5.33: Shear stiffness during the undrained shear tests on sample 17.3SH-L,

Gasparre (2005)
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Figure 5.34: Stiffness degradation following 100kPa approach paths with creep allowed
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similar to each other (Figure 5.35), but the high rotation test gave a marginally higher

stiffness, which can be seen in the physical test results. The stiffnesses at intermediate

strains were generally very similar but with a marginally higher stiffness in the high

rotation test. Overall, the reduction in stiffness showed a very close correlation between

the numerical and physical results, being roughly a fifty percent reduction in stiffness

over the range of strains in the physical test (about 0.007%). The BOI model gave a

slightly better prediction of this drop in stiffness, but the predictions made by the SRD

Brick model were more accurate at small strains.
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Figure 5.35: Comparison of SRD and BOI models for short approach path tests with

creep

In the 17.3SH tests the degree of rotation directly affected the initial stiffness, with

the high rotation path showing a higher initial stiffness and the low rotation stress

path demonstrating an approximately 50% lower initial stiffness (Figure 5.31). Both

the BOI and SRD models were able to simulate the 50% reduction in initial stiffness

seen in the physical results, as well as the subsequent higher stiffness path seen in the

high rotation test (Figure 5.36). The results would be expected to be similar for both

numerical models as creep is not present.
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Figure 5.36: Comparison of SRD and BOI models for short approach path tests without

creep

The 17.3SH-L tests, with the long approach paths and a holding period to allow for the

effects of creep, showed again the high initial stiffness in the low stress path rotation test

due to the presence of creep (Figure 5.33). The intermediate strain behaviour demon-

strated the persistent effects of the stress history with the low rotation test exhibiting a

consistently lower stiffness than the high rotation test. In the modelling done with the

BOI model these trends were recreated, but with a much more severe drop in stiffness

during the low rotation test (Figure 5.37). This was thought to be due to the long

approach stress path developing much of the available stiffness for the low rotation test

prior to the holding period. Thus after the initial high stiffness has been utilised, the

stiffness drops rapidly to the large strain stiffness. The low rotation test also generated

a higher initial stiffness than the high rotation test, seen previously in Figure 5.35. The

SRD Brick model managed to successfully predict the correct arrangement of initial

stiffness, with the stiffness degradation occurring more rapidly in the low rotation test

than in the high, as seen in the physical tests.

It is clear from the SRD and BOI model simulations that creep can be a major factor in

determining the small strain stiffness response of a soil. The effects of short approach

stress paths can be completely erased by the effects of creep, leaving the creep to

govern the small strain stiffness and the geological stress history to determine the
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Figure 5.37: Comparison of SRD and BOI models for long approach path tests with

creep

intermediate and large strain stiffnesses. Whilst both the SRD and BOI models can

generate the trends seen in the physical tests, the SRD model generally gives more

accurate predictions, especially in the small strain region.

5.5 Discussion

The SRD Brick model represents a clear improvement in the modelling of strain rate

and time dependent effects over the BOI model. The SRD Brick model is able to deal

with both isotach strain rate behaviour and time dependent effects such as creep and

stress relaxation through the implementation of the newly developed rate dependency

framework.

Prediction of the results presented by both Graham et al. (1983) and Gasparre (2005)

shows that the model can not only predict SRS behaviour but also the effect of creep

on the recent stress history. The results of the simulation of the Gasparre (2005) tests

show that the SRD Brick model can successfully predict the increase in initial stiffness

due to the effects of creep on low rotation stress path tests, shown by Gasparre et al.

(2007) and Clayton & Heymann (2001). The model is also able to predict the usual

effect of the recent stress history, with the rotation of the stress path having a direct
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effect on the predicted initial stiffness of the soil, as shown by Gasparre et al. (2007)

and Atkinson et al. (1990).

In previous investigations into the recent stress history, the predicted stiffness has al-

ways been stated as being dependent upon the rotation in the stress path. Although

this is true, it can also be related to a rotation of the strain path in strain space. In the

tests done by Gasparre (2005) the approach paths were obviously stress controlled. To

generate a constant p′ stress path in the Brick model, the main component of strain is

shear strain, with small increments of volumetric strain being required to compensate

for the plastic volumetric strains generated by the bricks. The final triaxial extension

or compression stages in both the physical tests and numerical simulations are strain

controlled so that the rotation in the strain path would always be approximately 0◦ or

180◦. The stress path rotations applied, under strain control, in Gasparre (2005) would

also correspond to approximately 0◦ and 180◦ rotations in the strain path, with little

or no variation between tests.
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6
Finite Element Modelling

6.1 Introduction

As a constitutive model for soil, Brick describes the behaviour of soil given an applied

change in strain. If a constitutive model, such as Brick, is to be of use in the analysis

of engineering problems it must be first implemented into a finite element program,

such as Safe. Unlike the classical methods of geotechnical analysis, limit analysis and

limit equilibrium, the finite element method is capable of satisfying the requirements

for a full theoretical solution. These requirements are: equilibrium, compatibility, the

material constitutive model, and boundary conditions (both force and displacement).

Finite element analysis is capable of solving complex geotechnical problems by discretis-

ing the soil domain using a mesh. The discrete areas are known as finite elements and,

for a two-dimensional analysis, they can be either triangular or quadrilateral in shape

(Safe uses a quadrilateral mesh).

In this chapter the SRD Brick model is implemented into the finite element program,

Safe. The implementation is then benchmarked against an equivalent Matlab anal-

ysis to check the model has been implemented correctly. Two case histories are then

analysed using the implemented SRD Brick model. The first is the construction of

the westbound running tunnel, part of the Jubilee Line extension, at St James’s Park,

London. The second is the construction and long term heave monitoring of a deep

basement in Horseferry Road, London.

6.2 Implementation into SAFE

The first stage in implementing the new SRD Brick model in Safe was to get it

running correctly within the Arup BRICK program. This program essentially repro-

duces the calculations necessary at a single gauss point in a full finite element analysis.
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BRICK does not have the capability to deal with pore water pressures. Rather it is

designed to emulate in effective stress terms the tests done on a soil specimen in the

laboratory so that the correct parameters can be chosen for the Brick model. The

details of the implementation of the SRD Brick model into the BRICK program can

be found in Appendix C.

SAFEBRICK

B ARICK

B BRICK

B CRICK

SAFBRK

B BRICK

SAFINC

SAFBRO

SAFMAT

more...

Figure 6.1: Implementation of the SRD model into Safe

One of the advantages of using the BRICK program and Safe applications in combi-

nation is that the Brick code can be input directly into Safe by copying across the

BrickB module, Figure 6.1. As was explained in Section 3.5, BrickB is the heart of

the BRICK program, with the remaining code simply passing variables to the routine.

The main difference between the formulation of the strain rate dependency model in

Safe and the BRICK program concerns the storage of the variables between incre-

ments. Because the BRICK program is only doing calculations for a single point in

the soil, the storage of variables between increments is relatively easy as they can be

passed directly back to BrickA for use in the future. In Safe the variables need to

be saved for every gauss point which means that a much more complicated system of

storage needs to be implemented. The BRICK program also has no concept of time

natively, so constant rate of strain tests have to be done by keeping the increment size

constant. Safe on the other hand is able to cope with a direct input of time for each

increment. A detailed account of the features of Safe can be found in Oasys (2006)

and further information on the implementation of the Brick model into Safe can be

found in Appendix D.1.

162



6. Finite Element Modelling

6.3 Model Validation

Before the results generated by a finite element analysis can be treated as reliable, test-

ing should be completed to ensure that the constitutive model employed is functioning

correctly with a simple analysis. For Safe, the simplest test involves a single element

with four gauss points. Running a model of this form tests its ability to converge on a

single solution, thereby checking whether the constitutive model is stable.

x, m

(0.0, 0.0)

(0.0, 0.5)

(0.5, 0.0)

(1.0, 0.0)

(1.0, 0.5)

(0.0, 1.0) (0.5, 1.0) (1.0, 1.0)

y,
m

Figure 6.2: Single finite element

An element measuring 1m x 1m was used to test the effects of both strain rate and

time. The element is shown in Figure 6.2; the nodes are located at the mid-point of

each edge and the corners. It can be seen that boundary conditions have been specified

on 3 sides, with the base being fixed in both x and y directions and the sides being

fixed only in the x direction. For the material assigned to the element, the properties of

London Clay have been used and are given in Table 6.1, with the string lengths being

those from Kanapathipillai (1996). The Y-Coord parameter represents the intercept of

BRICK parameters used in Section 6.3

Description Theory λ* κ* ι ν βG βφ n Gvh/Ghh

London Clay 2 0.1 0.02 0.0019 0.2 4 3 1 1

Description

Consolidation parameters

Mu
Iteration Max first

Type
Y-Coord Gamma Gd

tolerance strain inc.
(m) (kN/m3)

London Clay 1D 1.143e6 1.4e−4 1.3 0.01 0.001

Table 6.1: Soil parameters for London Clay - single element analysis
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the vertical effective stress gradient with the y-axis. In normal tests this would give an

indication of whether the soil was overconsolidated. The Gamma Gd parameter is the

unit weight of material for calculating the pre-consolidation pressure which was 160kPa

for the current test. For this single element the Y-Coord is set to a very large value

and Gamma Gd to a very small value, giving little variation of the pre-consolidation

pressure vertically through the element.

A downward vertical displacement of 50mm was applied to the nodes along the top of

the element, and the vertical effective stress was recorded at each gauss point. The

decay constant, m, for all SRD Brick tests was set to 1.0386, with a reference strain

rate, ε̇ref, of 1e−13/s. The values of the viscous constant, β, and the time increment,

t, are specified along with the results in Figure 6.3. Figure 6.3(a) shows the predicted

226226

214214

1/ 3

1/ 3

50mm50mm

(a) Stresses using Brick

356356

345345

1/ 3

1/ 3

50mm50mm

(b) Stresses using SRD Brick

t=1day, β=0.1

324324

312312

1/ 3

1/ 3

50mm50mm

(c) Stresses using SRD Brick t=10

days, β=0.1

255255

244244

1/ 3

1/ 3

50mm50mm

(d) Stresses using SRD Brick t=1

day, β=0.023

Figure 6.3: Single element test result comparison
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vertical effective stresses after the applied displacement for the Brick model. The

reference string lengths in the SRD Brick model were set to the same lengths as

those in the Brick model to allow a direct comparison of the results. Figure 6.3(b)

shows higher stresses due to the effects of the SRD model. Upon an increase in time,

the predicted stresses are lower, Figure 6.3(c). Changing the viscous constant to a

lower value also acts to lower the predicted stresses, Figure 6.3(d), these being below

those in Figure 6.3(b) but above those predicted by the Brick model. The results

show that the SRD model is functioning as expected within the Safe finite element

program, but the accuracy of the results also needs to be checked. The only way to

check the accuracy of the results it to compare them to an equivalent Matlab analysis.

Both the Matlab and Safe analyses have been run using the 6 component Brick

model, so the easiest calculated stresses to compare are those of mean effective stress,

p′, which can be directly extracted from the Safe analysis for any gauss point. To

obtain equivalent results as those from Safe, the Matlab analysis had to run through

the same stages. This included the initialisation stage which establishes the stress

history. In this stage a vertical effective stress, σ′

v, of 160kPa was applied to the soil

followed by swelling back to the in-situ stress (p′ = 20.9kPa). In the Matlab analysis

the soil was subjected to a σ′

v of 160kPa using Equation 6.1 to monitor the increase in

σ′

v. This equated to a p′ of 112.5kPa and a shear stress, ty, of 41.1kPa.

σ′

v = p′ +
2ty√

3
(6.1)

The results of the comparison are shown in Table 6.2, where it can be seen that the

Safe results and the predictions by Matlab lie within 1% of each other. The top left

hand gauss point was considered for the purposes of the comparison.

Safe Matlab Difference

Stage p′ (kPa) p′ (kPa) (%)

Initialisation 20.9 20.8 -0.48

50mm displacement applied

Brick prediction 161 162.48 0.92

SRD Brick, t = 1 day, β = 0.1 236 233.69 -0.98

SRD Brick, t = 10 days, β = 0.1 217 216.93 -0.03

SRD Brick, t = 1 day, β = 0.023 179 177.47 -0.85

Table 6.2: Verification of single element test
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Such a close agreement, even though BrickB is sitting in a much more complex environ-

ment, gives a large amount of confidence in the results. The changes to the convergence

of the Brick model that have been implemented into Safe, but not into the simplified

Matlab version, could account for the small discrepancies seen between the results.

From this comparison it can be concluded that the SRD Brick model is functioning

correctly in Safe.

6.4 Case History 1: Jubilee Line Extension

The Jubilee Line extension was one of the largest tube expansions in central London

in recent years. The new lines passed under sensitive existing buildings, justifying the

inclusion of a wide range of monitoring techniques within the construction contract.

This enabled the monitoring of building settlements for safety purposes, with a sec-

ondary purpose of providing high quality data for use in numerical modelling. One of

the most interesting cases was the construction of the twin running tunnels beneath

St James’s Park, a greenfield site where the surface displacements were carefully moni-

tored (Nyren et al. 2001). From previous tunnel constructions a conservative estimate

of 2% was adopted for the design volume loss (Standing & Burland 2006). North of

the lake in the park volume loss was below 2% as expected, but south of the lake the

volume loss was up to 3.3% (Nyren et al. 2001). Volume loss is defined as the volume

of the settlement trough measured at the surface divided by the volume of the tunnel,

Equation 6.2 (Mair 2008).

Vl =
Vs

πD2/4
(6.2)

where:

Vl = volume loss for defining tunnelling efficiency (%),

Vs = volume of transverse settlement trough per metre length of tunnel (m3/m),

D = diameter of tunnel (m).

