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Stability Problems in the Control of Multipass Processes

J. B. Edwards

Abstract

The general characteristics of multipass processes are discussed and a
method of process modelling is proposed based on the single independent
variable : total distance passed. The stability of a number of such i
processes, including longwall coal-cutting, ploughing and metal-rolling is
examined using this type of model analysed by the inverse Nyquist technique.
Important stability problems, arising from the multipass nature of the
processes, are exposed in all cases. Transport delays and resonance in the
single-pass loops are shown to be particularly troublesome.

A general approach to the dynamic analysis of bidirectional systems is

outlined using discrete time-series observation.

L Symbols and Abbreviations

1)
1

state variable of coal cutter steering process, (tilt)

i matrix of face-length delay terms exp(-Ls), and zeros

= force applied by roll setting drive

s}

=
i}

roll force applied to metal strip

|

1l

general symbol denoting open-loop transfer function

ﬁl = transfer-function matrices

Il

input variable to coal cutter steering process

P
i

tilt gain of coal-cutter controller

e
|

= height gain of coal-cutter controller

gain of roll-positioning servomechanism

i

gain of stabilising feedback in this servo

gain of outer loop of gauge-control system

%, ,k. = gain constants in rolling process

il

distance traversed by, or along, one pass

el
]

pass length



v =

ref

tThese

integer number of passes

mass representing lumped inertia of roll servo system

integer number of passes (even no. in section 5)

Laplace operator with respect to time t

gauge reduction factor

transfer function of the operation: '"record function and reverse its
time sequence"

matrix of transfer functions R, and zeros

Laplace operator with respect to v' (and v where this denotes a
variable distance)

speed of pass (at output in the case of the rolling process)

with various suffixes appended, denotes various process time-constants
and delays

vector of process inputs

variable denoting total distance passed

as v', (except in section 5 where v denotes a particular value of v')
displacement between process output sensor and process tool

process output vector

process outputjcoal thickness, distance between consecutive furrows,
according to the process in question

reference value of y

input strip gauge

output strip gauge

screw down displacement

demanded Yy

= reference Value of 5

process disturbance

yvield coefficient of metal strip

|
\
|
|
|
z . \
stiffness of work rolls and their supports
symbols are also used to represent the process variables normalised with l

|

respect to their time-varying references.
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A = composite stiffness of strip and rolls
z = damping ratio
W, = undamped natural frequency
2. Introduction

The rolling of metal strip, the ploughing of agricultural land, the
longwall cutting of coal and a variety of machining operations are procegses
which are similar in that the material, or workpiece, involved is processed
by a sequence of passes of the processing tool. During each pass relative
motion occurs between tool and workpiece and it is unimportant in the dynamic
analysis of such processes which of these two is the stationary member and
which is moving. The output vector function generated during pass n may be
denoted by y(n,%), where & is the distance traversed along the pass whose
total length is, say, L. (In some processes, such as rolling, L = L(n) and
will vary between passes, but more often it is sensibly constant). This
output vector function acts as a forcing-function on the next pass, number
n+l, and thus contributes towards the new output y(n+l,2). As illustrated
diagramatically in figure 1, multipass processes may be unidirectional or
bidirectional. In the former case during processing, the relative motion
between tool and material takes place in one direction only. In bidirectional
processes the material is processed in each direction alternately.

Figure 2 shows in block-diagram form a general dynamic representation of
a multipass process. The inter-pass feedback is shown acting via a transfer
function matrix E(s), whose non-zero elements are delay terms, exp(-Ls), in
the case of unidirectional processes, or via the matrix R(s) in the case of
bidirectional processes. The non-zero elements R(s) of this latter matrix
are dynamic operators of a more complex type describing the process of function
recording and subsequent readout in reverse time-sequence. The process R(s)
is illustrated graphically in figure 3. Bidirectional processes are

considered in section 5, up to which point attention is confined to the
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more readily analysed unidirectional type.

