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The optimal control of plasmas is considered by minimizing &
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quadratic cost functional subject to Vlasov's equation.

dimensional Riccati equation 1s obtaine

basis representation is comsidered.
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Introduction

Many attempts have been made, both in theory and in experiment, to
stabilize plasma instabilities by feedback control techniques. In the

* oy
k&

theoretical approach Arsenin and Chynov {1968) considered the stahilizatiom

of the flute mode, with sensing and suppressing carried out from surfaces
outside the plasma, while Furth and Rutherford (i969) presented - technique to
suppress drift modes by modulated electron surfaces. 'he fheory of feedback
ctabilization of various plasma instabilities has z!so been investigated b;
many other authors (Chu and Hendel. 8700 ac ‘ing Lowder and Thomzssen (1973)
who described models of kink modes and heil c<rabilization conditions, and
Kammash and Uckan (1975) who considered the use of (¢—¢) feedback tentrol
where the control variable i& the local potential nerturbation; they examined
this method for some instabilities of mivror machines. We may alst mention
the work of Sen and Sunderman (1976) who investigated the fmedback control of
dissipative trapped-particle instabilities by nentral beam injection.

The major problem in the above work is the fact that the feedback rontrol
components are frequency independent (constant phase shifts) ana so cun stabilize
one mode only and may destabilize some cthey modaes, Malcher {1965, 19667,
and Lindgren and Birsdall (1970) have suggested the use of more than one
suppressor pairs for multimode stabilization. This technigque is obviously
not desirable. Using frequency-dependent feedback contro’ and one zensor/

i

suppressor pair, Taylor and Lashmore-Davies (1970) have given a general theory

leading to the conditioms for

for stabilizing electrostatic instabilit

stabilizing reactive and dissipative instabi:ities. Lashmore~Davies (1971)

has considered the effects of the above method on a flute-type instability

occurring in a low-density plasma confined in a simple magnetic mirror. In fact

he only examined the effects of fixed phase shifts, rime derivative and time

integral controllers. Sen (1974) developed & mathod of using a suitable

frecuency-dependent feedback and ceneidered ire application to multimode

weak reactive and dissipative instability. Using ope senser/suppressor
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pair, Sem (1975a) has also shown that most plasma instabilities of a discrete
spectrum are observable and controllable. He used multivariable control

theory considering the discrete normal modes as the states of the system.
Frequency-dependent stabilizers have also been studied by Uckan and Kammash (1975)
who gave a general theory of stabilization of multimode fluctuations in

collisionless magnetized plasma. As an example, they considered (¢~¢) feed-

back control of flute-like drift instabilities. However Kitao and

'

i
Higuchi (1976) have shown that (¢-¢) feedback with comstant phase shift can

not stabilize these instabilities. Liberman and Wong (1977) considered axial
stabilization of flute mode in a simple mirrorreactor. By using proportiomal
and derivative feedback controllers they showed that stability could be obtained
over a wide range of phase shifts.

Tn all the above methods the mathematical tool for stabilization is the
dispersion relation of the plasma. The dispersion relation is in fact
equivalent to the characteristic equation of a linear lumped system. The
eigenvalues of the characteristic equation of the system when it is not
externally excited, are the natural frequencies (eigen frequencies) from
which the stability of the system can be analyséd. To design a controller
the knowledge of eigenfrequencies of the system is not sufficient and one also
needs to know its transfer function. The transfer function of a system is,
by definition, the inyuk—-out‘,ql? rakio in the Ld};kq(,e c\oma‘m ;3 1its poles
are the system‘s eigenfrequencies and its zeros are the residues. Sen (1975b)
was the first to consider the use of transfer functions in plésma systems;
he presented a general theory of the determination of plasma transfer functions
with boundary and internal excitationm. In another paper some general procedures,
based on classical control theory and the knowledge of the transfer function,
are presented by Sen (1978) to stabilize any plasma instabilities. The
synthesis technique for constructing the suirable compensators are also given

in this paper. Sen (1979a) studied the feedback control of some important
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plasma instabilities such as drift waves, flute and trapped particle modes by
applying the transfer function method. He discusses their observability