The soil profile shown in Figure 6.4 consists of four distinct beds, the upper-most of

which is a 4.5m thick layer of Made Ground / Alluvium, overlying a 2.7m thick bed of

Terrace Gravel. Underneath lies a 34.3m thick layer of London Clay, overlying the very

stiff Woolwich and Reading Clay beds. The tunnels themselves have a 4.85m external

diameter with a 200mm thick expanded precast concrete segment lining (Dimmock &

Mair 2007). The fact that the section of the westbound running tunnel south of the lake

experienced the greatest volume loss was possibly a product of the lower than usual
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Figure 6.4: Soil profile and tunnel geometry at St James’s Park, after Addenbrooke

et al. (1997)
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Figure 6.5: Progression of volume loss at St James’s Park, Dimmock & Mair (2007)
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Figure 6.6: Monitoring data from the St James’s Park twin tunnels, Nyren et al. (2001)
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undrained strengths, varying permeabilities and the very rapid rate of advance of the

tunnel face (45m/day), (Nyren et al. 2001). The entire 3.3% volume loss experienced

was assumed to be due to the extraction of material at the tunnel boundary, the

progression of this loss being shown in Figure 6.5. It can be seen that 55% of the

total volume loss was experienced before the face of the tunnel boring machine (TBM)

passed the instrumented section. A further 35% of the volume loss was attributed

directly to the shield passage and the remaining 10% to the installation of the lining.

The surface displacement plots from Nyren et al. (2001) have also been included for

comparison with previous and current work, Figure 6.6.

6.4.1 Previous work

The unexpected volume loss experienced made the St James’s Park twin tunnels an

interesting case to model. Thus much work has gone into attempting to predict the

shape of the settlement trough based on the known volume loss. The first authors to

model the St James’s Park tunnels were Addenbrooke et al. (1997) who used various

isotropic and anisotropic soil models, Table 6.3, to calculate the surface displacements.

The models used accounted for the small strain stiffness of London Clay exhibited in the

laboratory tests done as part of the site investigation. Models J4 and L4 were isotropic,

with AJ4 being anisotropic. In all except two of the models, equations were used to

define the stiffness degradation curve, being trigonometric in the case of models J4 and

AJ4 and logarithmic in the case of L4. In models J4 and AJ4 the straining mode was

directly linked to the reduction in stiffness with the shear strain reducing shear stiffness

and volumetric strain reducing bulk stiffness. In model L4 stiffnesses were reduced

co-axially with increasing shear or volumetric strains. None of the models naturally

accounted for the effect of recent stress history, though model L4 was modified to

generate a high stiffness following a stress reversal to allow the model to approximate

the effect of recent stress history. The surface displacements generated by the various

models are shown in Figure 6.7 where the field data is taken from Standing, Nyren,

Longworth & Burland (1996). Models AJ4i and AJ4ii differ in the stiffness ratio, m′,

where m′ = shear modulus in vertical plane (Gvh) / Young’s modulus in the vertical

plane (Ev
′) and thus controls the shear stiffness of the soil. n′ = Ev

′ / Young’s modulus

in the horizontal plane (Eh
′) and controls the anisotropic stiffness. Table 6.3 gives the

various n′ and m′ values along with the achieved volume loss (Vl), from which it can be

seen that model AJ4ii is significantly less stiff in shear than model AJ4i as the value of

m′ is lower.
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Soil model n′ m′ Vl (%)

Isotropic linear elastic / perfectly plastic - - 1.89

Anisotropic linear elastic / perfectly plastic 0.625 0.444 1.89

Model J4 - - 3.2

Model L4 - - 3.3

Model AJ4i 0.625 0.444 3.2

Model AJ4ii 0.625 0.2 3.2

Table 6.3: Volume loss achieved, Addenbrooke et al. (1997)
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Figure 6.7: Surface settlement profiles for the westbound tunnel: (a) isotropic models;

(b) anisotropic models, after Addenbrooke et al. (1997)
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The plots shown in Figure 6.7 demonstrate the poor fit of both isotropic and anisotropic

linear elastic models when estimating surface displacements above the westbound tun-

nel, being able to achieve only a -2.3mm (11.6% of actual displacement) and -4.5mm

(22.7%) centreline vertical displacement respectively. Models L4 and J4 improved this

estimation generating a -10.5mm (52.8%) and -11.1mm (55.8%) displacement respec-

tively. The stiffer anisotropic model AJ4i generated a -12.5mm (62.8%) displacement

but by far the largest displacement was that of the less stiff anisotropic model AJ4ii

with a -16.6mm (83.4%) predicted displacement. One common trend seen in all the

finite element simulations is the presence of relatively large far-field dispacements. In

Figure 6.7 it can be seen that the field data show very small displacements once a

distance of 40m from the tunnel centreline is reached, whereas the finite element dis-

placement never decreases to a similar level, even at a distance of 52.5m. The finite

element mesh used in the Addenbrooke et al. (1997) analysis is shown in Figure 6.8.

West East

80m80m 102 m102 m

52.5m52.5m

Figure 6.8: Finite element mesh for St James’s Park, Addenbrooke (1996)

Grammatikopoulou et al. (2008) remodelled the St James’s Park tunnels using the

modified 3-SKH model, M3-SKH, described in Section 2.3.3. This kinematic hardening

model incorporates the effects of recent stress history and the small strain stiffness as-

sociated with London Clay. Two scenarios were considered, one without the effects of

creep, allowing the stress history to have an effect on the soil stiffness, and one assuming

that the creep periods have erased any memory of the stress history. The total erasure

of the stress history requires a centralising of the yield and history surfaces around the

current stress state, Figure 6.9.

The predicted stiffnesses for configuration A and configuration B are shown in Fig-

ure 6.10, for both undrained triaxial compression (TXC) and extension (TXE) tests.

The first set of analyses, denoted by the letters ‘sh’ in Figure 6.10, simulated the stress
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Figure 6.9: a) Configuration of the kinematic surfaces at the end of the assumed geo-

logical history for an element of London Clay in the vicinity of the tunnels

b) centring of the kinematic surfaces at the end of the geological history,

Grammatikopoulou (2004)

history shown in Figure 6.9a, before the simulation of the shearing stages. The second

set of analyses, denoted by the letters ‘sh-c’ in Figure 6.10, used the same stress history

but centralised the yield surfaces upon the final stress state, as seen in Figure 6.9b

before shearing. The ‘sh’ tests show the initial stiffness being dependent upon the rota-

tion of the stress path. The TXC test shows a lower stiffness as the most recent stress

history of the soil is also in compression (path BC in Figure 6.9) meaning a low rotation

in the stress path, as demonstrated by Atkinson et al. (1990) in Figure 2.8 on page 11.

In the ‘sh-c’ tests the initial stiffness is equal in both directions as the yield surfaces

have been centralised, as demonstrated by Clayton & Heymann (2001) in Figure 2.10

on page 13.

Grammatikopoulou et al. (2008) conducted two finite element analyses, M3-SKH-1

using the parameters from the ‘sh’ tests and M3-SKH-2 using the ‘sh-c’ parameters.

The parameters for model M3-SKH-1 were derived from tests on reconstituted material

from Canon’s Park (Jardine 1985) which were found to generate a higher stiffness

than that used by Addenbrooke et al. (1997). In the analysis ‘M3-SKH-1 softer’ the

parameters that define the hardening modulus were reduced to match the behaviour

predicted by the Addenbrooke et al. (1997) model. It can be seen in Figure 6.11 that this

softening of the model helps in the estimation of the vertical displacements, increasing

the accuracy of analysis M3-SKH-1 from -13.0mm (65.3%) to -14.6mm (73.4%). As the
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softer parameters improved the estimations, Grammatikopoulou et al. (2008) repeated

analysis M3-SKH-2 using only the softer parameters giving a vertical displacement of

-11.1mm (55.8%). First impressions of the plots would suggest that accounting for the

effect of creep leads to a less accurate estimation of the settlements than an estimation

done without accounting for creep. However it was shown in the tests done by Gasparre

(2005) that the effects of creep after a long stress path caused a high initial stiffness

at very small strains but that the effects of the stress history were still present at

intermediate strains. Thus erasing the entire stress history may not be an adequate

approximation of the effects of creep. The mesh used in the modelling was identical to

that used in Addenbrooke et al. (1997).

6.4.2 Assumptions and mesh

The overall geometry of the finite element model was the same as that used by Adden-

brooke et al. (1997) but instead of being hand drawn the mesh was generated using

Safe’s built in mesh generation algorithm. To generate meshes within Safe the ge-

ometry of the problem must be supplied via a series of defined regions. To help the

algorithm deal with changes in mesh density across the problem and to minimise the

number of geometric anomalies, the number of mesh segments on each edge of a region

can be defined. For modelling the St James’s Park twin tunnels the mesh needed to

be finest in the regions immediately around the tunnel and vertically up to the surface,

hence the large number of defined regions in this area in Figure 6.12.
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Figure 6.12: Regions for Safe mesh generation, St James’s Park twin tunnels

Generating a mesh from these regions gives an output similar to that in Figure 6.8, but

with a higher density of elements around and above the tunnels, as shown in Figure 6.13.

Boundary conditions were applied to the left, right and bottom boundaries, with the

left and right boundaries being fixed horizontally and the bottom boundary nodes being

fixed both horizontally and vertically.
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Figure 6.13: Finite element mesh, St James’s Park twin tunnels

The volume loss was modelled as an undrained process due to the rapid rate of advance

of the tunnel heading. The pore water pressures were taken to be hydrostatic from

the top of the Terrace Gravel bed, as indicated in Figure 6.4. In the Addenbrooke

et al. (1997) and Grammatikopoulou et al. (2008) analyses the method for applying the

volume loss was the ‘volume loss control method’ (Potts & Zdravkovic 2001b), where

the tunnel lining is represented by a series of point loads at the nodes on the perime-

ter of the lining. As these loads are reduced so the volume of the tunnel reduces and

the volume loss is generated. Due to the large amount of tunnel modelling conducted

by Arup Geotechnics another method for introducing volume loss has been developed

specifically for use with Safe. This method involves generating a suction within the

tunnel along with a reduction in the stiffness of the tunnel material to allow a volume

loss to be created.

A parametric study was conducted to assess the effect of the number of nodes on the

perimeter of the tunnel lining, n, on the volume difference due to the approximation,

Figure 6.14. This shows that the % difference in volumes rapidly decreases and is

sufficiently small for n > 40. In the current mesh the perimeter of the tunnel has

been modelled using 48 linear elements which gives a 0.29% volume difference when

compared to a perfectly circular tunnel.

Three main analyses were undertaken to facilitate a comparison between the SRD

model developed in Chapter 5 and other soil models. These analyses used the following

models for the London Clay stratum: Mohr-Coulomb (see Section 2.3.1) as it is still

extensively used in industry for finite element analysis; Brick, to give a benchmark

with which the SRD model can be compared; and SRD Brick.
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Figure 6.14: Parametric study on the effect of number of nodes used to approximate

the tunnel lining

Only the soil model for the London Clay layer was changed between each analysis, with

the Made Ground, Terrace Gravel and Woolwich & Reading beds being represented by

Mohr-Coulomb models. As the behaviour of London Clay is well documented, the use

of a complex soil model that can recreate this behaviour is justified. This is not true for

the other layers in the analysis, with the parameters either being much more variable

(Made Ground) or the contribution to the result simply not great enough to warrant a

complex model (Woolwich & Reading Beds).

Constant model parameters

The parameters for the Made Ground / Alluvium, Terrace Gravels and Woolwich &

Reading beds, as used by Addenbrooke et al. (1997), are given in Table 6.4. As the

Woolwich & Reading beds were deemed to have a minimal effect on the surface displace-

ments, a c′ value of 200kPa was assumed for the layer. The Made Ground / Alluvium

layer was assumed to have a dilation angle of 0◦ to represent the loose nature of the

soil.
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Made Ground Terrace Woolwich and

/ Alluvium Gravel Reading Beds

Strength parameters c′ = 0 kPa c′ = 0 kPa c′ = 200 kPa

φ′ = 35.0◦ φ′ = 35.0◦ φ′ = 27.0◦

Angle of dilation (v′) 0◦ 17.5◦ 13.5◦

Bulk unit weight, kN/m3 γdry = 18 γsat = 20 γsat = 20

γsat = 20

Young’s modulus, E′, (kPa) 5000 6000z 6000z

Poisson’s ratio, ν 0.3 0.2 0.2

Earth pressure coefficient, K0 0.5 0.5 1.5

Note: z is the distance below the ground surface in metres

Table 6.4: Constant model parameters - St James’s Park, Addenbrooke et al. (1997)

The analysis was initialised in drained conditions to allow the dissipation of excess pore

water pressures throughout the soil. At the end of the initialisation run the strains were

reset to zero so they had no influence on the subsequent output. Safe modelled the

overconsolidation in this initialisation using specified K0 and g values where g defines

the profile of the initial vertical effective stress with depth and is equal to:

g = y + (σ′

v/(γsat − γw)) beneath the water table and

g = y + (σ′

v/γdry) above the water table (6.3)

where:

y = ordinate of any point in the zone,

g = intercept of the effective stress line on the y-axis.

g is a constant for each material zone, provided the ground surface is horizontal and

there are no variations of overburden pressure across the zone (Oasys 2006). The

principles of the g values are illustrated for the current analysis in Figure 6.15.

6.4.3 Mohr-Coulomb analysis

The Mohr-Coulomb model is a widely used soil model in commercial finite element

analyses, due to the ease of obtaining parameters from a site investigation and inter-

preting results. It was decided to analyse the St James’s Park twin tunnels using a

Mohr-Coulomb model for the London Clay to allow a comparison between the results

obtained with this model and those generated by more complex models.
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Figure 6.15: Calculation of g for St James’s Park

The problem was initialised with the parameters from Table 6.4 along with the drained

London Clay parameters from Table 6.5, after which the displacements were reset to

zero and the London Clay layer changed to undrained. The volume loss was introduced

by changing the material inside the tunnel boundary to a drained linear elastic material

with a reduced stiffness and applying a negative pore water pressure to this material

to force a volume change.