As indicated in figure 2, multipass processes may, in principle, be
controlled on pass n+l by feedback of either y(n+l,8) or y(n,2). Earlier output
vector functions or a combination of several may conceivably be used for
control of the process. Physical restrictions on the siting of some of the
necessary transducers usually demand that, in extracting present-pass
information, some delay in sensing is unavoidable such that, at instant n+l, %,
only the signal y(n+l, &-X) is accessible, where X is the sensor/tool separation.
The accessibility of y(n,%) for control purposes may depend, as in the case of
coal cuttingl, on the availability of digital computer storage. The controller
designer may therefore have to cope with certain elements within the transfer
function matrices §3(s) and_§3'(s), (figure 2), which are prespecified.

It is frequently the case that automatically-controlled multipass processes
appear perfectly stable on a single-pass assessment but are never-the-less
highly unstable over a sequence of passes. Such instability, when present,
is predictable analytically if the process variables are expressed as functions
of the single coordinate v, [= (n—l)L+i}, = total pass distance up to the
proint n,%, {i.e. y(n,%) becomes y(v)}, and by taking Laplace transforms of the
system with respect to v. The unidirectional coal-cutter steering process,
for instance, is governed by the equations

y(v-L) + a(v-L) + J(v-L) (1)

Ii

v (v)

a{v-L) + J(v-L) (2)

and a(v)
and the control algorithm in current use is

J(v=-L) = khFYref

- y(v—X)] - kg a(v-L) (3)

v and a being the process states and J the control. Control law 3 uses
previous-pass values of a and present-pass values of y, though delayed by
sensor displacement, X. If, for convenience only, gain kg is set to unity,

the system reduces to the form shown in figure 4, and its open-loop transfer-

function becomes
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kh exp (-Xs)
G(S) Il = EXP(“'LS)} (4)
the inverse Nyquist plot of which takes the form of figure 5. The process

is clearly unstable for all practical values of X, (X<<L), since the critical
point is encircled for all gains kh, even though thersingle-pass loop may be
stabilised merely by setting kh less than unity. As shown in earlier woykl by the
authors , the process may only be stabilised by extending X artificially to
equal L, but this requires storage facilities not available to current analogue
controllers.

In the present paper the method of modelling, (in terms of v), and of
analysis, (in terms of the inverse Nyquist locus), developed by the
authorsl for the coal-cutter are applied to a number of other multipass

processes and developed for general application.

Fa Self-Steered Tractors

Figure 6 shows the important process variables defining the state of
this system, the object of which is to maintain straight furrows, parallel to
some datum line, and equi-spaced at intervals yref' When no buried guide-
wires exist, some form of mechanical or electro/optical sensor is employed to
measure the error signal, ye(v), in the displacement between consecutive
furrows n and n—1, the present furrow being the nth. The control systems,

; . ; : 2 . 3 ;
described in detail by Hilton and Chestney and by Julian™, are of relatively-
high order and contain some mild non-linearities. Fundamentally, however,
the error signal is amplified and integrated through the steering action of
the front wheels, at which point the disturbances z(v) act upon the process.

* . 3 .
For present purposes a second-order model of this single-pass loop 1s employed,

described by the equations

’,: - . - .
Simulation and inverse Nyquist loci based on the full single-pass dynamics
yield the same general conclusions as predictions based on this model.
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F(o) + 2(v) =y (V.o "+ {F(v) + 2(v)}2Cw (5)
apd T 0 B < y (v) (6)
where w, and ¢ are constants if constant speed is assumed. However, as 1s

obvious from figure 6, the system output y(v) contributes towards the next
disturbance z(v+L) in the manner:

z(v+L) = y(v) + z(v) (7)E
and, likewise,

z(v) = y(v-L) + z(v-L) - (8)

[This interaction between passes occurs purely through the controller,
attention here being confined to the currently popular "out of furrow
ploughing".  Further interactions occur within the process itself if ploughing
takes place with one back wheel in the previous furrow].