and controlability in the sense defined by Sen (1975a) and also the use of
feedback control as a diagonastic tool for the measurement of the instability
growth rate. State feedback for control of multimode instabilities in plasma
was also presented by Sen (1979b). He applies the theory of the state
reconstructor to recover all dynamic states of plasma instabilities by a single

i
Sensor. The sensor and suppressor are placed in accordance with observability

and controlability, respectively.
Feedback stabilization of plasma instabilities has also been the subject

of experimental work. Both constant and frequency—dependent contrcllers have

been used and results in successful agreement with theories are obtained. Valuab
reports and reviews are given by Chu and Hendel (1970) and by Thomassen (1971).
There are also some other reports on this work; such as Brown et al (1971),

Keen and Fletcher (1971), Richard et al (1975), Wong and Liberman (1978), and
Richard and Emmert (1980). An experimental measurement and theoretical calculati
of the plasma transfer function have been given in Richard and Emmert (1977)

with results in reasonable agreemeni with the tﬁeory presented by Sen (1975b).

In all the techniques of stabilization mentioned above, the plasmas are
considered as lumped systems for certain specific modes. Even when the multi-
variable theories are applied to express the plasma dynamics, discrete normal
modes are taken as the base states, again using the plasma dispersion relation.

In fact plasmas are distributed parameter systems and a more rigorous approach

%§ tq_wr%te thgir dynamics in standard state space form using the Vlasov equation.
As far as we are aware only limited contributions have been made to this

approach. Wang (1969), Wang and Janas (1970), and Wang (1974), have presented
different optimal control problems of confining collisionless plasmas by means

of external electromagnetic fields. The control in these problems are the

external electric and/or magnetic fields, and the states are the distribution

functions.



In this paper we shall consider the plasmas as distributed parazmeter systems

and use as our state equation the lowest order approximatiom to Lionville's

equation

OF =
'.é—t' +{Ha F}_Or

(which describes the probability F(x) dx of finding a plasma particle in the

phase~-space region dx = (dxl, dxzn dx3, dvl, dvz, dv3)) given by the linearized

Vliasov equation for a collisionless plasma !

2E. . .. q. f. . q. 2f .
L1 4 v . 1] + v x B. _ 1] P A . 0, (1.1)
Pt = P gf:w - Vv qf:— av

where j = e for electron and i for ionms, fle and flj are the respective
perturbed distribution functions for these particles species and foj is the
appropriate equilibrium distribution. For a derivation of these equations,
see G. Eckefriié;ist}

Introducing a control term Bu in (1.1), we shall write the controlled
plasma dynamics in the standard state-space form

x = Ax + Bu

and comstruct a quadratic cost functional on an appropriate EEEEEEEﬁEEEEE’

The optimal control will then be obtained in a standard way via the Riccati

equation and we shall indicate how to obtain reasonable finite-dimensional

approximations to the solution.

Notations and Terminology

Let X denote a Banach space, and consider the Cauchy problem

dx
dt
The operator A has domain (deno ted henceforth by D(A)) which is dense in X

= Ax, x(0) = x € D(A) (2:1)

and is a closed operator (i.e. its graph { (x, Ax) : x eD(A)} 1is closed in the
product space X x X). Then, under certain conditions it is well known

+
(Yosida, 1974) that there exists an operator-valued map t - T(t) from R to L.(X)

(the space of bounded operators on X) which satisfies



T(O) =1 {identity operator)

T (t] + t2) = T(tl)T(tz) (tl, tz z 0),
Zim T(t)x = x ¥ xe X,
t+0"

and

Ax = Lim -% (T(t) - 1)x, xe D(A) .

+
t + 0

T(t) is called the semigroup of operators generated by A and the solution of
equation (2.1) is given by

x = T(t) X s for x € D(A)

The semigroup T(t) essentially replaces the exponential exp (At) for finite-
dimensional systems. If B is another closed, dénsely defined operator such
that A + B generates a semigroup S(t) then we say that S(t) is the perturbation
of T(t) by B.