London Clay

Drained Undrained

Strength parameters c′ = 0 kPa
c = 150 kPa

φ′ = 25.0◦

Angle of dilation (v′) 12.5◦ -

Bulk unit weight, kN/m3 γsat = 20 γsat = 20

Young’s modulus, (kPa) E′ = 6000z Eu = 6000z

Poisson’s ratio, ν 0.2 0.498

Earth pressure coefficient, K0 1.5 1.5

Note: z is the distance below the ground surface in metres

Table 6.5: Mohr-Coulomb parameters for London Clay - St James’s Park

An iterative approach is required to calculate the correct amount of volume loss at

the surface based on the suction and reduction in stiffness applied to the linear elastic

material of the tunnel. As this process is occurring under undrained conditions in the

London Clay layer, the volume loss at the surface is assumed to equal the volume loss at

the tunnel boundary. Volume losses within the drained layers above the London Clay
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Figure 6.16: Tunnel geometry comparison

are assumed to be negligible, which can be confirmed in the analysis by checking the

volumetric strains. As the tunnel shape is specified in the mesh before the initialisation

stage takes place, the exact shape and volume of the tunnel could change during this

stage. Figure 6.16(a) shows a comparison between the tunnel geometry as specified in

the mesh and the geometry extracted after the initialisation. It can be seen that neg-

ligible deformation occurred during the initialisation. For accuracy, instead of basing

the volume loss on the area of a perfect circle as is done in Equation 6.2, it was based

on the exact volume of the tunnel prior to the excavation taken from the mesh geom-

etry. For the Mohr-Coulomb modelling the volume loss at the tunnel (Figure 6.16(b))

was 3.25% while the volume loss at the surface (seen in Figures 6.17(a) and 6.18) was

calculated to be 3.28%. The volumetric strains within the surface layers were found

to be negligible and therefore the assumption that the volume loss at the surface was

equal to that at the tunnel boundary under undrained conditions was confirmed. The

surface volume loss was calculated using the trapezium rule applied to the vertical dis-

placement at each node over the entire surface boundary. The volume loss that occurs

after the excavation was seen as outside of the scope of the current analysis

The contours of predicted vertical displacement are shown in Figure 6.17(a). As the

site is greenfield and the strata have been modelled as horizontal, the displacements are

symmetrical about the westbound tunnel centreline. By re-plotting the data from the

179



6. Finite Element Modelling

-1 -2 -3 -4 -5 -6 -7 -8 -9 -1-2-3-4-5-6-7-8-9

LC

W&R

MG

(a) Contours of vertical displacement, units in mm

1 2 3 4 65 7 -1-2-3-4-6 -5-7

LC

W&R

MG

(b) Contours of horizontal displacement, units in mm

Figure 6.17: Displacement contours for the Mohr-Coulomb analysis of St James’s Park
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Figure 6.18: Surface displacement plot for the Mohr-Coulomb analysis
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nodes along the surface boundary the settlement trough can be visualised, Figure 6.18.

The maximum displacement was -9.3mm (46.7%) which shows there is much room

for improvement. The Mohr-Coulomb analysis predicts a far wider settlement trough

than is seen in the field, leading it to predict a lower centerline vertical displacement

for the same volume loss. The horizontal displacement plot (Figure 6.17(b)) shows a

similar width of displacement field. Due to their high stiffness and cohesion, very little

movement is predicted within the Woolwich and Reading beds.

6.4.4 BRICK analysis

The next stage in the modelling was to use the Brick model and re-run the analysis

completed in Section 6.4.3. As Brick accounts for the effect of the recent stress his-

tory on the soil, parameters need to be fed into Safe to allow for this to be correctly

modelled, included in Table 6.6. The same assumption for the initial thickness of the

London Clay layer, namely 200m, has been made as in Section 4.7. As the remaining

London Clay layer is 34.3m thick, this would imply a removal of 165.7m of overburden.

For the Brick string lengths and soil proportions, the parameters presented in Kanap-

athipillai (1996) have been used as they were developed for use in London Clay based

on back analysis of the Heathrow Express trial tunnel, Table 6.7.

BRICK parameters used in Section 6.4.4

Description Theory λ* κ* ι ν βG βφ n Gvh/Ghh

London Clay 4 0.1 0.02 0.0019 0.2 4 3 1 1

Description

Consolidation parameters

Mu
Iteration Max first

Type
Y-Coord Gamma Gd

Tolerance strain inc.
(m) (KN/m3)

London Clay 1D 165.7 20 1.3 0.01 0.001

Table 6.6: Brick soil parameters for London Clay - St James’s Park analysis

Unlike the Mohr-Coulomb model, Brick is able to model the stress history of the soil,

which forms the initialisation stage. In this stage, Safe first applies the preconsolida-

tion vertical stress to the Brick modelled layer. This is then removed and the soil

is swelled back to the in-situ vertical stress as defined by the mesh. The initialisation

stage enables future stages to start with the correct brick positions and hence, estima-

tions of K0. The predicted non-linear K0 with depth profile can be seen Figure 6.19.
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London Clay

String String Length G/Gmax

1 3.040e−5 0.92

2 6.0863e−5 0.75

3 1.0143e−4 0.53

4 1.2106e−4 0.29

5 8.200e−4 0.13

6 0.00171 0.075

7 0.00352 0.044

8 0.00969 0.017

9 0.02223 0.0035

10 0.0646 0

Table 6.7: Brick string parameters for St James’s Park
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Figure 6.19: Brick predicted K0 profile
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Figure 6.20: Mohr-Coulomb and Brick tunnel geometry comparison

The volume loss generated during the Mohr-Coulomb analysis caused the tunnel bound-

ary to contract equally in all directions, Figure 6.20(a). When the analysis was re-run

using the Brick model the movements became greater at the crown of the tunnel and

smaller at the invert and the sides, Figure 6.20(b). This shows that Brick predicted

a different deformation pattern leading to higher vertical displacements for the same

volume loss.

The displacement contour plots for the Brick analysis in Figure 6.21 show a slightly

narrower concentration of displacements when compared with the Mohr-Coulomb plots

in Figure 6.17. This leads to a more concentrated surface settlement trough as seen in

Figure 6.22. The maximum vertical displacement for the Brick analysis was -12.9mm

(64.8%). The horizontal displacements in Figure 6.21(b) show an upwards vertical shift

when compared with the Mohr-Coulomb predictions in Figure 6.17(b), indicating that

more horizontal movement is being generated above the tunnel than below. This fits

with the predicted movement of the tunnel boundaries, Figure 6.20. These results show

that the modelling of the stress history in an advanced soil model can serve to increase

the accuracy of predictions completed using finite element analysis.
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Figure 6.21: Displacement contours for the Brick analysis of St James’s Park
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Figure 6.22: Surface displacement plot for the Brick analysis
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6.4.5 SRD BRICK analysis

The SRD Brick analysis utilised the same initial conditions as the Brick analysis but

with a modified set of string lengths (Table 6.8) and a set of rate parameters (Table 6.9).

Due to the disparity between the practical (Kanapathipillai 1996) and laboratory (cal-

ibrated from Gasparre (2005)) string lengths it was decided to use the practical string

lengths which are known to give accurate predictions in real problems. Based on the

lack of calibration data for the string length reduction, the assumption that the initial

string lengths are halved due to the effects of creep was made (Kanapathipillai 1996).

London Clay

String String length G/Gmax

1 1.52e−5 0.92

2 3.04315e−5 0.75

3 5.0715e−5 0.53

4 6.053e−5 0.29

5 4.1e−4 0.13

6 8.55e−4 0.075

7 0.00176 0.044

8 0.004845 0.017

9 0.011115 0.0035

10 0.0323 0

Table 6.8: SRD Brick string parameters for St James’s Park

The rate parameters remained unchanged from the analyses run on the Gasparre (2005)

tests in Section 5.4.2. The only additional parameter required is the duration over

which the volume loss occurred. From Figure 6.5 it is known that the total volume loss

occurred during a tunnel face advance of approximately 32m. With the rate of advance

of the TBM being around 45m/day, the duration of the volume loss worked out to be

0.711 days.

Parameter Value

Time decay constant, m 1.0386

Reference strain rate, ε̇ref 1e−13/s

Viscous constant, β 0.23

Time increment, days 0.711

Table 6.9: SRD Brick rate parameters for St James’s Park
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The model was initialised in the same way as was done in the Brick analysis, except

using the shorter string lengths. This was to account for the long creep period associ-

ated with the geological stress history, with the result that at the time the tunnel was

constructed, the strings were at their shortest. As the strain rate during the geological

period is unknown and sufficient time has elapsed, it is far easier to ignore the lengthen-

ing and shortening of the strings during the geological history and simply model it with

the shortest string lengths. There would be no predicted difference in the subsequent

soil behaviour as a result.
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Figure 6.23: SRD Brick and Brick tunnel geometry comparison

After the volume loss had been introduced the deformed tunnel boundaries for the SRD

Brick and Brick analyses were compared to assess where the movements were taking

place, Figure 6.23. There is only a marginal difference, with the displacement at the

crown of the tunnel for the SRD Brick analysis being greater and the displacements

at the sides and the invert being reduced. A further analysis of these trends will be

conducted in Section 6.4.6.

The displacement contours are shown in Figure 6.24 and show a further reduction in

the width of the displacement field for both horizontal and vertical displacements. This

reduction in width allows the SRD Brick model to predict a deeper surface trough

than the Brick model for the same degree of volume loss. The maximum displacement

seen in Figure 6.25 is -17.25mm (86.7%).
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Figure 6.24: Displacement contours for the SRD Brick analysis of St James’s Park
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Figure 6.25: Surface displacement plot for the SRD Brick analysis
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6.4.6 Discussion

A comparison between the displacement plots for the three soil models and the field

data from Nyren et al. (2001) is presented in Figure 6.26. The maximum settlements

for each model have been inserted into Table 6.10. Whilst the increasing complexity

of the models increased the accuracy of the settlement trough, it was still not possible

to create the same magnitude of settlement as seen in the field. One reason for this

could be the relatively large far field displacements in the finite element analyses which

reduce the depth of the trough centre. Extensive finite element meshes are, of course,

recommended in order to attempt to reduce the boundary effects. The displacements

are more localised in the SRD Brick predictions due to the viscous effects leading to

an increased capacity for elastic strains which act to dissipate the applied volume loss

over a smaller area.

Maximum vertical Predicted/

Analysis model displacement, mm field (%)

Field data -19.9 -

Mohr-Coulomb -9.3 46.7

Brick -12.9 64.8

SRD Brick -17.25 86.7

Table 6.10: Maximum vertical displacements for St James’s Park

The horizontal displacement and strain are also plotted for comparison with the field

data. Again the improvement between models can be seen, but the correct magnitudes

are not predicted. The field data suggests much larger displacements and strains than

are predicted by the current modelling. One interesting feature seen in the field data

for the horizontal displacements, Figure 6.26(b), is the lack of symmetry about the

centreline of the westbound tunnel, whereas the finite element analyses all predict a

symmetrical response. The lack of symmetry in the field data could be a product of

asymmetric ground conditions on the site.

To show the propagation of the displacements from the tunnel the vertical displace-

ments were plotted along the centreline of the westbound tunnel from the surface to

the outer boundary of the tunnel, Figure 6.27(a). It can be seen that the displacements

increase towards the tunnel from the predicted surface displacement to a maximum at

the crown of the tunnel. From the results plotted by Addenbrooke et al. (1997) values

of between 43 and 57mm were predicted at the tunnel boundary. The Mohr-Coulomb
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(b) Horizontal displacement plot comparison
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(c) Horizontal strain plot comparison

Figure 6.26: Surface comparison plots for St James’s Park
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Figure 6.27: Propagation of displacements analysis of St James’s Park
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analysis result falls within this band with a tunnel movement of 45mm, but the Brick

and SRD Brick models predict much larger movements, 77 and 80mm respectively.

The horizontal displacements plotted are from the horizontal centreline of the tunnel

at a depth of 30.5m beneath the surface, Figure 6.27(b). The far-field displacements

are very small, increasing to a maximum at the tunnel boundary. Addenbrooke et al.

(1997) predicted values of between 37 and 44mm at the tunnel boundary. In this case

the current modelling lies much closer to that done by Addenbrooke et al. (1997) with

the Mohr-Coulomb model predicting a 43 mm displacement, and the Brick and SRD

Brick models predicting a 32 and 42mm displacement respectively. One interesting

thing to note about the Brick and SRD Brick predictions is the cross-over at 9m

from the tunnel centre, with the SRD Brick model predicting a higher horizontal dis-

placement before and lower after when compared with the Brick model.

A number of assumptions or approximations have had to be made to enable the current

modelling, these include:

� a linear applied strain rate with time relationship, during tunnel construction;

� the use of a 2D analysis to model what in reality is a complex 3D problem;

� halving the string lengths for the SRD Brick analysis;

The volume loss was modelled as occurring in a single stage and linearly with time.

When compared with the plot of volume loss with tunnel heading progress in Fig-

ure 6.5, this can be seen to be a fair approximation. Little extra benefit would be

gained by attempting to model the non-linear relationship measured in the field.

Tunnelling analyses are complex 3D problems, with the volume loss being attributable

to varied mechanisms. The approximations of the 2D analysis may limit the ability

to model the details of tunnel excavation and construction, such as the progression of

the heading and installation of the lining behind the TBM, but for the purposes of

predicting the surface displacements the current analysis may be thought acceptable.