Equations 5, 6 and 8 yield a block diagram for the unidirectional multi-
pass process of the form shown in figure 7 and its stability can be determined
by examination of the open-loop transfer function

w 2 exp(-Ls)

G(s) = 20 (9)

w + 2Cw s + s
o o

The system parameter, W represents the undamped natural frequency of the
single-pass loop and will be of such a magnitude that:

W, >s 1/L (10)

The inverse Nyquist locus for s = jw, is therefore a spiral orbiting the origin
of G—l(s) counterclockwise and making approximately one revolution for a
frequency change, Aw = 2m/L. If the single-pass loop is at all oscillatory,
or more precisely if £<0.707 then the encirclements of the critical point

-1, jO for w finite, will be more than compensated by the infinite radius

. % . i ; .
clockwise orbits described by G “(s) when s 1s set to Raexp(JS), where

* 3 i e . ‘
For the complete inverse Nyquist stability criterion references 1 and 4 should
be consulted.



Ra > o and /2 >0 > -n/2, and under such circumstances the multipass system
-+
will be unstable.

The simulated system response to a step disturbance in the first furrow
is shown in figure 8, for the case of [ = 0.5, and clearly demonstrates the
predicted instability. If, however, the single-pass loop is overdamped the
responses take on an approximately exponential form of progressively increasing
time-constant, ultimately becoming straight, but no longer parallel to the
original datum. This confirms Hilton's observations2 of the behaviour of
an actual tractor whose servo system was presumably overdamped. Unlike the
coal-cutter problem discussed earlier, multipass instability of the self-
steered tractor, whilst being a potential danger in view of the speed-dependence
of, ¢, is fairly readily avoided in this case.

The basic causes of instability would seem to be different in the two
problems. In tractor steering the instability can perhaps be loosely explained
in terms of repeated excitation of the single-pass resonance. In coal-cutter
steering, the sensor delay X is the root cause of instability but its effects
are too profound for convincing qualitative explanation.

The two processes so far considered are similar, however, in as much as
the multipass feedback re-enters the process at its output via a non-dynamic
transmittance of unit gain, (see equations 1 and 8), It is important at this
stage therefore to examine the behaviour of a multipass process in which the
transfer function matrixrgz(s), (figure 2), includes other than mere unit-gain
terms. Metal rolling is such a process, interpass feedback resulting from
the yield of the workrells and their supports, which is clearly dependent on

the gauge of the incoming strip, i.e. on the previous output gauge.

4. Metal Rolling

Since the practical object of the paper is to assess whether or not
multipass instability is a serious risk worthy of deeper investigation attention

is here restricted to multipass rolling through a single stand, (a process often



described as "cogging'"). In practice this method of rolling is generally
restricted to billetprocessing rather than strip-processing and it is often only
the latter process which is subject to tight tolerances. However, multipass
strip-rolling through a single stand could be attractive economically where
space restrictions preclude the use of several stands in tandem. This
introductory study of the control problems associated with multipass rolling
could therefore have more than mere academic relevance. In this section the
unidirectional process is analysed whereas cogging is more conveniently
accomplished bidirectionally in practice. The stability conclusions are

virtually unaffected, however, as will be demonstrated in section i

4.1 Process Model

Figure 9 illustrates the physical basis of the model to be adopted and
shows strip entering and leaving the rolls at a gauge y. (n,t) and Y, (n,t)
respectively. The gauge is adjusted by indirect manipulation of the measurable
screwdown displacement yl(n,t) which is set to a demand yld(n,t) with feedback
control which sets the force Fe(n,t) applied by the screwdown drive. The

total system inertia is here lumped at the drive and represented by the mass

M shown in figure 9. The spring of stiffness Al represents the yield of the
work-rolls etc. It is assumed, for a particular steel, that the vertical
roll force Fs{n,t) is proportional to the reduction yi(n,t)-yo(n,t). The

model is therefore described by the equations:

Fs(n,t) = Al{yl(n,t) + yo(n,t)} (11)

F (n,t) = iply, (n,e) - yo(n,t)} (12)

F (n,t) = T (n,t) + M ¥, (n,t) (13)
e S 1

where F_ is set by proportional plus derivative servo—action, according to:
e

= 4 Ty -y - 1 - :
Fe(n,t) kl{yld(n,t) yfn,t)J k, yl(n,t) (14)
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and where the demand Y14 is calculated by an outer gauge-control loop

incorporating a displaced sensor thus:

¥iq(mt) = —k3{yoref(n) = yo(n,t-T)} (15)

, T being the transport delay in sensing the output gauge.