In the case of nonautonomous systems, i.e. when the operator A in equation
(2.1) depends on t, then one must consider evolutioﬁ operators, which generalize
the transition matrices for finite—dimensional systems. A (mild) evolution
operator (Curtain and Pritchard, 1978) is a map

UCt,s) : §(t,8) : Ossstgt; } ~Lx
such that

ule,t) = I, t & [0, t1:]

u(t,r) U(r,s) = U(t,s), O£ s £t & £t
U(.,s8) is strongly continuous on [E, t1;]

U(t,.) is strongly continuous on [@,gl .
Thus, if A generates a semigroup T(t) and B(t) : [ég tl:] + X then A + B(t)
generates a mild evolution operator.

In this paper, SAR3 will denote the region of space occupied by the
plasma container and VC v e R3 wlls ¢ } , i.e. the ball of radius c (the

speed of light) in velocity space. We shall consider the subset of
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0 xV CZR6 of phase—space and c® (@ x Vc) will denote the space of

o
continuous real-valued functions defined on @ x ch (It is, of course,
a Banach space). L2 (0 x Vc) will denote the (Hilbert) space of real-

valued functions under the inner product

< £, g> s f g dz, , ¢ & 5
2
L7 X V) R v,
We shall also use the direct sum Hl B H2 of two Hilbert spaces under thel
inner product
< (flifz)’ (gl’ gz) > = o fls gl> - + < f29 82 > 2
_ Hl @ H2 H1 HZ

for fi, gi E Hi.

of both Hl and H2’ then an element (f, g) ¢ Hl ® H, may be represented by
z < g, e > (\O ? .
n
= 1 e

e
< f, e > nj+
1 B of n
B n

ey o] ez\ 0 \
A basis of H, @ H, is then ) " = ) . S
[#] e Q 82/

This basis will be denoted by

o8

o
(F n/Z) ., T even.

Finally, note that if T(t) is a semigroup on H generated by A, then
we shall denote by the same symbol T(t) the semigroup generated by A & A
on H & H. (i.e. T(t) will also denote T(i} & T(t) when the context is

clear). A useful reference for this section is Bal a krishman (1976).

Note that, if { e } ,1 €n< =, is an orthonormal basis



Solution of the Linearized Equation

The linearized Vlasov equation zoverning the uncontrolled collisicnless
magnetized plasma dynamics has been given above. This equation including

the control term is given by

Ln)
hy
o

il

]

5y

v

5
Lo

BE. . ¥f. . q.
i 5 PR « N BEp—
ot — "35 mjc~ ==

- (3.1)

Q
@D
1<

where B 1s the external magnetic field (it 1s assumed that the magnetic
field induced by the plasma is negligible), Ep 1is the electric field
induced by the plasma and satisfies the Poisson’s equation

¥ « Ep =47 § qj £.. gy,

1

and j = e or 1. Fj is the control term.

In order to solwve (3.1) consider first thes operator

ooy L2 3 :
A 7 Li'ag*'“jz"ﬁ taz) ’ e

where otj = qj /mjc, defined on CI' (Ré},

Written out more fully, (3.2} becomes

Y . TN T N (s 8
8 = ["1 TR E TN R PR BYe Y S
) ; e 7 .
+ = i wr B sgg L s 3.3,
(VBBI VIB3) .avz + fvlﬁz 581) v, '{ 1 3.3

Tt is well known (see Goursat, 1959, for example) that the local group action
defined by the operator (3.3) is given by solving the system of equations

dxl dxz dx3 dvl dY? o a4 L

— - = - i ’.‘;, F’. ;-J—T-‘p)—' v - =3 y P
3 ajﬁyng v3B2§ u}\ 3BV, Bo) wi(vlﬂz VZB1.

Vriting these equations in the form

2 =4 23

3

= i 6
where z = (Xl’ Xgs Xgs Vi Vo, v3) e R, and
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A. i.(Rs, R6) is a matrix defined by
=]

% 13
0 B, -8, \
—A'_] = 9"3 GJ -B3 g 8}.
B, -B, 0

(provided that B is uniform), where 93 and EB are the 3 x 3 zeroc and
identity matrices respectively, it is easy to see that the operator
Aj given by (3.2) generates a semigroup Tj(t) on CO(Ré) or L2 (R6)
defined by

(T,(0)E) (2) = £ (exp(-A;002), €20 (3.4)

for all £ ¢ CO(Rﬁ), or £ LZ(RB).

