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Abstract

VAT 2y .

The nonlinear variations of constants formula is used to derive

state estimates when a nonlinear system is subject to bounded imputs.

Both input—output and Lyapunov:® type methods are examined,



1. Introduction

In recent papers, Cook (1980a,b) has studied the effect on the states
and outputs of a system when the input is subject to boundedness restrictions.
The type of systems considered are of the form

% = Ax + Bu + P(x,u,t) xR
where A, B are matrices of appropriate sizes and | satisfies an inequality
of the form
(2.1) |1y x,u,t)]] <o+ 8l|x]]
for l|x|] < vy and ueQ (the constraint set for the inputs).
In this paper we shall generalize these results to the case of nonlinear
systems subject to nonlinear pertubations of the form

% = f(x,t) + Bu + ¢ (x,u,t)
by imposing certain restrictions on the unperturbed free system

x = £(x,t).
In order to obtain bounds on the states we shall use the nonlinear
variations of constants formula due to Aleksee¥ (1961), which we shall
discuss in section 2. The application of this formula to obtain state
bounds assuming a bounded control is presented in section 3 and a Lyapunov
type approach to the same problem is then discussed in section 4.
In section 5 a simple example is presented to illustrate the theory.

2. System Description

We shall assume that the system which we are considering may be written
in the form
(2.1) %(t) = £(x,t) + Bu + ¢ (x,u,t)
where it is supposed, for simplicity, that the unperturbed free system
(2.2) y(t) = £(y,t)
has sufficient conditions imposed on f to ensure the existance and uniqueness

of solutioms. Let y(t; ) denote the solution of equations (2.2) with
Yot .
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initial condition y(t0)= Y,- Then, using the Aleksee¥ nonlinear variation
of constants formula (cf.Brauer, 1966) we have the following result:

Lemma 2.1 The solutions of equations (2.1) and (2.2) are related by the

formula (where we consider each equation to have the same initial condition

xo) :
t

(2.3) X(t;xo’to) = y(t;xo,to) + i @(t,s,x(s;xo,to)){Bu(s)
(o]

+ v(x(ssx >t ), uls),s)lds . o
In equation (2.3), ¢ is the matrix function given by
-8 s
o(t,t ,x ) == [x(esx_,t)]

(o]

and it is the fundamental solution of the variational system
Z= fx[t’x(t’xo’to)] Z .
In order to obtain a suitable bound on ¢ we introduce the ™logarithmic

norm'" of Lozinskii (1958);

@) = 1lim || +hA|] -1
h-+0+ h
where ||-||denotes a particular matrix norm. If we use the standard vector

norm on R and the corresponding induced matrix norm, then u(A) is just the
largest eigenvalue of }(A+A*), which we denote by A(A). We then have
(cf. Coppel, 1965):
Lemma 2.2 The fundamental matrix @(t,to) of the linear system
Z = A()Z
such that @(to,to) =1 satisfies
[leCe,e ) || < exp [/ waGuddd] (e2t ). o
o
Hence we see that if

u(fx[t,x]) < al(t) ¥ x ,t



then,

t
(2.4) ||®(t,to,x0)|] i_exp[ i ul(u)du].

(o]

We also have from Brauer (1966), the result:

Lemma 2.3 Let X Y, e“e and denote by r the straight line between X and Y, i.e.

= + - .
z(X) X k(yo xo) for 0<i<l

Then the system (2.2) has solutions through X »Y, which satisfy

[y (esy .t )y (esx e ) || € max  [[ete,e ,cON |- [ly =[] . ®

0<A<l

We therefore have the following corollary:

Corollary 2.4 If 0el is a critical point of equation (2.2)

(i.e. f(0,t) =0 V pzto), then we have
[y ey e[| < max [lete,e sy - 1ly I
y'et(y )

where
= : y= f : m
C(yo) {y:y Ayo or some }\e[O,l]}
In what follows, we shall assume that the origin is a critical point of equation
(2.2), thus enabling us to obtain bounds on 9.