Now the gauge reference y though constant for one particular pass,

oref’
is reduced progressively between passes according to, say, {

y (n) = r.y (n-1) (16)

oref oref
where

0 <1 < 1.0 (17)

If all the process variables are normalised with respect to the current
gauge reference but denoted by the same symbols as previously, (e.g. if
yo(n,t)/yoref(n) is now denoted by yo(n,t)), then the process model shown
in figure 10, can be derived, clearly showing the non-unity gain of the

inter-pass feedback and the dynamic terms present. The parameter A in figure

10 is the composite stiffness of the work-rolls and strip and is given by

A= Alhz/(ll+l2) (18)
and the natural frequency, mo, and damping ratio, 7, of the single~-pass syvstem,
(roll-setting servo), are given by
w = (L =+ kl)/M

(19
and 2zw = kz/M Lt

4.2 Normalisation of the Distance Base

The Laplace operator, p, in figure 10 is taken with respect to time, t,
but, unfortunately, a simple time-base is not strictly appropriate to the
performance analysis of this type of process because of speed-changes between
consecutive passes. Nor does absolute distance provide a correct basis due
to the progressive lengthening of the pass which is governed by the equation:

L(n) = L(n-1)k (20)
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if a constant width of strip is maintained. In fact, any particular
elementary section of the strip located at some distance #(n-1) from the
end of the strip on pass n-1 will, on this assumption, be located at 2(n)
on pass n, whare

p@) = (a1 (21)

Now process stability should be assessed on whether or not oscillations

{

i ‘
in the relative gauge of any particular elementary section of the strip

converge or diverge as n increases. For the analysis of stability, or
general dynamic behaviour therefore,it is preferable to regard the strip-
length as fixed at L(l), (=L), such that the arbitrary strip section under
observation remains at a distance £2(1), (=L), from the end of the pass.
This, of course, demands that truly fixed horizontal distances, such as the
sensor displacement X, must now be considered as reducing as n increases,
according to

X(n) = X@Lr = X 1"nm1 22)

The truly time-based dynamic parameters in figure 10 would, on this basis,
require modification as follows

w
(6]

w (n) = ———— (23)
0 5(n) = 1

where wo(n) is the undamped natural frequency of the roll-setting servo with

respect to 4, and S(n) denotes the output speed on pass n. Furthermore, since

it is likely that the speed will be increased as n increases, it may be

reasonably taken that

s - S W
r

(24)

so that, from equations 23 and 24 we have

relative gauge = the strip gauge normalised with respect to the current
reference gauge.
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wo(ﬁ) = - a constant (25)

To this realistic basis, therefore, the process dynamic coefficients all become

constant, or nearly so, with the exception of the sensor delay distance, X(n).

4.3 Determination of System Stability

It is convenient and illuminating to consider first of all the performance
of the process in the absence of all dynamic terms other than the two delays
which are fundamental system constituents. On making this simplification,
the process block diagram reduces to the form shown in figure 11, the open-

loop transfer function of which 1is, for the nth pass,

k, exp{-X(n)s}

4
Gle) = 1 = k5exp(—Ls) (6]
k. .k, A
173
where k = o (27)
4 (A+kl)A2
i
1 i i
and k = = (28)
3 i Al RZ(A+R1)

Apart from the time-varying sensor delay, the chief difference between the
fundamental multipass dynamics of the coal cutter, (equation 4 and figure 4),
and this rolling process, (equation 26 and figure 11), is, as expected at the
outset, the existence of the mon-unity gain term, k5, in the interpass-feedback
loop of the latter. This gain has a readily-appreciated physical significance
since, if it is assumed that the strip is relatively '"soft'" and the rolls

relatively "hard", i.e. if

)l > RZ
A A
then k, = %— e S (1 + WL) (29)
5 r A k
1 1
and K, =2k (30)

o~
a2
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where kl’ previously defined, is the stiffness of the roll-setting servo,

and k3 is the gain of the outer gauge control loop. Equations 29 & 30 also assume

that

Clearly from equations 26 and 29, if the steel 1s very soft such that roll-

yield is completely negligible, k. tends to zero and the process dynamics

5

reduce to those of merely the single-pass loop, as would be expected. Assuming

that roll-yield is not negligible however, then k_. will be significant,

5
increasing with increasing reduction rate and with the ratio of the roll to
servo stiffness, (Al/kl). Values of k5 approaching, or perhaps even

exceeding, unity could well be approached in some cases therefore, despite

Ao /A

o/ itself being fairly small.