Consider now the région Q % Vc E_Re. Extending functions by zero
outside 9 * VC it is clear that we can embed c° (2 x Vc) in CO(R6) and
consider the semigroup Tj(t) defined on C° (Q % VC). Note however that
Tj(t) { ¢* (Q x Vc) } is not necessarily contained in g (9 % Vc) for all
t 2 0. However, the plasma is initially contained in a region Ql, say
such that @, € Q and * ’ale @ Q=1¢ (i.e. the plasma should not touch

1
the containing vessel). For any function f ¢ c’ (R6) we denote by Supp £
the support of f definmed by Supp £ = f_l(R ;W;). It follows from the above
remarks that the semigroup (3.4) may be regarded as being defined in
¢° (Q x VC) for all t 3 O such that

Supp £ (eXp(-gjt 2)) €Q | (3.5)
for £ e ¢° (Q x Vc), i.e. provided the plasma does not touch the vessel wall.
If it is possible to stabilize the plasma with feedback control, condition

(3.5) can be guaranteed for all t 3 O, and so we will have a well defined

solution on C°(Q x VC), {or LZ(Q X Vc))'

30 é boundary of Q.

ey



Note that

I ol

Zc® &%)

and if (3.5) holds for all t 2 O, then

I (ol

W
o

€1 S

(8] .
L (@ = v))

Hence, T.(t) is a contraction semigroup. A more explicit characterization

of Tj(t) may be obtained by noting that

0, Iy
A, =
=]
9 o
where,
o B3 ~B2
Ej = uj —B3 o] Bl
Bz —Bl o]
Thus, t
L
=3 exp(—_C_jt:) dt
0
exp(_éjt) o
04 EXP(“Ejt)
and so g
(Tj(t)f) (z) = £ (x + J exp(“gjt) v dt, =.:-:%p(‘§jt) v) (3.6)
where g
T . R6

2= (%), ¥55 X34 Vys Vg5 Vg)

In the case where the magnetic field is undirectional, say B1 = 32 = 0,

then an even more explicit representation of the semigroup may be obtained.



First note that the operator (3.3) reduces to the form

_}_O_

+ a.B
]

and it is easy to see that (3.4) becomes

T
(T () (2 = £ € [D Gy %y, vy v)7 0 g = vaty vy )

where z
.—p

to its elements and

EQ = [:C2 (COs(ajB3t) - 1) + lﬂ
D=
92 = IQ ch(ujB3t) - EQ $1n{ajB3t)
where EQ is the 2 x 2 identity matrix and
0 1
9_2 =
2] 0
Hence,
o S(t)vl B (C(t)—l)v2
1 ajB3 ajB3
((’.(1:)—1)v1 S(t)v2
*5 = o.B T G.B
g i3
v £ = £ -
(TJ(t) ) (2) = £ Xy = Vvt
- G(t)vl - S(t)v2
S(t)vl o C(t)v2
V3

where C(t) = ¢os (ajBBt)

S(t) = sin(GjB3t).

{ B, o g
3 z @;1 vl QVZ

is the vector obtained from z by applying the permutation

&‘:m(a‘jBBt) :I /cij

2

) 1,

(3.7)



-.ll_

L .
o .. . N
——-= in the equation (3.1);

Consider finally that the term .
p Qv

| =1

we have,

V. E =41 L q. J f.. dv ¥
- j 1 Iy 13 -
=

and so, introducing the electric potential ¢p’

2
7% =41€Eq.[ £, dv
P i J v, 1]
Using Poisson's solution we have '
i
¢ _(r) = 4m L q. [ J f . dv dr'
¥ TN FE B A
G
Hence
Q |z -l v, !
and so
q. DBf . ’q.[
e 520, e—i el 1524
] -~ C(S?.XVC) 3 C{(Q xVv ) -~ C(’Z/VC)
(3 9)
sc |l g _|l +C || £ .]
e le CO(Q r Vc) i1 COCQ " VC)

for some constants, Ce and Ci’ since, as it is well-known from elementary

potential theory (see, for example, Kellogg, 1965), the integral’

J Y, (:“-mmi—ﬂ__—> ax!
)& (-

T
; i B o 0
exists. Hence writing f, = (fle,fli) e C (R x VC) B C (R x VC) we see that
the operator Q defined by
T
Z,
T . ( % P 4 o )
E_ . p E_ . .
1 m, =P 3Y¥ m. =p Y

where Ep is given by equation (3.8), is a bounded operator defined on

o o
Y {
c (a x c) & C (2 % Vc).