3. Obtaining State Bounds

Suppose first that the control input is constrained simply by
[ul] <
and that 4# satisfies the inequality (2.1) for ||x||<y. It follows, therefore,

from (2.3) that

E 1

E E ik
||x(t;xo,t0)|| i_expL i al(u)du]|!xo|| + [ exp[ fal(u)dU]-
o o

{||B| |k +a + B v } ds,
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E
provided ||x||<y. Hence, if g(t,s)=exp£ i al(u)dé], we have
o
vy < ¥Ce,e ) | || +([|B[[k + o +BY) [ F(c,s)ds.
t
0

We therefore have

Lemma 3.1 Suppose that, for t _<t<t +§,

o— — 0
t
1-8/J E(t,s)ds >0
t
(s]
and that
j - [
(3.1) su (1 -8B S E(t,s)ds) su (g(t,t )||x
{te%to,toﬂﬂ B HtETtO,tO+ 8 ° 0

+([|B‘|k +a) S F (t,s)ds)} < v,
t(}
then if ||xo|| < v, we have
[|x(t;x0,t0)|| < vy for t‘[to’to+63' =

Corollary 3.2 With the same notation as above, if ul(u) is constant and

negative, say ul(u) = "0, O >0, then if

2

+1

a2> B
and

18]l o = ¥ (aym8-D),
we have that [[xol| < vy implies

||x(t;x0,t0)|| <y for te [to,m).
Proof This follows wasily from the lemma since condition (3.1) reduces to
the condition
%2

2

[l 1
oGP s, + {lnl e The v



which is satisfied if
| 18] [x+a < v(a,=8-1)

provided ||xo|| < ve. B

Following Cook (1980b) we can also obtain state bounds by assuming that the

L
state vector x is partitioned into m subvectors XpseeesX , Where xieu{ - g

m
Z £i = n, and that the nonlinearity ¢ is similarly partitioned, with

i=1
(3.2)

|!¢i|lﬁﬁi * %_Biji|xj|| s (V ||Xk|{§yk ,ueR) .

We can also write & in the form
® = (.. 2 i
( 13)1_<_:|._<_m,1§,]im

where each %- is a matrix of appropriate size.

Thus, using lemma 2.1 and corollary 2.4, we can write

m
. s t i}
[ (o5 °)Hi§=1 i?fc(xcg“ 15 et x D [ = 1

t m
+ i { §=1 ll@ﬁ(tfs’x(S;xo’to))||(IIB|Ik+aj)ds
o
] 1%, (s) ]
+ N A,.(t) sup x.(s)
E-l t t <s<t J
W e
where
t m
Aij(t) = i kzl ||®ij(t,s,x(s;xo,to))||Bkjds,
o
provided
z;§EFI|Xi(T;XO,tO)l| s l<i<m.

Hence, if

|f¢ij(t,s,y)l| f_¢ﬁ(t,s)

for all y such that
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B

m
IIY|| < Ad X (Yi) }
i=1

then we have

m
sy eimge ] < ] oo gl »

1 Lo i=1
m
+ ) A(t) sup  ||x.(sit ,x )]
j=1 M g <scx I OO0
ol
provided sup | |x, (t3% ,t Y o<y, .
o<T<t i o’ o i
Therefore, defining the vector ¢ by
m t m
L(t)= (e ; + [ o B| |k+a.)d
L, (t) jzl 855 0)IIXOJII L §=1¢1J( s)(|[B]] @, )ds

and denoting the matrix (?\ij) by A\ we have
Theorem 3.3 IE
-1
o(t) = {I - sup A (1)} sup z(T)
o<t<t 0<T<t

exists and

0.(t) < vy, , l<i<m,
then

sup ||xi(T)I| EQi(t) , l<i<m,

o<T<t

Proof The proof follows in the same way as Cook, 19804. &

tm
Iy ¢ij(t,s)(l|B||k+aj)ds

In particular, if ®=(®ij) is a diagonal matrix, each element of which satisfies

a condition of the form (2.4), i.e.

t
||@ij(t,t0,xo)[| jﬁexp[ F ui(u) du]

t
o

then, from theorem 3.3 and Léemma 3.1 we have
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Corollary 3.4 If, for toipipo+ 8
t t
1-8 J Ei(t,S)ds >0 (;i = exp[ f ai(u)dﬁ])
t s
5 ‘
and if
6.()< vy, , l<izm,
where
t -1
e(t) = diag({1-B s E§t,s)ds} ) sup  x(T)
to o<T<t
then,
sup [|xi(r)|| <0,(t), 1l<l<m. O

o<t<t

With this result it is possible to separate out the stable and unstable parts
of & , and consider finite time bounds on the unstable parts.

