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Abstract
The circle theorem is generalized to the case of non-linear parabolic
systems using anelementary application of the spectral mapping theorem

to the semigroup of the system.

O Tl o oot oot B ‘g‘;.'-'»‘-;ﬁ’.x?
Shicrricey) Uikive.
APPLIED SCIENCE
m B § e e

LIBRARY

DN

a x\\ KO



T ——— .
-1 =
1. TIntroduction
The circle theorem for non-linear systems gives a simple geometrical
criterion for the input-output stability of the system. Since the theorem

was first discovered by Sandberg (1964) and Zames (1966), it has been
generalized by many authors (e.g. Saeks(1970), Freedman et al, (1969)).

In the latter case the theory of abstract harmonic analysis is uded to derive
a Hilbert space version of the theorem. In this paper we shall give an
elementary proof for the case of parabolic systems and relate the critical
disc directly to the spectrum of the operator (and the boundary conditions)
defining the linear part of the system. This is possible by using the theory
of analytic semigroups, which may be found in Yosida (1971).

Our notation is the standard notation for Hilbert spaces and semigroup
theory. Thus if an operator A with domain D(A) dense in the Hilbert space H
satisfies the conditions of the Hille-Yosida theorem (Yodisa 1971), then A
is the infinitesimal generator of a semigroup Tt on H.

For our purpose the proof of Sandberg (1964) will be generalized to the
Hilbert space setting, and as such will follow very closely this proof.

The main difference will be the use of the spectral mapping theorem to relate
the spectrum of A to the critical disc.

2. Preliminary Analytical Results

In this paper we shall be concerned with C0 semigroups Tt defined on a

Hilbert Space H. The following results will be needed in the succeeding
sections and will be given here for the convenience of the reader. Proofs
of these results can be found, for example, in Yosida (1971). We shall assume ‘

that the reader is familiar with the notion of Co-semigroup and Hilbert space
valued integration. The first result we need connects the resolvent of the

infinitesimal generator R(A;A) with the Laplace transform of the semigroup.
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Theorem 2.1 The right half plane of the complex A- plane is in the resolvent

set f(A) of A and

R(A;A)x = (AI—A)_lx = e-}\tTtxdt for Re(A)>0,

0 - 8

and Y xeH. ©

If the spectrum of A is entirely in the open left half plane, then by the
Hille-Yosida theorem, Tt is a stable semigroup and it follows from theorem 2.1
by analytic continuation that we have

Corollary 2.2 The Fourier transform of Tt exists and we have

R(iw3A)x

bl

® it
[ e w Ttxdt —w< <o, a
o

We next describe Dunford's integral calculus for bounded linear operators
on H, Let B be a bounded operator on H and let F(B) be the class of complex
functions which are analytic in some neighbouthood of the spectrum c(B) of B.
Then, for feJ(B), we define

£(T) = (2ri) T £ EQUROGB)AA,

c

where C is the union of a finite number of rectifiable Jordan curves which
contain the spectrum of B. Then we have
Theorem 2.3 (Spectral mapping theorem). 1f f€$(B), then

f(o(B)) =0 (£(B)). Q
Let Lz(—m,w;H) denote the set of maps a:(-=,=)>H
such that

@ 2
Slace) ||y at < =

If {en}n>} is a basis for H, then there is an isomorphisormn

it L, (-2, & L, (-=,)
n=1



defined by
L (0) = (al®),e )
Composing i with F (the Fourier transform, which is also an isomorphism)
we can easily obtain the following generalization of the Riesz-Fischer theoremn.

Lemma 2.4 1f uELZ(—m,m;H) satisfies

?m<a(t),a(t)>H dt < = t
then there exists ﬁcLZ(—w,w;H) such that
FP=0o0 . D
Finally we note that if B is a normal operator on H, then the spectral
radius of B , r(B), is given by
r(s) = |[B]]
Thus, for a normal operator B,

sup < h,Bh > = r(B) .,
ul|=1

3. The System Equation

The basic system with which we shall be dealing is a differential equation
of the form
(3.1) x(t) = Ax(t) - £(x(t))
where A is an (in general unbounded) operator defined on H and Q is a non-
linear map which satisfies
(3.2) ||Qh - ah ||L2(O,w ) S yL(u)Hh] [Lz(o,w; 1)
for any real o and

vL(x) = max [(a—a),(b~a)].

(Here, (Qh) (t) = f(h(t)) for almost all t3 0.)