Note that since (3.8) represents E? as a convolution of {fle, f,.)T

1
i 1 5 W P i s
with an L* function 1t 1s easy to se=2 that Ep is also a bounded operator

on L2(Q x 29 ® L2(Q X‘Vc) with the obvious inner product, i.e.

HQflII2 2 s¢
Le(Q x Vc) B Le(Q x VC)
for some constant CL'

We now note that in the expression (3.6) for the semigroup action, we

T
have that C = - E? and so e ek 15 an isometry; i.e. e gx e L. I. Hence,

T(t) is, in fact, a semigroup on the space CD(R3 A Vc). It is also clear
from above that E? defined by (3.8) is also a bounded operator on

CO(R3 % Vc) @ CO(R32< Vc) with the same as in (3.9). A standard result in
the theory of the perturbation of semigroups (Kato, 1976) now shows that the
operator

\ﬂ = +6:

0 A.
1

defined on @ dense subspace of) CO(R3 X VC) ] CO(R3 x Vc) or

L2(R3 P Vc) @ LZ(R3 X VC), generates a semigroup U(t) such that

O 0,3
C (R x Vc) ® C (R™ x Vc)

Also,
Il uer || s exp (0 + Ct),

L2(R3 x V) e 2@ x V)

where
w =exp (L0),

and Io represents the sum of the eigenvalues of éﬁ counted with multiplicity.

This latter formula follows from the inequality

| Ty || $ exp t)

\
!
| ucey || s exp (|| Q| ©).
LR xv )

which is easily derived from (3.4). |



Note that the equation (3.1) may be written in the form

£
1 ;
el ke +F o, (3.10)

_ T a3 o S B T
where £, = (fle, fli) g C (R x Vc) @ C (R x VC) and F = (Fe, Fi)

is the control term. It follows that the solution of equation (3.10) is

given by

t
f1 = U(t) flﬂj) + J U{t-g) F(s) ds , (3.11)

Q
where fl(O} is the initial distribution. Note that, as sctated earlier,
if the plasma is to be confined to the regiom of space {, then (3.11% ig

only valid for t such that
{Supp fl(t)% U {Supp fl(o)}"-j Q.

If this condition is satisfied at time t = o, then there will certainly
exist a time T > O such that it is satisfied for t € [0, T ]. Hence it
is meaningful to consider the control in equation (3.10) in the interval
[: 0, T:I for fl € CO(R3 £ Vc) @ CO(R3 X Vc)' All that remains now 1is
to specify the control F and to define the cost fqnctional, These

problems will be dealt with in the next sectiom.

The Optimal Control Problem

In the present problem control is achieved by placing a probe in the plasma
and varying the voltage u applied to the probe. Then the field Ec produced
by this control is proportional to u and so the control term F in equation

(3.10) may be written in the form

q af q; DE .
(fagy Moo | G, 7w ), (+.1)
AR

for some specified function ¢ such that Supp ¥ € ). () is the potential in
space which results from the voltage u applied to the probe neglecting the

plasma electric field. This assumes that superposition of electric fields



is valid here). Since u 1s the(scalar)control, it follows that the
control term in equation (3.10) may be written in the form Bu whera 8 e
8 ; 5 ; ;
I(C(ﬂx\fﬁ}ﬁco(ﬂ * Vc:)) is a bounded operator defined in an obvious wav from

(4.1). The plasma equation (3.10) now takes the form
By =.9dff1 + Bu (4.2)

which is the standard state space representation of a system for control
theoritic purposes.