The assumption that the string lengths are halved by the effects of creep has yielded

good results in St James’s Park analysis. Back-analysis of a such a complex factor

such as the string lengths would probably yield more accurate results in the current

analysis, but the applicability of the back-calculated values to other analyses such as

those in Section 6.5 would be harder to justify, without further back-analysis. With
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further laboratory testing of the strain rate dependency of the stiffness degradation

curve for London Clay, this assumption could be eliminated. To assess the sensitivity

of the SRD Brick analysis to the reduction in the string lengths a parametric study

was conducted. This involved re-running the SRD Brick analysis with different string

lengths, varying from 20% of their normal length (Table 6.7) upto 100% of their usual

length.
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Figure 6.28: Parametric study into the effect of the string length on the predicted

surface displacements for St James’s Park

It can be seen in Figure 6.28 that although the string lengths used do make a difference

to the settlements predicted, the effects are not as great as those generated by the

inclusion of viscosity. This can be seen by comparing the Brick predictions with the

SRD Brick predictions. The parametric study shows that the current analyses are

relatively insensitive to changes in the string length, with the predictions lying within

+4.4% and -8.1% of the settlement calculated with the string lengths halved.

The modelling of the tunnel lining, long term behaviour of the tunnel and the modelling

of the eastbound tunnel were seen as outside the scope of the research and have not

been taken into account in the current analysis.
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6.5 Case History 2: Horseferry Road

At Horseferry Road a deep basement was constructed in London Clay and the heave of

the basement was measured for a period of 21 years, which makes it one of the longest

case histories of its type. Although the monitoring information is relatively limited, the

analysis of the excavation is still deemed of value due to the long period of monitoring

and possible interplay of primary and secondary swelling effects.

6.5.1 Background

Excavation of the basement began in June 1966 and was completed in November 1967.

The basement was completed to ground level in May 1968. Due to unforeseen cir-

cumstances the superstructure was never completed and the site lay derelict (but still

monitored) until June 1989, at which point the site was redeveloped. The location of

the site can be seen in Figure 6.29, with the analysed section shown in Figure 6.30

and also marked on the site plan. The monitoring data from the first five years was

published by May (1975) and can be seen in Figure 6.31. Before the redevelopment was

started, a ground investigation was carried out in February 1989. The ground investi-

gation showed a scour hollow to lie partially beneath the site. SPT results from the

hollow showed the gravel towards the base of the hollow to be loose to medium dense

(Chapman 1999). The relevant borehole information from the 1989 site investigation

has been placed onto the section where appropriate. The location and extent of the

scour hollow can be clearly seen beneath the west diaphragm wall. Figure 6.31 shows

the heave data presented in May (1975) along with the associated initial displacement

predictions based on an earlier site investigation using one-dimensional swelling theory.

The locations of the monitoring points are shown on the site plan (Figure 6.29).

6.5.2 Assumptions and mesh

Details about the temporary prop arrangement for the basement construction are not

available. Fortunately the locations of the temporary props are not of present concern

as they are of importance for the behaviour of the wall during construction, rather than

the behaviour of the soil during the long heave period.

Figure 6.32 shows a diagrammatic section through the basement. The exact locations

of the columns within the basement are unknown so to allow the finite element model

to account for the sub-structure, a pressure load equivalent to the weight of the floor

slabs within the basement was applied to the basement slab. This pressure was taken
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Figure 6.29: Horseferry Road site plan, after Chapman (1999)
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Figure 6.30: Site section showing relevant borehole information, Chapman (1999)
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Figure 6.31: Original heave data with initial predictions, May (1975)

Figure 6.32: Diagrammatic section of the basement, May (1975)
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Figure 6.33: Finite element mesh for Horseferry Road

to be 48.2kN/m2, as stated in May (1975).

Figure 6.30 shows the geometry of the soil layers as indicated by the borehole logs.

These have been adopted into the mesh geometry as seen in Figure 6.33. It was shown

previously (Section 6.4.3) that the Mohr-Coulomb model is not able to accurately pre-

dict the behaviour of London Clay and it has therefore not been used in the modelling

of the London Clay layer in the Horseferry Road analysis. The parameters for the

Terrace Gravel are different to those used in the St James’s Park analysis, due to the

presence of the scour hollow in the 1989 site investigation, and are given in Table 6.11.

Due to the lack of previous test data, conservative values have been adopted for the

Alluvium and Made Ground.

Made
Alluvium

Terrace

Ground Gravel

Strength parameters c′ = 0 kPa c′ = 0 kPa c′ = 0 kPa

φ′ = 25.0◦ φ′ = 25.0◦ φ′ = 38.0◦

Angle of dilation (v′) 0◦ 0◦ 0◦

Bulk unit weight, kN/m3 γdry = 18 γdry = 20 γdry = 20

γsat = 20

Young’s modulus, E′, (kPa) 1500 4500 4500

Poisson’s ratio, ν 0.2 0.2 0.2

Earth pressure coefficient, K0 0.561 0.561 0.384

Table 6.11: Mohr-Coulomb parameters for the Horseferry Road analysis

The London Clay layer was modelled using the Brick model with the same parameters

as were developed in Section 6.4. The only parameter not used in the undrained analyses

in Section 6.4 was the permeability of the London Clay layer, which has a large impact
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on the development and dissipation of excess pore water pressures and, hence, heave.

Different approaches to permeability were initially modelled, including permeability

dependent on depth, on mean stress and constant permeability. Full details of the

analyses are given in Appendix D.2.2, but only the results with permeability varying

with mean stress are discussed here. The permeability of the soil was governed by

Equation 6.4 (Potts & Zdravkovic 2001a).

k = k0e
(−ap′) (6.4)

where:

k = permeability of the soil,

k0 = minimum soil permeability,

a = material constant.

This permeability relationship was most critical in the areas of London Clay which were

directly below the level of the finished basement slab. During typical analyses with k

decreasing with depth the excess pore water pressures generated are not sufficiently

dissipated during the construction period. This can lead to the generation of negative

effective stresses due to the high excess pore water pressures. Equation 6.4 increases

the permeability in these areas as the mean stress reduces, so that the build up of

excess pore water pressures higher than the total vertical stress can be avoided. By

back analysis from the permeability values used in Addenbrooke et al. (1997) the a

parameter was calculated to be 0.0104 for a k0 value of 1e−8m/s.

It was explained in Section 6.4.2 that the parameter g used in the Safe program re-

lates to the intercept of the effective stress profile for the stratum with the y-axis . The

values of g for the Horseferry Road model are given in Figure 6.34, with the profile

being at the western extreme of the section shown in Figure 6.30.

The concrete diaphragm walls and basement slab were modelled as linear elastic mate-

rials with a Young’s modulus of 16GPa and a Poisson’s ratio of 0.2. Temporary props

were added at the top of the diaphragm walls after the first excavation stage. The

concrete was modelled as a no-flow drainage boundary.

The construction of the deep basement at Horseferry Road took place over a 17 month

period, so the excavation of the basement could not be assumed to take place under

undrained conditions. Thus a coupled consolidation analysis was utilised during the
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Figure 6.34: Calculation of g for Horseferry Road

Stage description Duration (days) Steps Cum. time (days)

Initialisation 0 1 0

C
on

st
ru

ct
io

n

Installation of basement walls 120 4 120

Excavation stage 1, +0.5m 120 4 240

Installation of temporary props

Excavation stage 2, -3.0m 120 4 360

Excavation stage 3, -5.0m 60 3 420

Excavation stage 4, -6.5m 60 3 480

Cast base slab 30 3 510

M
on

it
or

in
g

March 1968 heave 180 6 690

March 1969 heave 360 6 1050

March 1973 heave 1460 10 2510

March 1980 heave 2555 7 5065

March 1990 heave 3650 10 8715

Table 6.12: Horseferry Road finite element model stage analysis
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construction phase, as well as during the monitoring period for the London Clay layer.

The upper layers were taken to be drained throughout. The various stages used in the

finite element analysis are given in Table 6.12. The boundary conditions for the mesh

are shown in Figure 6.33. The edges of the mesh were modelled as no-flow boundaries.

6.5.3 BRICK & SRD BRICK analyses

The stage sequences were followed as shown in Table 6.12. The parameters for the

Brick and SRD Brick models were the same as those given in Sections 6.4.4 and

6.4.5. As the monitoring data for Horseferry Road was limited, the main aim of the

analysis was to predict the heave displacements correctly. Although pore pressures

underneath the basement were not monitored during the construction or afterwards,

the predicted pressures will be presented to compare the effects of the Brick and SRD

Brick models. Figure 6.35 shows a comparison of the pore water pressures developed

during the construction sequence. It can be seen that for both the Brick model (Fig-

ure 6.35(a)) and the SRD Brick model (Figure 6.35(b)) the maximum excess pore

water pressures are developed directly beneath the base slab, in the London Clay layer.

To show the build up and dissipation of excess pore water pressure in this region, the

pore pressures at point A shown in Figure 6.35(a) have been plotted with time in Fig-

ure 6.36.

As the basement was excavated the vertical stress in the soil was lowered and the Lon-

don Clay layer tended to swell. This led to negative pore pressures being developed

in the soil closest to the base of the excavation, as the construction continued, as seen

in Figure 6.36. The predictions for both the Brick and SRD Brick models displayed

a similar trend. The Brick model predicted a faster decrease in pressure and a mini-

mum pressure of -28.5kPa, compared with the slower decrease and minimum pressure of

-10.9kPa predicted by the SRD Brick model. Once the basement slab was completed

and the load of the basement substructure was applied, the pore pressures dissipated

as the soil heaved. The Brick model predicted a rapid increase in pore pressure over

the first 6 months of the monitoring period. The increase then decayed, reaching pre-

construction levels after 81 months (Figure 6.36).
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Figure 6.35: Contours of pore water pressure immediately after the basement slab
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Figure 6.36: Change in pore pressure with time at Point A
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Figure 6.37: Contours of resultant displacement for March 1990

The SRD Brick model displays the same sharp increase in pressures during the first 6

months, but the following decay is much slower than that shown by the Brick model,

due to the secondary swelling effects predicted by the SRD Brick model. This con-

tinued swelling generates small excess pore water pressures which is why the predicted

excess pore water pressures in Figure 6.36 never reach zero.

Figure 6.37 shows a comparison of the resultant displacements generated during the

21 year heave period. It can be seen that both Brick and the SRD Brick model

predict the same location of the maximum displacement, which as would be expected

is the same location as the maximum excess pore water pressure shown in Figure 6.35.

The displacements are concentrated across the basement slab (Brick 110mm, SRD

Brick 160mm) with a relatively small amount of heave predicted at the diaphragm

walls (Brick & SRD Brick 40mm). The SRD Brick model predicts a much higher

concentration of contours across the basement slab. A similar increased concentration

was also seen when modelling the St James’s Park tunnels in Section 6.4.

The propagation of the maximum heave displacements with time is shown in Figure 6.38.

The predictions for the very early heave (1 month) are almost identical for both mod-

els, with the Brick model then predicting a more rapid heave than the SRD Brick

model. As the heave in the Brick model is directly tied to the excess pore pressures
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Figure 6.38: Heave predictions starting from September 1967

that exist below the basement slab, the rate of heave dramatically slows around the

81 month point, at which the excess pore pressures were almost completely dissipated

(Figure 6.36). As the SRD Brick model is able to take into account creep, the heave

displacements continue even after 90% of the excess pore pressures have dissipated,

leading to a much higher predicted displacement. The time origin for the data pre-

sented in Figure 6.38 is taken to be the end of the construction of the basement slab,

September 1967.

For the purposes of comparison the field data for Point 5 (Figure 6.31) are taken to

be comparable to the maximum heave displacements across the finite element section

(Figure 6.38). The field monitoring of heave started in March 1968, 6 months after the

basement slab was completed. Thus to enable a comparison between the finite element

predictions and the field data, the predicted displacements were reset to zero after 6

months, Figure 6.39. The field data was taken from both May (1975) and Chapman

(1999), and is indicated accordingly.
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Figure 6.39: Comparison of heave predictions with field measurements

6.5.4 Discussion

Horseferry Road was seen as a valuable case history due to the long period over which

heave displacements were monitored, although the monitoring was limited solely to

these displacements. The use of both the Brick and SRD Brick models allows the

net effects of secondary swelling to be seen. Approximations or assumptions have had

to be made in the modelling specifically in regard to the:

� temporary prop arrangement used during construction;

� parameters used for the strata overlying the London Clay layer (these were devel-

oped in conjunction with Arup Geotechnics);

� permeability model used for the London Clay layer;

� stiffness of the concrete used for the basement;

� reduction in the string lengths.

The temporary prop arrangement and the overlying strata parameters were seen as less

important to the long term heave behaviour of the London Clay, than to behaviour

during the construction process. As previously mentioned in Section 6.5.2, several dif-

ferent variations of the permeability model for the London Clay were tried, details of
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which are given in Appendix D.2.2. The chosen model utilises a stress dependent per-

meability to increase the permeability below the excavation, eliminating the generation

of negative effective stresses. The permeability data from Addenbrooke et al. (1997)

was used to calibrate the model due to the lack of site measurements from Horseferry

Road. Future work could explore the sensitivity of the predictions to the stiffness of

the concrete used in the basement slab, but this was outside the scope of the current

work. The string lengths for the SRD model were assumed to be half the length of

those used in the Brick model as discussed previously in Section 6.4.6.

Heave Predicted/

Model displacement field

Field data 102.9 mm -

Brick 69.7 mm 67.7%

SRD Brick 120.6 mm 117.2%

Table 6.13: Comparison of predicted heave displacements

The comparison of the predicted displacements to the field data (Figure 6.39) shows the

large effect that creep can have on the long term behaviour of London Clay. Wherever

possible, accurate predictions are desired but, where the predictions do not match the

observed behaviour, it is better to over-predict rather than under-predict. This will

lead to a conservative design, rather than an unconservative one. Table 6.5.4 shows

that the Brick model under-predicts the heave displacements by 32.3% whereas the

SRD model over-predicts the displacements by 17.2%. The SRD Brick analysis shows

a very close fit to the field data for the first 14 years (132 months) with the predictions

gradually diverging towards the 21 year mark. Further calibration of the string lengths

used in the SRD Brick model could lead to predictions even closer to the field data,

but currently the data to allow this calibration do not exist. Stress path tests measuring

the stiffness degradation curve at a constant rate of strain would allow the calibration

of the string lengths in the SRD Brick model.
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7.1 Introduction

The main aim of the current work was to introduce viscous effects into the Brick

constitutive model. The newly developed SRD Brick model is able to demonstrate

isotach strain rate behaviour, as well as time dependent effects such as creep and stress

relaxation. The key points and conclusions have been drawn out of the work, and

the following four sections aim to summarise these findings. Ideas for future work are

presented in the final section.