If A generates a semigroup Tt, then we shall consider (3.1) in the 'mild form'



(3.3) x(t) = Tx_ - it T £(x(s)) ds

We shall define the operator KGI(LZ(O,m;H)) by

(Kh) (t) = ftTt_Sh(s) ds
for all h€3L2(O,W;H). ° Thus, we have reduced equation (3.3) to the form

g = x + KQx
where g(t) = Tt X € LZ(O,m; H) if Tt is a stable semigroup. Clearly K is
a causal operator and we shall assume that Q is also causal. In the next
section we shall prove the basic circle theorem, by mimicking the proof of |

Sandberg (1964).

4. The Circle Criterion

The first two results we need are stated below and their proofs are
formally the same as in Sandberg (1964), except that the norms are replaced
by norms in L2(O,m; H).

Theorem 1. Let x ED(Q)GLS(O,m;H) be such that Qxem(K)an(O,m;H) .

KQxeLz(o,w;H) and g = x+KQx.
where g€L2(O,m;H). If x, denotes the projection of x on LZ(O,T;H) and
XTED(Q) for T€(0,~) and there exists a complex number o such that

(1) (IHK)—llL(Lz(O,“’;H)) and is causal

Gi) |1+ k] | sup ] (Qxe) r=oma] | <1.
x}O Il

X
T

Then, =€ L2(O,W;H) and

x| ] £ (1-0) 7 | (z+or) "Lg |

where

- 0

T = [|(I+GK)"1K|[ su H(QXT)T R
XTEO

T
Lemma 2. If C EILLQ(O,W; H)) is invertible and for xELz(O,m;H),
CS x =8 Cx ,tz0,
E T

=1
then C = is causal} where

(STX) (t) 0 , tefD, 1)

x(t-1), te fr,»). 0O
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Lemma 3. Let u ¢ Ll(O,w;i(H)) and let U EIKLZ(O,m;H)) be defined by

Ux= ; u(t=t)x(t)dr, xeLz(O,m;H)
Then if °
U(s) = ? u(t)e_Stdt,Rﬁsz_O
0
and
0 ¢ o(I + U(s)) for Res>0
we have
(i) (I + U) is invertible on Lz(O,m;H) t
G [+ 070 |< sup A TED] T Tiw))
_Proof. Consider first the operator I + V defined on L2(—w,m;H) by

(I+V)x = x + ; u(t-1) x(t)dr, XELZ(—w,w;H)
Since ueLl(O,m;IJH)) ¥ we_see that ]|ﬁfiw)|] ~ 0 as |w| +* (w=3ms).
Also, U(iw) is a continuous map. Now the spectrum of a bounded operator is
a closed and bounded set and if d(w) is the distance of the spectrum of
I+U(iw) from the origin, then d is continuous, d{w) # 0 and d(w)-+1 as Iml+m .
Hence

sup A [I + -ﬁ:(iw)]ml} <o,

Now let § denote the Fourier transform of an arbitrary element

g ELZ(—W,mgH). Then,

17 <[] W, [06E0] e W), du

- OO

%
- /7<g(w), [1TG0] ™ 06w ] 8La)7y du

< TR W (s b ([14TG0] )
< o
and so, by lemma 2.4,3 XELZ(—W,W;H) such that
g = [TTGEw] 8.
Hence, I+V is invertible. If we consider the matrix representation of

EI%ﬁ(Sj]_l in terms of a basis {en}ru-l of H, then, since U(s)+0 as |s| -=

-



=
uniformly in the closed right half plane we see that each element of
[I¥ﬁ(s)]_1 in this representation is analytic and uniformly bounded for
>0. Thus, (cf. Titchmarsh,1948), (I+V)_1 maps
{x : XELZ(-W,w:H), x(t)=0 for t<0}
into itself, and so I+U is invertible on Lz(O,msﬂ).
The inequality now follows as in Sandberg(1964), by using Parseval's
identity in L2(0,M;H). (That this result is valid in L2(O,M;H) can be
seen using the isomorphism i in section 2, the inner product in §=1 LZ(—W’W)‘
being given by

(==}

Sn3, MoH = Tl B s
1 1 1 1

for {h}}, {h?} e® L (-=,=), O
1 1 n=1 "2
We are now in a position to state the main stability result, which
can be obtained from theorem 1 using lemmas 2,3 with o in theorem 1 being
replaced by i(a+b).
Theorem 4. Let Tt be a stable semigroup and let
t
g(t) = x(t) + JT _ fx(s))ds,

o

where gELz(O,w;H) and f (and therefore Q) satisfies condition (3.2). Let

R(s;A) again denote the resolvent operator of the generator A of Tt. LE,
(i) 0 ¢ o (I+i{(a+b)R(s;A)) for ReS>0