4. Lyapunov Method

Consider again the system
(4.1) z(t) = £(x) + Bu + ¢ (x,u,t).
where ¢ satisfies (2.1).

In order to apply a vector Lyapunov type argument, we shall define the matrix
function F(x) by
Poak®) =1::68.) , 40 QAdslsnansi)
ij i3] 3 ] ’
X.
N
where we assume that fi(x) is of the form
= I %+ i an i-— - B
fi(x) %J(xl) fiz(x2)+ +fin(xn) (i-1, n)
and that
lim £,.(a) = L&.. (say)
. ij ij

a0
o

exists, We then define

F,.(0) = &,..
1] 1]
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Equation (4.1) may now be written in the form

(4.2) x(t) = F(x)% + Bu + y(x,u,t)
and so if = |[x][ and | satisfies (2.1) then using the fact that
£ 1
d =@ =d x@®)
dt dt i=1
T Il
= () 1x®|d %) n .
T ae.xl l) /q_ Lyt s re
=1 ]
v . B g .}
<7 I @lx®D 7 ¢ =w)?, ae.
i=] j=11

5J|ki(t)||,a~e”(by Cauchy-Schwartz inequality)
we have,
< llreollg+ |lsllk + o+ 8z
provided ||x(t)|| < y. Suppose now that F satisfies
e || < ed]]=x[D
for some differentiable function G: R’ =K.

Then,
€ < CEEPE+ |[B][k+a , § =F(ty) = |[x(c )]

and so, if

(4.3) C, < G'EIE + G(E)+B< ¢, » V§
where Cl’ 02 are constants, we have
(4.4) [|®(t,t0,§0)[] E‘EXPch(t_to)]

where ¢ is the wvariational solution of the system

7:] = G(n)n 3 n(to) = ;O.
Defining
. t
(4.5) v(t) = n(t) + [ o(t,s,v(s))(]|B||k+a)ds
o
we have

) = GV + po+|[B[k+ o,  w(t) =z,



and hence
E(t) - w(t) < GE)E - GO)» + BE-V).
However, if G is analytic and can therefore be expanded in a Taylor series,
we have
£-9 <BE-Y)+ G(PE- CO®)» = {G"(FIF+CE) - C'OW- () I E-»)
+B8E-y)

| A

(C,~C - + 8(-»)
=, Y (4.6)
using (4.3). An application of Gronwall's lemma now proves the following result:

Theorem 4.1 Under the above assumptions, we have

t
1= [] < expe, (-t D] 1= I + 7 exnlc, (t-s3] (| [B] [k+a) ds

t
o

= e(t) , say
provided
sup e(t)¢ Y.
O<t<t
Proof We merely note that, from (4.4) and (4.5),
¥(t)| < e(t), >t
and the result follows from (4.6) . O
5. Example
We shall consider, as a simple example of the theory, the system defined

by the equations

(5.1} X = _3Xl + %,

s _ _ 3

X, = 7% 3g(x2) + X, + u
or
(5.2) x = f(x) + y(x) + Bu

where
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X = (xl,xz)T , £(x) = (—3x1+x =X -3g(x2))T

2 1

¥ = ©x)" , B= D,
We associate with (5.2) the unperturbed system
(5.3) ¥y = £(y)
and note that, for a given solution y(t) of (5.3), the variational system
of (5.3) is
é =(--3 1 ) Z = A(t)Z, say.
-1 -3g"(y,)
Hence, if
g'(yy)) 21 for all |y,| <1
we have
u(A(t)) < -3
provided |y2|§_1. Hence, we see from corollary 3.2 that if the control
is bounded by 1 , i.e. |u|<1 and we estimate y for ||x|[ < 1 by
vl = [, =) ] < |I=]]
(and so we may take a=0, B=1) then if ||x0|| < 1 we have
| [x(e) || <1 far &> 0.
We shall illustrate the use of the Lyapunov like method using the same
example; however, g will now be assumed to be sector bounded and we shall derive

a kind of finite-time stability for this system. Thus let g satisfy

—3x2 f‘g(xz) f_3x2 . X,€ R.
Now,
F(x) = (—3 1 )
-1 —3g(x2)/x2
and so
llre || < /o,

Hence, if 02 = /10+1, theorem 4.1 implies that if x0=0 and ti=(log(C2+1)/C2 , then
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