7.2 The BRICK Model

The formulation and development of the Brick model was discussed in Chapter 3. The

parameters for both the two and three-dimensional models were introduced, along with

their formulation and the derivation of other geotechnical parameters such as those

used in triaxial testing.

The analogue of the Brick model (Simpson 1992b) was used to explain the more

complex aspects of soil behaviour such as the small strain stiffness and effects of re-

cent stress history. This included demonstrative and computed brick paths plotted in

strain space, with axes of volumetric and shear strain. The stress paths predicted by

the Brick model were explained using the positions of the bricks relative to the man.

During undrained shearing, a reduction in the mean stresses indicates that the bricks

were initially at a lower volumetric strain in strain space than the man. Conversely,

an increase in mean stress indicates that the bricks were at higher volumetric strain

than the man, indicating an overconsolidated deposit. The stress path predicted during

undrained shearing is a unique product of the positions of the bricks relative to the man.
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Work done to see if a unique critical state line could be simulated, involved running

a number of undrained shear tests on both lightly and heavily overconsolidated soil.

This showed that the Brick model does not predict the dilative behaviour required

to satisfy the critical state framework. When the Brick predictions during undrained

shear with varying overconsolidation ratios were compared with the physical test results

from Sketchley & Bransby (1973) a similar pattern was found. Often overconsolidated

samples fail on the dry side of the critical state line due to the localisation of the strains.

7.3 Bricks on Ice

Chapter 4 reported initial attempts at modifying the Brick model to incorporate vis-

cous effects. The work of Den Haan (2001) was first recreated in a Matlab translation

of the Brick model. Den Haan (2001) accounted for the effects of creep by allowing

the bricks to continue their previous motion into the next Brick increment, but at a

logarithmically decreasing rate. This concept was named ‘Bricks on Ice’. The original

brick deceleration formula was changed to reflect the need for co-axial viscous effects

which was explained in Section 4.4. From a comparison of the original work presented

in Den Haan (2001) and the present recreation, it was clear that the theory had been

interpreted correctly and that model had been correctly implemented. Modifications

to the deceleration model were seen to correct the minor overshoot of the NCL seen in

the swelling and recompression test.

The term stress relaxation, in an oedometer test, refers to the reduction of stresses

at a constant volumetric strain, which is known to occur after a period of compres-

sion. Den Haan (2001) noted that after a period of swelling the direction of creep

effects changed leading to an increase in stresses at constant volumetric strain. This

behaviour was termed ‘strain fixation’ by Den Haan (2001) and was successfully pre-

dicted by the Bricks on Ice model.

A series of tests was conducted on the Bricks on Ice model to assess the effect the

model had on the native Brick behaviour and its suitability for use in the finite ele-

ment program Safe. These tests were: swelling and recompression, undrained shearing

of normally consolidated soil, undrained shearing with varying overconsolidation ratios,

undrained shearing with a holding period prior to shearing and virgin creep tests. The

results showed that the Bricks on Ice model was able to recreate the increase in stiffness

due to the effects of creep, but that this also led to a change in gradient of the normal

consolidation line. This change in gradient is caused by the effect of the continued
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motion of the bricks during one-dimensional or isotropic compression.

Modifications were made to the Brick model to rectify the Bricks on Ice model’s inabil-

ity to generate parallel isotache lines. This was a manual modification which, although

it successfully managed to generate isotach behaviour, involved manipulation of the

initial brick positions, which is not a fundamental solution to the problem. The mod-

ified brick positions allowed the recreation of CRS parallel isotache lines, but would

not be able to predict the behaviour seen in SRS tests due to the lack of strain rate

dependency in the Bricks on Ice model.

The Bricks on Ice model was then used to simulate the tests conducted by Gasparre

(2005) which investigated the effects of creep on the recent stress history. It was shown

in the physical modelling that creep was able to erase the effects of the recent stress

history, following short approach paths (within the Y2 yield surface). However, for

long approach paths (engaging the Y2 yield surface), although the initial stiffness was

controlled by the effects of creep, the stiffness during the intermediate strains was still

seen to be governed by the recent stress history. The Bricks on Ice simulations were

able to recreate the effects of creep on the stiffness response seen in the physical tests,

at intermediate and large strains. With creep allowed, the Bricks on Ice model consis-

tently predicted a higher stiffness in the low stress path rotation test than in the high

stress path rotation test, which was unrealistic. This was caused by the direction of

the continued motion of the Bricks.

The dimensionless creep constant in the Bricks on Ice approach is a very difficult pa-

rameter to calibrate, needing data for the creep rate degradation with time. The model

also assumes that the soil follows a logarithmic decay in strain rate with time, which is

the case for London Clay (Singh & Mitchell 1968) but may not be the case for all soils.

7.4 Strain Rate Dependent String Lengths

The concept of strain rate dependent string lengths was proposed by Sorensen (2006),

who saw the concept as a method of introducing the effect of strain rate into the

Brick model. By allowing the current strain rate to dynamically effect the length

of the strings, Sorensen (2006) realised that the current stress level could be varied.

Increasing the length of the strings would give rise to a increase in elastic strains and

a step increase in stress. Conversely decreasing the string lengths reduces the elastic
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capacity a hence leads to a step decrease in stress. The concept was purely theoretical,

being implemented for the first time in the current work.

In Chapter 5 a framework was developed to allow strain rate effects to be combined

with effects of time dependency. Within the framework, for any given strain rate above

a reference strain rate, a unique isotache line was predicted. Upon a change in strain

rate a step change in isotache line was predicted as seen in the tests by Leroueil et al.

(1985). The reference strain rate was defined as the rate at which both time and strain

rate effects are negligible, equal to 1e−13-/s or a decay period of approximately 32 years.

The different forms of mathematical law that could be used to govern the strain rate

dependency of the string lengths were explored, with the employed form being that pro-

posed by Sorensen (2006). On its own, the strain rate law predicts instantaneous jumps

between strain rate isotache lines. While this may be a satisfactory approximation for

high strain rates, allowing the model to jump to a 1e−13-/s isotache would preclude

modelling of time dependent effects.

To allow the framework to to correctly account for increases in time, the rate at which

the model could change between the strain rate isotache lines was governed by a sep-

arate time dependent function. This function took the form of the logarithmic decay

function proposed by Singh & Mitchell (1968). With both models in place within the

framework, both strain rate and time dependent behaviour could theoretically be pre-

dicted.

There were two possible approaches for the implementation of the framework with the

Brick model. The distinguishing feature was what defined the current rate of strain

in the model, the man or the individual bricks. If the rate of movement of the man

(applied strain) is allowed to dictate the strain rate behaviour, the calculations are

simple, as the velocity of the man is defined at the start of each Brick increment. The

disadvantage with this approach is that the strain rate effects are applied globally to

all bricks independent of whether they were moving or not. In the brick-led approach

the length of each string is governed by the velocity of the associated brick. This re-

quires an iterative loop to calculate the balance of brick movement and change in string

length as they are co-dependent. The brick-led method was considered more rigorous

and, after CRS and SRS tests were simulated using both approaches, it was adopted.

The new Brick model was termed the strain rate dependent (SRD) Brick model.
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Further SRS simulations with the SRD Brick model showed that it was able to predict

Isotach behaviour while at the same time being able to model time dependent effects

such as stress relaxation and creep. In a simulation of the SRS tests conducted by

Graham et al. (1983) it was shown that strain rate dependent behaviour could also be

observed in triaxial compression tests.

The SRD Brick model was finally benchmarked against the tests that formed the in-

vestigation into the effect of creep on the recent stress history conducted by Gasparre

(2005). The modelling of the Gasparre tests was conducted with the same methodology

as used for the Bricks on Ice recreation except that the number of bricks used in the

analysis was increased. This had the effect of increasing the resolution possible in the

stiffness degradation curves. The results of the simulation of the Gasparre (2005) tests

showed that the SRD Brick model can successfully predict the increase in initial stiff-

ness due to the effects of creep on low stress path rotation tests, shown also by Clayton

& Heymann (2001). The model is also able to predict the normal effect of the recent

stress history, with a low stress path rotation test displaying a lower initial stiffness

than an equivalent test with a high stress path rotation.

The SRD Brick model represented a clear improvement in the modelling of strain rate

and time dependent effects over the Bricks on Ice model. The SRD Brick model was

able to deal with both Isotach strain rate behaviour and time dependent effects such

as creep and stress relaxation through the implementation of the newly developed rate

dependency framework.

7.5 Finite Element Modelling

In Chapter 6 the SRD Brick model was implemented into the Safe finite element pro-

gram. To verify the model, a simple single element test was conducted and compared

against the Matlab translation of the SRD Brick model. The test involved applying

a vertical displacement to the element and monitoring the stresses at the four gauss

points. The time over which the displacement was applied and the viscous constant

were varied, to fully test the new model. The results were found to be acceptably close

to the Matlab generated results.

Two case histories were analysed using the implemented SRD Brick model. The first

was the construction of the westbound running tunnel, part of the Jubilee Line exten-
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sion beneath St James’s Park, London. For this tunnel, many previous numerical anal-

yses had been run to attempt to predict the unusually large surface settlement trough

that was seen in the field monitoring (Addenbrooke et al. (1997), Grammatikopoulou

(2004)). The effect of creep on the predicted settlement trough was also investigated by

Grammatikopoulou et al. (2008) who, using the M3-SKH model, idealised the effect of

creep by centralising the yield and history surfaces on the current stress point. Gram-

matikopoulou et al. (2008) showed that using this method for the modelling of creep

gave worse predictions of the settlement.

Three soil models for the London Clay layer were used in the present modelling of the

St James’s Park tunnel. These were: the Mohr-Coulomb model (to enable comparison

with a widely used model), the Brick model (to show the effect of modelling the small

stain stiffness and stress history) and the SRD Brick model (to demonstrate the effects

of viscous soil behaviour). The maximum vertical surface displacements were compared

for all three models for the same amount of volume loss. The predictions made by the

Mohr-Coulomb model gave rise to a very wide, relatively shallow settlement trough

with a maximum displacement of only 9.3mm. The Brick model improved the analy-

sis by narrowing the settlement trough, allowing the prediction of of a deeper (12.9mm)

settlement trough. By introducing strain rate dependency into the analysis the SRD

Brick model was able to further narrow the settlement trough leading to a 17.25mm

settlement, amounting to 86.7% of the measured field displacement. The results of this

analysis showed that due to the relatively high strain rate associated with the tunnel’s

construction the predictions could be improved by the use of a model that accounts

for rate of strain. A parametric study was conducted to assess the effect of the short-

ening of the string lengths on the SRD Brick model predictions, which showed that

the analysis was relatively insensitive to changes in string length when compared with

effects of the viscous constant.

The second case history was that of Horseferry Road, a deep basement in London in

which the heave of the basement slab after construction was monitored over a period

of 21 years. Due to the age of the project (1960s), the only monitoring data available

for comparison was the measured heave of the basement slab. The construction of the

slab was modelled in multiple stages, with consolidation allowed to occur during this

period. As the Mohr-Coulomb gave poor results in the modelling of St James’s Park

tunnel, it was not used for the modelling of Horseferry Road.
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The results showed that the Brick model was able to predict the primary settlements

due to the dissipation of the pore water pressures, but that after a period of eight years

the excess pore water pressures had completely dissipated and the heave ceased. This

was expected as the Brick model has no way to account for time dependent effects,

leading to a predicted 69.7mm displacement, 68% of the observed value. The SRD

Brick model accurately predicted the combined primary consolidation and creep be-

haviour over the initial fourteen year period, but over-predicted the heave by 17% over

the full 21 year period, with a predicted 120.6mm displacement.

It may be concluded that the SRD Brick model is capable of improving predictions

in cases where viscous effects are deemed to have a possible influence. In the case of

strain rate dependency this was identified in the modelling of a tunnel construction

where the tunnel heading was moving at around 45m/day. In the case of time depen-

dent behaviour, such as creep, the modelling of the long term heave of a basement in

London Clay showed again that the predictions are improved by the use of a viscous soil

model. While viscous effects have had a relatively large impact on the current analyses

these effects may not always be as significant. Other factors currently discounted may

also contribute, the most notable of which is the possible effect of anisotropy in the

tunnelling analysis.

7.6 Future Research

There are some areas for future research that could cast light on the assumptions made

in the current work. Much research has been conducted on London Clay, but even

for this soil there are still gaps in the knowledge required to calibrate an advanced

constitutive model reliably.

� The generation of a stiffness degradation curve at a known constant rate of strain.

It is known that viscous behaviour effects the stiffness of the soil, but by how much

the strain rate effects the stiffness degradation curve is unknown. In conducting

a strain path reversal test at a constant rate of strain the effects of strain rate on

the stiffness degradation curve can be assessed.

� The current strain rate dependency framework makes an assumption that the

rate at which the soil is initially sheared affects the rate from which the strain

rate decays. Currently the initial rate from which the strain rate decays, is taken

to be equal to the previously applied strain rate, but there are no experimental

data currently to back up this assumption.
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� There is also scope for further tests to be conducted into the effect of creep on

the recent stress history. The tests conducted by Gasparre (2005) are as yet

unrepeated, and some results from the current work are backed up by a single

physical test.

There are a number of aspects that were seen as outside the scope of the current work

and could form interesting future studies in their own right.

� The generation of contours of incremental strain energy as seen in Burland &

Georgiannou (1991). This would allow the visualisation of the effects of the SRD

Brick model in comparison to the original Brick model.