(ii) 2 (b-a)sup AMI[T + %(a+b)R(im;A5]“1R(iw;A)}<1

then X € L2(O,m;H). u

Now note that

A e o(A) 1iff 1 e o(R(s:A))

Let ’ gs:ﬁ\{o}+ € be the function defined by
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£ (M) = 1, foralls e

L
s=A
By the spectral mapping theorem, we have

(4.1) o(I+}(a+b)R(s34)) = 1+} (a+b)€s(cr(A))

and

3 (b-a)of [T+} (a+b)R(10;8)] ! R(iw,A4)}

. ma) [+ @)z, 071 g )] neo@}
assuming 0 ¢ o(I+}(@+b)R(iw;A)) y ~OSw<e,
Let us examine condition (i) in more detail. According to (4.1) -
condition (i) is satisfied, if, for each iec(4),
0 # 1+%(a+b)£s(k) for Re s>0
However, as is well known, this is true if the polar plot of E(iw)(l) does
not encircle or pass through the point [}2(a+b)_1,0]. Hence. condition (i)
is satisfied if
The region traced out by the set valued map w+£(iw)(U(A)) does
(4.2) not contaim a curve which encirecles or passes through

2@t ,d].

%oy FR)

\?\ > §(Lu a\(«(ﬂ))
\ "2.(&: b

Fig. 1.
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Similarly, condition (ii) is satisfied if
The region traced out by the set valued map m+E(iw)(0(A)) does
not intersect the region R(a) e for -«<wp<w,where
(4.3) (a) R(a) = disc of radius %(a_lwbwl) with centre

[—%(a_1+b_1) ,0] if a>0

(b) R(a) = half plane Re S<-b © if a=0

exterior of the disc in (a) if a<O0 .

(¢) R(a)

ﬂ

(

¢

N

Fig. 2.
We have therefore proved.

Corollary 5. If Tt is a stable semigroup and

t
g(t) = x(t) + S T __ f£(x(s))ds
' (0]
where geLz(O,w;H), and Q satisfies (3.2). Then if a>0 and

conditions (4.2), (4.3) or a<0 and condition (4.3) is satisfied, then

XELZ(O,w;H). )



5, Examples

We shall now give an example of the theory to the case of a parabolic

system
(5.1) x(t) = Ax(t) -f(x(t))
where A generates an analytic semigroup (cf Yosida, 1971). In this case

the spectrum of A is assumed to lie within a sector

S = {x: =g < |arg (A-d)|<m ,Agd}

d,¢

where d<O.

We note first that it can be shown by elementary methods that, for
each peg(-w,=),the function g(im)(l) maps Sd 0 into the circle of radius

}a&and centre (%A, 0). Also A generates a stable semigroup, and so

0 2
LT x |7 e <

for any xoeH ; Thus, the condition on g in corollary 5 is automatically
satisifed. Hence, we have
Theorem 6. If £ (or Q) satisfies condition (3.2) and if az 0 or a<0

and 2d>-a, then any solution x(t) of (3.2) belongs to LZ(O,W;H).
As a specific example of the system (5.1) , consider the partiaal
differential equation

oz (tx) _ Bzz(t,x)

ot sz

+ pz(t,x) - £ (z(t,x))

where x¢ [0,1], and

oz

—'5;{" =0Whenx=0, 1.
Then the operator
822
Az = —= +p z
2
ox

with domain
82

D(A) = {zeL,(0,1): &2 ¢L_(0,1), 2 = 0 at x= 0,1}
2 sz 2 ox
generates an analytic semigroup. A has the spectral values
; 2.2 y
A; =P -G-D 7, 321,

J
Suppose that f satisfies

(5.2) < £(h(x)) -ah(x), f(h(x))-bh(x) >L2(0,1) 20,



- 10 =

for all hELz(O,l).
Then, we have
”Qz—%(a&b)z | |<%(b"a) [ |z| |
for ZELZ(O,m;Lz(O,l)). Hence, if condition (5.2) holds and a30 or a<O
and 2p>-a, then any solution z(t,x) satisfies ZELZ(O,W;LZCO,I)).

6. Conclusions

In this paper we have obtained a circle theorem for nonlinear parabolic
partial differential equations. Our proof is essentially elementary, |
following Sandberg (1964), and does not require the use of abstract harmonic
analysis as in Freedman et al (1969). By using a property of semigroups
and the spectral mapping theorem we have related the result directly to the
spectrum of the operator A. This is useful in many cases when the boundary

conditions make the determination of the spectrum of A very simple.
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