In order to specify an appropriate cost functional, note that it is

desired to keep £ "near" to the equilibrium distribution L, (foe’ foi)T
and so a reasonable cost functional to choose is
J Lol =<6 - £, 6 (£@ - £)>
T .
+ f [:<f1(t) - £, M(£,(t) - £)> .+ R u(t) | dt, (4.3)

o

where the inner products <.,.> are with respect to Lz(ﬂ X Vc) ] Lz(ﬂ b Vc)

and G, M ¢ i{LZ(Q X Vc) & L2(Q ® Vc)). R is a positive real number, and
represents a penalty on using too much control. We therefore have a tracking
problem defined in the standard form on a Hilbertlspace H=

Lz(ﬂ X Vc) ] LZ(Q X Vc)’ the solution of which is given in Curtain and Pritchard
(1978). The results will be swmnarized here for the convenience of the

reader. Firstly, we define a sequence of controls of the form

1

uk(t) - Fk(t) fl(t) - R "B* Sk_l(t) . (4-4)¢

where

-1
~RBAQ_,(6) ; F (t) =0

F (6

]

M + F, HRF, (t)

M (t)

# B* is the adjoint or dual operator of B



Q (t)h = Ux(7,t) G U (T sthh
T
i J Uf(s,t) ”ka s) Uk( s,t) hds
&

for any h € LZ(Q b Vc) ] LZ(Q x Vc),

Sk(t) = - Uk*(T,t) Gr (7)

T
=,
- & s *
f 0 (p,0) [Mr(p) = (@ (p) = Q (PNB R B* 5, () | db,
t
s (e) =0,
where Uk(t,s) is the perturbation of U(t) by B Fk(t), 1.8 Uk (t,s) satisfies

the equation
E=(A+BF (E)E ; £(0) =5 e D).

As one would expect, the control 4 is of the form of a feedback term and an
open loop term. We have the following result:
Theorem 4.1 (Curtain and Pritchard, 1978)

Qk(t) converges strongly (i.e. Qk(t)h convergeé for each h) as k + =

g,
to a self-adjoint operator Q(t) Ei{LZ(Q X VC) @ LT(nR x VC)) which is the unique

solution of the imner product Riccati equation:

& «qon, k> + Qb ke + Fh, Q0) ko + o,

= <Q(t)BR IB* Q(t)h, k» on [0, T ] (4.5)
Q(T) = G,
for h, k € DGA). Furthermore, Sk(t) converges strongly as k - = to the
operator T
S(t) = - U* (T,t) GfO - J u* (p,t)Mfo dp, (4.6)
e t



-1
where U(t,s) is the perturbation of U(t) by -BR TB*Q(t).

Finally, the optimal control is given by

w (£) = - R_]'B*Q(t)fl(t) -~ R mrg(e) (4.7)

The cost for this control is given by

I, Cu s ts £00)]

<£(0), Qo) £(0)> + «:fo, GE >

T
" J <€, ME_> dp - 2 <£(0), §(0)>

o]

i

T .
J<Sngp)._.. BR LB*S;EEP)> dp. @ (4.8)
Q

Now introduce an orthomormal basis {E{} nf H = LZ(Q % VC) 5] LZ(Q % VC)

consisting of elements which belong to DEY . (This is possible since D(&) is
dense in H). Thus since B : R -+ H and B* : H* (=H) » R, we can write
o ——
B = .B. * Vo= .
(1) -E blel B (ei) bl
l:}_ 3

Hence, from (4.5)

<Q(t) &, T+ <Q(r) ‘e-i,s‘t.aj> + <Ke., Q(t) &>+ <ME, B

= <Q(t)BR"lB*Q(t) e, >,

]
or
Cﬂlij +kil 4k #ik +kila.ik Tgje ® R"lﬁil kil 44y by by Qs = Ty (4.9)
where
Q(t) Ei = El R (t) ‘e?j ,

1

The final condition for equation (4.9) is Q(T) = G, or

qij(T) = gij (4-10)



In order to solve (4.9) and (%4.10) numerically it is necessary £ realize,

kY 4 . . : 5 - E .
a priori, that one can control only a finite number of modes of the systen

in practice. Hence we assume Chat

m,, =g.. =0 for i > N or 3 » N, say.