� Modelling of the tunnel lining installation and long term settlement of the St

James’s Park case study, including the construction of the second, eastbound

tunnel as attempted by Wongsaroj, Soga & Mair (2007).

� Further analysis of the Horseferry Road case history to include a parametric

study into the effect of the stiffness of the basement slab on the measured heave.

Advanced models for the concrete could also be incorporated to vary its stiffness

with time.

� Modelling of creep rupture, in samples at sufficiently high deviator stresses. The

SRD Brick model might be able to predict behaviour not only during primary

consolidation and secondary compression but also tertiary creep.

The Brick model has historically been developed for analysis of London Clay. Ad-

vanced testing on other soils would allow the Brick model to be calibrated, diversifying

the applications for the model.
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A
BRICK Parameter Proofs

A.1 Stress-strain relationships

Proof of the relationship between in first shear and stress components via the shear

modulus G.

Shear Stress Component 1, tzx =
(σz − σx)

2

From the stiffness matrix, σz =
E

(1 + ν)(1 − 2ν)
[(1 − ν)εx + νεy + νεz]

σx =
E

(1 + ν)(1 − 2ν)
[νεx + νεy + (1 − ν)εz]

Therefore, tzx =
E

2(1 + ν)(1 − 2ν)
[εz(1 − 2ν) − εx(1 − 2ν)]

⇔ E
�

�
�

��(1 − 2ν)

2(1 + ν)
�

�
�

��(1 − 2ν)
[εz − εx]

Since, G =
E

2(1 + ν)

and, gzx = εz − εx

tzx = G gzx

Proof of the relationship between in second shear and stress components via the shear

modulus G.

Shear Stress Component 2, ty =
(2σy − σx − σz)

2
√

3

From the stiffness matrix, σy =
E

(1 + ν)(1 − 2ν)
[νεx + (1 − ν)εy + νεz]

σx =
E

(1 + ν)(1 − 2ν)
[νεx + νεy + (1 − ν)εz]

σz =
E

(1 + ν)(1 − 2ν)
[(1 − ν)εx + νεy + νεz]
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Therefore, ty =
1

2
√

3

E

(1 + ν)(1 − 2ν)
(2νεx + 2(1 − ν)εy + 2νεz . . .

− [νεx + νεy + (1 − ν)εz] . . .

− [(1 − ν)εx + νεy + νεz])

⇔ 1

2
√

3

E

(1 + ν)(1 − 2ν)
(2(1 − 2ν)εy . . .

− (1 − 2ν)εx(1 − 2ν)εz)

⇔ 1

2
√

3

E
�

�
�

��(1 − 2ν)

(1 + ν)
�

�
�

��(1 − 2ν)
[2 εy − εx − εz]

⇔ 1√
3

E

2(1 + ν)
[2 εy − εx − εz]

⇔ G
(2εy − εx − εz)√

3

ty = G gy

A.2 Octahedral shear strain

Proof of the octahedral shear strain relationship:

gzx
2 = (εz − εx)2 = εz

2 − 2εzx + εx
2

gy
2 =

(

(2εy − εx − εz)√
3

)2

=
1

3
(2εy − εx − εz)

2

=
1

3
(4εy

2 + εx
2 + εz

2 − 4εxy − 4εyz + 2εzx)

gy
2 + gzx

2 =
4

3
(εy

2 + εx
2 + εz

2 − εxy − εyz − εzx)

=
2

3

[

(εx − εy)
2 + (εy − εz)

2 + (εz − εx)2
]

εij =
γij

2

εij
2 =

(γij

2

)2
=

γij
2

4

γoct
2 =

4

9

[

(εx − εy)
2 + (εy − εz)

2 + (εz − εx)2 +
3

2
(εxy

2 + εyz
2 + εzx

2)

]

=
4

9

[

3

2
(gy

2 + gzx
2) +

3

2

(

γxy
2

4
+

γyz
2

4
+

γzx
2

4

)]

=
2

3

(

gy
2 + gzx

2 +
γxy

2

4
+

γyz
2

4
+

γzx
2

4

)
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B
MATLAB code

B.1 The BRICK model

The code listed in this section is a Matlab version of the FORTRAN code that was

given in Simpson (1992b) and forms the basis of modifications to the Brick program.

The code structure differs from that given in Simpson (1992b) in that ‘goto’ loops were

taken out in favour of linear programming wherever possible.

function[DSS,DSNP,DSNB,ITERBR,SNT]=brick(IE,SS,SN,ZERO,SNB,...

VOLP,NC,DSN,DSS,NB,SL,SNBP,TOLBR,RLAM,RKAP,RIOT,BETA,FGK)

% Apply strain increment

PSRED=zeros(1,NC);

SNT=SN+DSN;

SSM=SS;

RILAM=RIOT/(RLAM−RIOT);

DSS=zeros(1,NC);

% Iterate to find plastic and hence stress inc

Finish=0;

ITERBR=0;

while Finish==0

ITERBR=ITERBR+1;

IFAILB=0;

% Modify RIOT for BETA effect

T=(SS(1)+0.5*DSS(1))/ZERO(2);

TT=(SN(1)+0.5*DSN(1)−ZERO(1)−RLAM*log(T));

TT=max(TT,0);

BETMOD=1+BETA*TT;

RIOTBB=RIOT/BETMOD;

RIKAP=RIOTBB/(RKAP−RIOTBB);

DSNP=zeros(1,NC);

% Calc brick movements and plastic strains

for JB=(1:NB)

T=(SS(1)+0.5*DSS(1))/ZERO(2);

if T<=1e−15

error('!!!Negative Mean Stress!!!');

end
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SLJB=SL(JB);

% Reset T for each brick

T=0;

% For each component

for JC=(1:NC)

% Resetting to zero brick movements

DSNB(JC,JB)=0;

% Increase in strain on brick per component

T1=SN(JC)+DSN(JC)−SNB(JC,JB)−PSRED(JC);

% sum of compenents for brick

T=T+(T1*T1);

end

T=sqrt(T);

% 3D vector length finding − root sum of squares

% T=distance of brick from new strain point or string length

% Elastic Strain

if T<=SLJB

for JC=(1:NC)

% Brick movement

DSNB(JC,JB)=DSNB(JC,JB)+PSRED(JC);

end

% Plastic Strain

else

% Brick > string length from new strain point move brick by DSNB,

% giving plastic strain DSNP

T=(T−SLJB)/T;

for JC=(1:NC)

% Max increase in strain on brick per component

% proportionally reduced by T

DSNB(JC,JB)=(SN(JC)+DSN(JC)−SNB(JC,JB)−PSRED(JC))*T;

% Sum of bricks component increase

DSNP(JC)=DSNP(JC)+(DSNB(JC,JB)*SNBP(JB));

% Brick movement

DSNB(JC,JB)=DSNB(JC,JB)+PSRED(JC);

end

end

end

% Compute PSRED(1) from volumetric strain

T2=max(0,(VOLP(1)+DSNP(1)−VOLP(2)));

T1=DSNP(1)−T2;

PSRED(1)=T1*RIKAP+T2*RILAM;

% Compute DSS(1) and check against conversion criteria

TDSS=DSS(1);

% Reassign old increment of Mean Stress

DSS(1)=(exp((DSN(1)−DSNP(1))/RIOTBB)−1)*SS(1);

SSM(1)=SS(1)+0.5*DSS(1);

T=max(SSM(1),abs(DSS(1)));

TOLSS=T*TOLBR;

if abs(DSS(1)−TDSS)>TOLSS

IFAILB=IFAILB+1;

end

% Compute PSRED(>1)from DSS(1)

for JC=(2:NC)

PSRED(JC)=SSM(JC)*DSS(1)*RIOTBB/(FGK*SSM(1)*SSM(1)ˆ1);
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end

if ITERBR==1

continue

end

% Find shear stresses DSS(>1) and check tolerance

for JC=(2:NC)

T=DSS(JC);

DSS(JC)=(DSN(JC)−DSNP(JC))*SSM(1)ˆ1*FGK/RIOTBB;

if abs(DSS(JC)−T)>TOLSS/2

IFAILB=IFAILB+1;

end

end

% Check convergence min 7 max 50 iterations

if ITERBR<50 && IFAILB>0

for JC=(2:NC)

SSM(JC)=SS(JC)+0.5*DSS(JC);

end

elseif ITERBR<7

for JC=(2:NC)

SSM(JC)=SS(JC)+0.5*DSS(JC);

end

else

Finish=1;

end

end

To make sure the Matlab recreation of the Brick model was functioning correctly, a

check was completed by running a one-dimensional compression, swelling and recom-

pression test with both codes. Figure B.1 shows the comparison between the FOR-

TRAN and Matlab results for the plot of volumetric strain versus mean stress. The

two plots are indistinguishable for the entire test. The same can be said about the

plot of mean stress versus shear stress seen in Figure B.2. These results show that the

Brick model is correctly functioning in the Matlab code.
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Figure B.1: Volumetric strain versus mean stress for swelling and recompression code
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B.2 Theory code comparison

The differences in the Matlab code between Brick Theories 1 & 2 are given here.

Change to the calculation of RIKAP to correct kappa gradient using the beta effect.

Theory 1 Theory 2

RIKAP=RIOT/(RKAP-RIOT); RIKAP=RIOTBB/(RKAP-

RIOTBB);

where: RIOTBB= ι/βmod

Introduction of βφ to lower increase in phi′ caused by the beta effect.

Theory 1 Theory 2

BETMFI=1+BETA(2)*ELAMDA;

- BETRAT=BETMFI/BETMOD;

SLJB=SL(JB)*BETRAT;

Change to PSRED(1) calculations to help convergence

Theory 1 Theory 2

PSRED(1)=T1*RIKAP+T2*RILAM; PSRED(1)=((PSRED(1)-

T2prev*RILAM)*RIKAP+T1*

RIKAP)/(1+RIKAP)+T2*RILAM;

Introduction of new convergence criteria

Theory 1 Theory 2

if ITERBR<3

- TOLSS=TOLSS*0.2;

end
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Change in the calculation of PSRED(>1), which controls the capacity for elastic shear

strains and hence the changes in shear stress.

Theory 1 Theory 2

for JC=(2:NC) for JC=(2:NC)

PSRED(JC)=SSM(JC) DELF=BETA(1)*(DSN(1)-RLAM*

*DSS(1)*RIOTBB/ log((SS(1)+DSS(1))/SS(1)));

(FGK*SSM(1)*SSM(1)ˆ1);

end F=1+BETA(1)*(SN(1)+(DSN(1)*0.5)-

ZERO(1)-RLAM*log(SSM(1)/ZERO(2)));

DELFUF=DELF/F;

if F<1

DELFUF=0;

end

PSRED(JC)=(SSM(JC)*RIOTBB/

(FGK*SSM(1)))*((1+DELFUF)*

(DSS(1)/SSM(1)ˆ1)+DELFUF);

end

B.3 The Bricks on Ice model

The code for the implementation of the Bricks on Ice model is given in this section.

Some new variables were created for the BOI model parameters and where an existing

variable has been adopted for use in the BOI implementation, a ‘v’ has been placed

after the variable name to denote ‘viscous’.

function[DSS,DSNP,DSNB,ITERBR,SNT]=brickice3(SS,SN,ZERO,SNB...

,VOLP,NC,DSN,DSS,NB,SL,SNBP,TOLBR,RLAM,RKAP,RIOT,BETA,FGK,CREEP)

% Apply strain increment

PSRED=zeros(1,NC);

SNT=SN+DSN;

SSM=SS;

RILAM=RIOT/(RLAM−RIOT);

DSS=zeros(1,NC);

SNBV=SNB+CREEP;

% Iterate to find plastic and hence stress inc

Finish=0;

ITERBR=0;
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while Finish==0

ITERBR=ITERBR+1;

IFAILB=0;

% Modify RIOT for BETA effect

T=(SS(1)+0.5*DSS(1))/ZERO(2);

TT=(SN(1)+0.5*DSN(1)−ZERO(1)−RLAM*log(T));

TT=max(TT,0);

BETMOD=1+BETA*TT;

RIOTBB=RIOT/BETMOD;

% RIKAP=RIOT/(RKAP−RIOT);

RIKAP=RIOTBB/(RKAP−RIOTBB);

DSNP=zeros(1,NC);

DSNV=zeros(1,NC);

% Calc brick movements and plastic strains

for JB=(1:NB)

T=(SS(1)+0.5*DSS(1))/ZERO(2);

if T<=1e−15

error('!!!Negative Mean Stress!!!');

end

T=0; % Reset T for each brick

for JC=(1:NC) % For each component

DSNB(JC,JB)=0; % Resetting to zero brick movements

T1=SN(JC)+DSN(JC)−SNBV(JC,JB)−PSRED(JC);

% Increase in strain on brick per component

T=T+(T1*T1);

% sum of components for brick

end

T=sqrt(T);

% Vector length finding − root sum of squares

SLJB=SL(JB);

% T=distance of brick from new strain point or string length

if T<=SLJB % Elastic Strain

for JC=(1:NC)

DSNP(JC)=DSNP(JC)+(CREEP(JC,JB)*SNBP(JB));

% Component Total movement

DSNV(JC)=DSNV(JC)+(CREEP(JC,JB)*SNBP(JB));

% Component Viscous movement

% DSNB(JC,JB)=DSNB(JC,JB)+CREEP(JC,JB);

DSNB(JC,JB)=DSNB(JC,JB)+PSRED(JC)+CREEP(JC,JB);

% Total Brick movement

end

else % Plastic Strain

%Brick>string length from new strain point move brick by DSNB,

%giving plastic strain DSNP

T=(T−SLJB)/T;

for JC=(1:NC)

DSNB(JC,JB)=(SN(JC)+DSN(JC)−SNBV(JC,JB)−PSRED(JC))*T;

% Max increase in strain on brick per component

% proportionally reduced by T

DSNP(JC)=DSNP(JC)+((DSNB(JC,JB)+CREEP(JC,JB))*SNBP(JB));

% Component Total movement

DSNV(JC)=DSNV(JC)+(CREEP(JC,JB)*SNBP(JB));

% Component Viscous movement

DSNB(JC,JB)=DSNB(JC,JB)+PSRED(JC)+CREEP(JC,JB);

% Total Brick movement
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end

end

end

% Compute PSRED(1) from volumetric strain

T2=max(0,(VOLP(1)+DSNP(1)−VOLP(2)−DSNV(1)));

T1=DSNP(1)−DSNV(1)−T2;

% DSNP(1)−DSNV(1)= Component String Plastic movement

PSRED(1)=T1*RIKAP+T2*RILAM;

% Compute DSS(1) and check against conversion criteria

TDSS=DSS(1);

% Reassign old increment of Mean Stress

DSS(1)=(exp((DSN(1)−DSNP(1))/RIOTBB)−1)*SS(1);

SSM(1)=SS(1)+0.5*DSS(1);

T=max(SSM(1),abs(DSS(1)));

TOLSS=T*TOLBR;

if abs(DSS(1)−TDSS)>TOLSS

IFAILB=IFAILB+1;

end

% Compute PSRED(>1)from DSS(1)

ips=3;

BETA2=4;

if ips==1

for JC=(2:NC)

DELF=BETA2*(DSN(1)−RLAM*log((SS(1)+DSS(1))/SS(1)));

F=1+BETA2*(SN(1)−ZERO(1)−RLAM*log(SS(1)/ZERO(2)));

DELFUF=DELF/F;

if F<1

DELFUF=0;

end

PSRED(JC)=(SS(JC)*((1+DELFUF)*(DSS(1)/SSM(1))+DELFUF)*...