1] 1]

(In other words, M and G operator in the subspace of H generated by the

functions { &, },1 £1gN). It follows from (4.9) and (4.10) that if
i

i » N or j » N then qij(t) = Q0 is a solution of these equations. But the
|

equations have unique solution and so (4.9) and (4.10) may be replaced by

the system
. N N v n ‘
95 5 +k£1 Yr ik +k§-1 Bop Yy = B Pt kii Yy P By G5 7 By50
for 1 £ 1, 1 € N
qij(‘l’) = 83
qij(t) =0 , for 1 or ] » N
and all & = {:O, T;j s
This is a finite-dimensional matrix equation and can be solved off-~line for
a fixed T by standard methods.
The remaining problem is the calculation of the operator U(t,s) in

equation (4.6) for the open—loop term. Now U(t,s) is the perturbatiom of

UCt) by ~BR 1B* Q(t) and U(t) is the perturbation of T(t) by Q. It follows
that U(t,s) is the solution of the equation

t ]
U(t,s)h = T(t-s)h + J T(t"-a)[:Q—BR B% Q(m)] U(x,s8)h da (4.11)

S

for any h € H. The solution of this equation can be written in the form

U(t,s) = I U_(t,s), (4.12)
=0 B
where
Uo(t,s) = T(Evs)
U_(t,s) =f T(t-a) [ O-BR 'B* Q(a) ] U (a,s) du, (4.13)
g n-1



_]_8..

and convergence of the series (4.12) is in the uniform operator toponlogy.
Again, a good approximation to the solution of (4.11) could be obtaired by

evaluating (off-line) the integral terms (4.13) in the sum (4.12) at a finite

number of basis vectors {Ei}, i €1 g N. Consider, therefore, the operation
of a;BRle* Q(a) on E?; we have
i —]_ — S i —1 N —
= ® = - % . .
T, &@mme Q(a))e, Qe -BR Bjil 95 (@) e
i
= 612' = R_l g q, .(a) B [}3(j) < e n >
k 21 k] G+1)/2 ° e 9
J Lo x V)
c
+ E € By >
(3) €sgr Ty ) ]
L7(Q x V)
T
= AEE E (e ) ?EZEE Ei.g (2. ) 9f01
m k" Bv > m. —p k' v
e by Ehis
N T
SR D gL (, n)  [0G) < e n >
s kj g i1 (3+D L2 * e
j=1 2
L
+ E(j)<¢-/2,ni>2—[
L]
where,
1 if j is even (odd)
B(i) (0C)) =
o if j is odd (even) ;
4mq A ¢ 2 ) e dv dr' k odd
e J]-T [3—5' (k+1)/2 = = ~’
f v
e
E (Ek) =
brq, | ¥ (e )
I[E,' Ei ek/ dv dr' , k even
Q
c
and
ﬁi 'Bfo.
ﬂj-_-mj V'IJAB*“‘J-E , for j = e or i.



Hence, by (4.13),

I

Uo(t,s) Ek (z) Ek (exp (-At) Z).

£
1 J un-1,k£(a’s) :z (exp (-A(t-a)) z) do,

=

[
™8

Uy(29) & (@ =

where,

un—l,kz(a’s) = < eg,qég,s) R B

Alternatively, one could substitute Eﬁ for h in equation (4.11) and,
making the above identifications for the operators Q, Q and B, solve this

integral equation numerically for U(t,s) Eﬁ. For a general h e H, we

then have

=

U(t,s)h =n51 U(t,s) E& < h,Eﬁ >

provided

=

ln-1 e <hye > |
n=1

is small.
Once the above calculations are made the control law may be implemented

in the way illustrated in Fig. (1).
U(t)f'(oj

il
-R "BS(t)
o i(%k ) B > Uft) % o !

R LB*q(t)

Fig. (1)




=1,
=R BS t) u i +u+

..-2{)_

Conclusions

In this paper we have presented a thecretical study of the optimal
control of plasma confinement, and have indicated the way in which the
control would be evaluated. The feedback law (4.7) requires, of course,
a knowledge of the states (distribution in this case) of the system
throughout the phase-space Q X Vc’ even though we are applying control

in a confined region (namely by applying a voltage on a probe). The

i
problem of optimal estimation of the state of the system will be considered
in a further paper, since this represents an interesting problem on its own
right. The separation theorem can then be used to implement the control in

the form of Fig. (2), rather than that of Fig. (1), where C 1is an observation

operator and f is the optimal estimate of £ and v is a white noise process.

U(c)£Lo)

f

optimal

R B*Q(E) :
filter

observation
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