RIOTBB/(FGK*SSM(1)ˆ1));

end

elseif ips==2

for JC=(2:NC)

DELF=BETA*(DSN(1)−RLAM*log((SS(1)+DSS(1))/SS(1)));

F=1+BETA*(SN(1)+DSN(1)*0.5−ZERO(1)−RLAM*log(SSM(1)/ZERO(2)));

DELFUF=DELF/F;

if F<1

DELFUF=0;

end

PSRED(JC)=(SSM(JC)*RIOTBB/(FGK*SSM(1)))*((1+DELFUF)*...

(DSS(1)/SSM(1)ˆ1)+DELFUF);

end

else

for JC=(2:NC)

% This method leads to erroneous results

% in the recompression phase

PSRED(JC)=SSM(JC)*DSS(1)*RIOTBB/(FGK*SSM(1)*SSM(1)ˆ1);

% Only method to work with bricks on Ice

end

end

if ITERBR==1

continue

end

230



B. MATLAB code

% Find shear stresses DSS(>1) and check tolerance

for JC=(2:NC)

T=DSS(JC);

DSS(JC)=(DSN(JC)−DSNP(JC))*SSM(1)ˆ1*FGK/RIOTBB;

if abs(DSS(JC)−T)>TOLSS/2

IFAILB=IFAILB+1;

end

end

% Check convergence min 7 max 50 iterations

if ITERBR<50 && IFAILB>0

for JC=(2:NC)

SSM(JC)=SS(JC)+0.5*DSS(JC);

end

elseif ITERBR<7

for JC=(2:NC)

SSM(JC)=SS(JC)+0.5*DSS(JC);

end

else

Finish=1;

end

end

B.4 The strain rate dependency model

The code below implements the strain rate dependent approach formulated within

Matlab. In addition to the code below a configuration file must be used to control the

routine, applying strain rates and monitoring stresses, as was done for both the Brick

and BOI implementations.

B.4.1 Man-led strain rate code

function[DSS,DSNP,DSNB,ITERBR,SNT,SLout,SLprev]=brickmsrd(Neu,...

SLprev,SS,SN,ZERO,SNB,VOLP,NC,DSN,DSS,NB,SL,SNBP,TOLBR,RLAM...

,RKAP,RIOT,BETA,FGK,CREEP,On)

SLr=SL;

if On>=1

% Neu=1e−6; Set Neutral rate if required

Vecstrain=0;

for JC=1:NC

Vecstrain=Vecstrain+(DSN(JC)ˆ2);

end

Vecstrain=sqrt(Vecstrain);

%

SL=SLr*(1+(0.25*log((abs(Vecstrain)/Neu)+1)));

SL(n)=SLr(n)*(1+0.1*asinh(Vecstrain/Neu));

if On>=2; % Optional damping

for n=1:10

if SL(n)>SLprev(n)

dSL=SL(n)−SLprev(n);
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else

dSL=0.05*(SL(n)−SLprev(n));

end

SL(n)=SLprev(n)+dSL;

end

end

end

SLprev=SL;

SLout=SL/SLr;

% Apply strain increment

PSRED=zeros(1,NC);

SNT=SN+DSN;

SSM=SS;

RILAM=RIOT/(RLAM−RIOT);

DSS=zeros(1,NC);

% Iterate to find plastic and hence stress inc

Finish=0;

ITERBR=0;

while Finish==0

ITERBR=ITERBR+1;

IFAILB=0;

% Modify RIOT for BETA effect

T=(SS(1)+0.5*DSS(1))/ZERO(2);

TT=(SN(1)+0.5*DSN(1)−ZERO(1)−RLAM*log(T));

TT=max(TT,0);

BETMOD=1+BETA*TT;

RIOTBB=RIOT/BETMOD;

RIKAP=RIOTBB/(RKAP−RIOTBB);

DSNP=zeros(1,NC);

DSNV=zeros(1,NC);

% Calc brick movements and plastic strains

for JB=(1:NB)

T=(SS(1)+0.5*DSS(1))/ZERO(2);

if T<=1e−15

error('!!!Negative Mean Stress!!!');

end

T=0; % Reset T for each brick

for JC=(1:NC) % For each component

DSNB(JC,JB)=0;

% Resetting to zero brick movements

T1=SN(JC)+DSN(JC)−SNB(JC,JB)−PSRED(JC);

% Increase in strain on brick per component

T=T+(T1*T1); % sum of components for brick

end

T=sqrt(T);

% Vector length finding − root sum of squares

% T=distance of brick from new strain point or string length

SLJB=SL(JB);

% Elastic Strain

if T<=SLJB

for JC=(1:NC)

% Total Brick movement

DSNB(JC,JB)=DSNB(JC,JB)+PSRED(JC);

end
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% Plastic Strain

else

% Brick > string length from new strain point move brick by DSNB,

% giving plastic strain DSNP

Tout=(T−SLJB)/T;

for JC=(1:NC)

DSNB(JC,JB)=(SN(JC)+DSN(JC)−SNB(JC,JB)−PSRED(JC))*Tout;

% Max increase in strain on brick per component proportionally

% reduced by T

DSNP(JC)=DSNP(JC)+(DSNB(JC,JB)*SNBP(JB));

% Component Total movement

DSNB(JC,JB)=DSNB(JC,JB)+PSRED(JC);

% Total Brick movement

end

end

end

% Compute PSRED(1) from volumetric strain

T2=max(0,(VOLP(1)+DSNP(1)−VOLP(2)−DSNV(1)));

T1=DSNP(1)−DSNV(1)−T2;

% DSNP(1)−DSNV(1)= Component String Plastic movement

PSRED(1)=T1*RIKAP+T2*RILAM;

% Compute DSS(1) and check against conversion criteria

TDSS=DSS(1);

% Reassign old increment of Mean Stress

DSS(1)=(exp((DSN(1)−DSNP(1))/RIOTBB)−1)*SS(1);

SSM(1)=SS(1)+0.5*DSS(1);

T=max(SSM(1),abs(DSS(1)));

TOLSS=T*TOLBR;

if abs(DSS(1)−TDSS)>TOLSS

IFAILB=IFAILB+1;

end

% Compute PSRED(>1)from DSS(1)

ips=3;

% Choose calculation version

BETA2=4;

% Assign Beta−Phi

if ips==1

for JC=(2:NC)

DELF=BETA2*(DSN(1)−RLAM*log((SS(1)+DSS(1))/SS(1)));

F=1+BETA2*(SN(1)−ZERO(1)−RLAM*log(SS(1)/ZERO(2)));

DELFUF=DELF/F;

if F<1

DELFUF=0;

end

PSRED(JC)=(SS(JC)*((1+DELFUF)*(DSS(1)/SSM(1))+DELFUF)*...

RIOTBB/(FGK*SSM(1)ˆ1));

end

elseif ips==2

for JC=(2:NC)

DELF=BETA*(DSN(1)−RLAM*log((SS(1)+DSS(1))/SS(1)));

F=1+BETA*(SN(1)+DSN(1)*0.5−ZERO(1)−RLAM*...

log(SSM(1)/ZERO(2)));

DELFUF=DELF/F;

if F<1
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DELFUF=0;

end

PSRED(JC)=(SSM(JC)*RIOTBB/(FGK*SSM(1)))*((1+DELFUF)*...

(DSS(1)/SSM(1)ˆ1)+DELFUF);

end

else

for JC=(2:NC)

% This method leads to erroneous results

% in the recompression phase

PSRED(JC)=SSM(JC)*DSS(1)*RIOTBB/(FGK*SSM(1)*SSM(1)ˆ1);

% Only method to work with bricks on Ice

end

end

if ITERBR==1

continue

end

% Find shear stresses DSS(>1) and check tolerance

for JC=(2:NC)

T=DSS(JC);

DSS(JC)=(DSN(JC)−DSNP(JC))*SSM(1)ˆ1*FGK/RIOTBB;

if abs(DSS(JC)−T)>TOLSS/2

IFAILB=IFAILB+1;

end

end

% Check convergence min 7 max 50 iterations

if ITERBR<50 && IFAILB>0

for JC=(2:NC)

SSM(JC)=SS(JC)+0.5*DSS(JC);

end

elseif ITERBR<7

for JC=(2:NC)

SSM(JC)=SS(JC)+0.5*DSS(JC);

end

else

Finish=1;

end

end

B.4.2 Brick-led strain rate code

function[DSS,DSNP,DSNB,ITERBR,SNT,SLout,SLprevious,Testmat]...

=bricksrdtest2(Neu,SLprevious,SS,SN,ZERO,SNB,VOLP,NC,...

DSN,DSS,NB,SL,SNBP,TOLBR,RLAM,RKAP,RIOT,BETA,FGK,On,Time)

SLr=SL;

SLout=zeros(1,10);

% Apply strain increment

SNT=SN+DSN;

SSM=SS;

RILAM=RIOT/(RLAM−RIOT);

DSS=zeros(1,NC);

PSRED=zeros(1,NC);

Vecstrain=zeros(1,10);
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Testmat=0;

% Iterate to find plastic and hence stress inc

Finish=0;

ITERBR=0;

while Finish==0

% Count number of Iterations

ITERBR=ITERBR+1;

% Reset Convergence Monitor

IFAILB=0;

% Modify RIOT for BETA effect

T=(SS(1)+0.5*DSS(1))/ZERO(2);

TT=(SN(1)+0.5*DSN(1)−ZERO(1)−RLAM*log(T));

TT=max(TT,0);

BETMOD=1+BETA*TT;

RIOTBB=RIOT/BETMOD;

RIKAP=RIOTBB/(RKAP−RIOTBB);

DSNP=zeros(1,NC);

% Calc brick movements and plastic strains

for JB=(1:NB)

T=(SS(1)+0.5*DSS(1))/ZERO(2);

if T<=1e−15

error('!!!Negative Mean Stress!!!');

end

T=0; % Reset T for each brick

for JC=(1:NC) % For each component

DSNB(JC,JB)=0;

% Resetting to zero brick movements

T1=SN(JC)+DSN(JC)−SNB(JC,JB)−PSRED(JC);

% Increase in strain on brick per component

T=T+(T1*T1); % sum of components for brick

end

T=sqrt(T);

% Vector length finding − root sum of squares

% T=distance of brick from new strain point or string length

SLJB=SL(JB);

% Elastic Strain

if T<=SLJB

for JC=(1:NC)

% Total Brick movement

DSNB(JC,JB)=DSNB(JC,JB)+PSRED(JC);

end

% Plastic Strain

else

% Brick > string length from new strain point move brick by DSNB,

% giving plastic strain DSNP

Tout=(T−SLJB)/T;

for JC=(1:NC)

DSNB(JC,JB)=(SN(JC)+DSN(JC)−SNB(JC,JB)−PSRED(JC))*Tout;

% Max increase in strain on brick per component proportionally

% reduced by T

DSNP(JC)=DSNP(JC)+(DSNB(JC,JB)*SNBP(JB));

% Component Total movement
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DSNB(JC,JB)=DSNB(JC,JB)+PSRED(JC);

% Total Brick movement

end

end

% Applies only to first iteration

% 'On' allows model to be switched on and off

if ITERBR==1 && On==1;

SLerr=1;

% Convergence criteria for SRD model

while SLerr>(SLr(JB)/10)

Vecstrain(JB)=0;

% Calculate vectoral strain rate

for JC=1:NC

Square=(DSNB(JC,JB))ˆ2;

Vecstrain(JB)=Vecstrain(JB)+Square;

end

Vecstrain(JB)=sqrt(Vecstrain(JB))/Time;

% Monitor Calculated string length

if Vecstrain(JB)>Vecstrain(1)

Vecstrain(JB)=Vecstrain(1);

end

% Deassign string length

SLprev(JB)=SL(JB);

% Calculate SRD string lengths

SL(JB)=((SLr(JB)*(1+(0.1*log((abs(Vecstrain(JB))/Neu)+1))))...

+SLprev(JB))/2; %25 for ler

if SL(JB)>=SLprevious(JB)

% Allow instantaneous increase in String Lengths

else

% Calculate time dependent decay

decay=−1.0683;

Vecprevious(JB)=((exp(((SLprevious(JB)/SLr(JB))−1)/0.1))−1)*Neu;

Tp=10ˆ(7+(log10(Vecprevious(JB)/Neu)*decay));

Tc=Tp+Time;

% Apply rate dependant rule

if Tc>2;

CurVec(JB)=10ˆ((max(0,(log10(Tc)−7)/(decay)))...

+log10(Neu));

SL(JB)=SLr(JB)*(1+(0.1*log((abs(CurVec(JB))/Neu)+1)));

SL(JB)=SLprevious(JB)+0.05*(SL(JB)−SLprevious(JB));

else

SL(JB)=SLprevious(JB)+0.05*(SL(JB)−SLprevious(JB));

end

end

Distance=DSNB(:,JB)*(T/(T−SLprev(JB)));

DSNB(:,JB)=Distance*((T−SL(JB))/T);

SLerr=SL(JB)−SLprev(JB);

end

SLout(JB)=SL(JB)/SLr(JB);

end

end

% Compute PSRED(1) from volumetric strain

T2=max(0,(VOLP(1)+DSNP(1)−VOLP(2)−DSNV(1)));
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T1=DSNP(1)−DSNV(1)−T2;

% DSNP(1)−DSNV(1)= Component String Plastic movement

PSRED(1)=T1*RIKAP+T2*RILAM;

% Compute DSS(1) and check against conversion criteria

TDSS=DSS(1);

% Reassign old increment of Mean Stress

DSS(1)=(exp((DSN(1)−DSNP(1))/RIOTBB)−1)*SS(1);

SSM(1)=SS(1)+0.5*DSS(1);

T=max(SSM(1),abs(DSS(1)));

TOLSS=T*TOLBR;

if abs(DSS(1)−TDSS)>TOLSS

IFAILB=IFAILB+1;

end

% Compute PSRED(>1)from DSS(1)

ips=3;

% Choose calculation version

BETA2=4;

% Assign Beta−Phi

if ips==1

for JC=(2:NC)

DELF=BETA2*(DSN(1)−RLAM*log((SS(1)+DSS(1))/SS(1)));

F=1+BETA2*(SN(1)−ZERO(1)−RLAM*log(SS(1)/ZERO(2)));

DELFUF=DELF/F;

if F<1

DELFUF=0;

end

PSRED(JC)=(SS(JC)*((1+DELFUF)*(DSS(1)/SSM(1))+DELFUF)*...

RIOTBB/(FGK*SSM(1)ˆ1));

end

elseif ips==2

for JC=(2:NC)

DELF=BETA*(DSN(1)−RLAM*log((SS(1)+DSS(1))/SS(1)));

F=1+BETA*(SN(1)+DSN(1)*0.5−ZERO(1)−RLAM*...

log(SSM(1)/ZERO(2)));

DELFUF=DELF/F;

if F<1

DELFUF=0;

end

PSRED(JC)=(SSM(JC)*RIOTBB/(FGK*SSM(1)))*((1+DELFUF)*...

(DSS(1)/SSM(1)ˆ1)+DELFUF);

end

else

for JC=(2:NC)

% This method leads to erroneous results

% in the recompression phase

PSRED(JC)=SSM(JC)*DSS(1)*RIOTBB/(FGK*SSM(1)*SSM(1)ˆ1);

% Only method to work with bricks on Ice

end

end

if ITERBR==1

continue

end

% Find shear stresses DSS(>1) and check tolerance
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for JC=(2:NC)

T=DSS(JC);

DSS(JC)=(DSN(JC)−DSNP(JC))*SSM(1)ˆ1*FGK/RIOTBB;

if abs(DSS(JC)−T)>TOLSS/2

IFAILB=IFAILB+1;

end

end

% Check convergence min 7 max 50 iterations

if ITERBR<50 && IFAILB>0

for JC=(2:NC)

SSM(JC)=SS(JC)+0.5*DSS(JC);

end

elseif ITERBR<7

for JC=(2:NC)

SSM(JC)=SS(JC)+0.5*DSS(JC);

end

else

Finish=1;

end

end

VecPrev(1,:)=Vecstrain;

SLprevious=SL;
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BRICK Program Modifications

C.1 Introduction

In the BRICK program, introduced in Section 3.5, the Brick model was programmed

in the FORTRAN language. To allow the easier modification of the code the original

FORTRAN was translated into Matlab and benchmarked against the BRICK program

in Appendix B. In this Appendix the reverse translation of the SRD Brick model is

provided, along with the results of a SRS test and a creep test to show the model has

been correctly implemented. This was an intermediate testing step, as further minor

modifications to the code were needed to implement the time effects into the Brick

code within Safe.

C.2 The Language Barrier

As the BRICK program contains much more code that the Matlab implementation,

only the key translated sections have been listed here. As there is no place to input the

new variables into the code, the variables were hard coded into the routine for testing

purposes:

C

C Set up SRDSL initial parameters

C

SLr=SL

RNEU=1.E-13

RVISC=0.1

RDEC=-1.0683

The core of the strain rate dependency behaviour is given in the code below:

C

C Calculate Strain rate dependant String Lengths PER BRICK

C

IF(ITERBR.EQ.1) THEN

SLerr=1;
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DO 149 WHILE(SLerr.GT.(SLr(JB)/10))

VECSTRAIN(JB)=0

DO 140 JC=1,NC

140 VECSTRAIN(JB)=VECSTRAIN(JB)+(DSN(JC)*DSN(JC))

VECSTRAIN(JB)=SQRT(VECSTRAIN(JB))

IF(VECSTRAIN(JB).GT.VECSTRAIN(1)) VECSTRAIN(JB)=VECSTRAIN(1)

IF(VECSTRAIN(JB).LT.1E-8) VECSTRAIN(JB)=0

SLprev(JB)=SL(JB)

RCORE=(ABS(VECSTRAIN(JB))/RNEU)+1

SL(JB)=((SLr(JB)*(1+(RVISC*LOG(RCORE))))+SLprev(JB))/2

DO 145 JC=1,NC

DISTANCE=DSNB(JC,JB)*(T/(T-SLprev(JB)))

145 DSNB(JC,JB)=DISTANCE*((T-SL(JB))/T)

IF (SL(JB).GT.SLprevious(JB)) THEN

SL(JB)=SL(JB)

ELSE

VECPREVIOUS(JB)=((EXP(((SLprevious(JB)/SLr(JB))-1)/RVISC))-1)*RNEU

Tp=10**(7+(LOG10(VECPREVIOUS(JB)/RNEU)*RDEC))

Tc=Tp+1

IF (Tc.GT.10) THEN

MCENT=(LOG10(Tc)-7)/RDEC

CURVEC(JB)=10**(MAX(0,MCENT)+LOG10(RNEU))

SL(JB)=SLr(JB)*(1+(RVISC*LOG((ABS(CURVEC(JB))/RNEU)+1)))

SL(JB)=SLprevious(JB)+0.05*(SL(JB)-SLprevious(JB))

ELSE

SL(JB)=SLprevious(JB)+0.05*(SL(JB)-SLprevious(JB))

ENDIF

ENDIF

SLerr=SL(JB)-SLprev(JB)

149 END DO

C.3 Testing

Two tests were conducted to make sure the implementation into the BRICK program

was functioning as expected. Test 1 involved a basic SRS test with a relaxation period,

seen in Figure C.1. Test 2 involved an CRS stage followed by a period of creep and

then by further applied strain, seen in Figure C.2. Both figures show isotach behaviour

upon a change in strain rate. The stress relaxation test shows the lowering of stresses

at constant volumetric strain and a rejoining of the initial compression line upon a

recommencment of straining. The creep test shows the increase in volumetric strain

at constant mean stress, with the path again rejoining the initial compression line

as straining continued. The form of the behaviour is consistent with that shown in

Chapter 5.
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Figure C.1: Validation of the BRICK program - SRS and stress relaxation test
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Figure C.2: Validation of the BRICK program - creep test
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SAFE Modifications

D.1 Implementation into SAFE

Theoretically, copying the BrickB routine from the BRICK program (Appendix C)

into Safe should be enough to implement the SRD Brick model in the finite ele-

ment program. In practice, while this ports the core programming, there are still other

changes that need to be made to the Safe program code. In the BRICK program the

storage of variables is very easy as there is only a single point of calculation. In Safe

any variables such as the previous string lengths need to be stored for every gauss point.

This can be done by utilising the spare space within the 6x6 ‘D’ matrix:

4x4 D matrix

6x1 B parametersRICK

This leaves space within the matrix to store the previous string length variables which

are required by the SRD Brick routine as implemented by the following FORTRAN

code:

DO 115 JB=1,5

SLprevious(JB)=D(JB,5)

115 SLprevious(JB+5)=D(JB,6)

Safe has a built in concept of time in the form of the parameters CSECS and DSECS.

CSECS is the cumulative time in seconds up to the end of the previous increment,

while DSECS in the increment of time for the current increment. By introducing a
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new variable DSECSb, the times for the current sub-increments can be split into the

same proportion as the current sub-increments of strain. This allows a constant rate

of strain across sub-increments.

The final variation of the Safe BrickB implementation of the SRD Brick model was

the inclusion of ‘switches’ to allow the new routine to be enabled and disabled and to

assign parameters from the graphical user interface. The three SRD Brick variables

are also assigned FORTRAN variable names (the ‘R’ at the start denotes that it is a real

variable and as such can take any value). The viscous constant, β, became RVISC, the

decay constant, m, became RDEC and the reference strain rate, ε̇ref, became RNEU

(the reference strain rate was originally called the neutral strain rate). These were

implemented as switches in Safe by the following FORTRAN code:

IF(RTEST(95).GT.0) THEN

RVISC=RTEST(95)

RDEC=RTEST(96)

RNEU=RTEST(97)

SRDSL=1

ELSE

SRDSL=0

ENDIF

The variables RTEST(95-97) are created by the user interface of Safe when the the

SRD Brick model is enabled in the analysis.

D.2 Finite Element Models and Runs

This section lists all the names of the attempted finite element runs completed with,

where appropriate, a brief description of the assumption made. A copy of all the data

files for the runs has been included on the DVD at the back of the thesis. Each run

has other minor variants that are contained on the disc.
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D.2.1 St James’s Park

Completed finite element runs for the modelling of the volume loss experienced in the

Westbound tunnel at St James’s Park.

Addenbrooke Mesh File for generation of mesh- no results.

Addenbrooke Mohr Mohr-Coulomb model analysis.

Addenbrooke Initial attempts at volume loss creation with reduction

of stresses.

Addenbrooke Final SRD run with full length strings to assess difference.

Addenbrooke Final Short Final SRD run, with the string lengths halved.

Addenbrooke SRD Initial attempt at varying the string length parameters

using the SRD model. Original, Kanapathipillai (1996)

and string lengths developed for the Gasparre (2005)

work were tested.

Addenbrooke 09 Check on the effect of anisotropy.

D.2.2 Horseferry Road

Completed finite element runs for the modelling of the experienced heave in the deep

basement at Horseferry Road.

Horseferry18.1 Initial run- no longer used.

Horseferry18.1 Consol Consolidation analysis using a mean stress dependent

permeability.

Horseferry18.1 Undrained Undrained analysis during construction of the base-

ment, switched to a consolidated material for the Lon-

don Clay upon the completion of the base slab.

Horseferry18.1 Consol 2 Consolidation analysis of the construction and time de-

pendent behaviour, using a constant value of perme-

ability for the London Clay layer.

Horseferry18.1 Consol SRD The same as analysis Consol but using the SRD Brick

model with strings half the length of those in the pre-

vious runs.
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E
Computing Requirements

E.1 Hardware

Both Safe and Matlab currently only allow a single thread to be processed at any one

time. This means that the advantages of parallel processing are not utilised by either

program, thus, multi-core processors will not speed up the computation times. This

said if multiple instances of each program were run then multi-core processors would

mean that each instance would compute in the same amount of time. The author rec-

ommends a fast dual-core processor, which at the time of writing would equate to a

Intel Core2 Duo E8***. Higher processor clock speeds have a larger influence on the

calculation time than increasing the number of cores for single thread applications.

The author built a PC specifically to decrease the computation times in Safe. The

specification is:

Processor: Intel Core 2 Duo E8400 (3Ghz) overclocked to 4Ghz

Hard Drives: 2 x 640GB Western Digital in RAID 0

Memory: 4GB DDR2 PC8500 running at 1068Mhz

Graphics: ATI Radeon 4870 512MB Edition

Power Supply: CoolerMaster Silent 700M

Cooling: Custom assembled water cooling system.

This represents one of the fastest systems currently available for running Safe. Almost

any computer is capable of running Safe, but the time taken increases as the system

specification lowers. Below is the lowest specification that would lead to a acceptable

computation time.
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E. Computing Requirements

Minimum requirements:

Processor: Intel Core 2 Duo 1.86Ghz+ (the more L2 cache the better)

Hard Drive: 320GB single platter

Memory: 2GB DDR2 PC6400

Graphics: Onboard is acceptable

Power Supply: 400W+

E.2 Software

All the work was completed by PCs running the Microsoft Windows XP Professional

operating system with the latest service pack updates. The programs used to generate

the work done in this thesis are listed below:

� MATLAB version 7.0.0.19920 - used for the recreation of the Brick model and

the development of the SRD modifications to the program.

� Oasys SAFE 18.1 - For running the finite element analyses. Currently this is

the only version of Safe that has the SRD modifications.

� Oasys BRICK 17.9 - Used to test the SRD Brick routine at a basic level before

implementation into Safe and to check that the Matlab recreation of the code

was working correctly.

� Compaq Studio 6.6C - Used to develop the BRICK and Safe programs.

� Corel Draw 12 - Used to create and edit vector based figures.

� Adobe Photoshop CS3 - Used to created and edit raster based figures.

� Plot Digitizer - Used to create data sets from existing figures, available from

http://plotdigitizer.sourceforge.net.

� TeXnicCenter 1.0RC - Used to write the thesis in Latex, available from

http://www.texniccenter.org.
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