Ignoring for the moment the fact that X(n) is time-varying, figure 12
shows the inverse Nyquist plot of the system for the moderate value of
k. = 0.5, (obtained, for instance, with r = 0.8, equal Al and k

3
ratio of 0.20). Clearly, if k

1 and a Azfll

5 < 1.0, unlike the coal-cutter case, there
; . ~, . .
exlsts a stable central region of the G " (s) plane in which to locate the

critical point which is achieved by ensuring that

ka < 1 - k5 (31)

For single pass stability, of course, it is merely necessary that

ka % 1.0 (32)

With k4 adjusted to satisfy the multipass stability condition (31), the
clockwise and counterclockwise encirclements of the critical point clearly
counterbalance. Stability will, however, be achieved at the expense of a

very low system gain and, if k. > 1.0, then stability is unachievable if the

5
sensor is located behind the stand as assumed.

With the aid of an appropriate computer—aided frequency-response display

package, the dynamic terms so far neglected can be included fairly readily, if
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equation 24 holds), to produce inverse Nyquist loci of the complete process
and scope does exist, with ks < 1.0, to manipulate the parameters of these
terms to obtain stability not entirely at the expense of d.c. gain. It is
essential to include the interpass feedback effect, however, since, with or
without the inclusion of servo dynamics, single pass stability is no guarantee
of multipass stability.
Inclusion of the time-variation of the sensor delay, X(n), in analytical

studies has yet to be investigated by the author, and this would seem to be

a profitable study since simulation reveals that with values of r of the order
of 0.8, although the process oscillates considerably, the oscillation amplitude

does not grow so drastically as in the fixed delay problem.

o Bidirectional Systems

Having revealed complete or potential instability in all the unidirectional

processes considered so far, it is important at this stage to investigate
whether or not bidirectional operation of the processes provides a cure for
this instability. As illustrated in figure 2, a change from unidirectional

to bidirectional working involves merely the substitution of the matrix R(s)

for E(s) in the interpass feedback loop. The operation R(s), (which constitutes

the non-zero elements of E(SD, is, however, much more complicated than the
simple delay terms, exp(-Ls), already encountered in unidirectional processes.

This operation is now considered in more detail.

5.1 Nature of the Transfer-Function of the "Record and Reverse'" Process

The input/output relationship for this process, R, has already been
illustrated in the time-, or more precisely distance-domain, in figure 3,
which shows the process variable generated during pass n being stored as an
entire function of distance and subsequently reappearing at the output of R
in reverse time-sequence, during pass n+l. If the input ei(v') to the process

R were, in fact, a unit impulse applied at instant, (n,%), then



Bi(v') = §(v'-v) (33)

where v' denctes the general variable = cumulative pass distance, and v
denctes its particular value at the instant, (m,%). The resulting output

of R is given by
eo(v’) = §(v' - v - 22) (34)

Now as reference to figure 1b shows, £ and v are related by:

2 = nL - v (35)
and hence the unit impulse response of the process R is given by

eo(v') = &{v' - (2nL-v)} , (n-1)L < v < nL (36)
Taking the Laplace transform of this response with respect to the variable v'

ylelds the transfer-function of the record and reverse process, R, which is

clearly distance-dependent and given by

R(s,v) = exp{-(2nL - v)s} , (n-1)L < v < nL (37)

5.2 The Bidirectional Process Output as a Discrete Time-, (Distance-), Series

The transfer-function R(s,v) is of no immediate value in the determination
of the overall system stability since it would be meaningless to substitute
any single value of v in equation 37 due to the very large variation of v over
only a few passes of the process. This turns out not to be a serious
limitation, however, since deeper consideration of the process reveals that
the process vector used for stability assessment should not be the continuous
function vector y(v') but the discrete time-series, (or more precisely, "discrete
distance-series"), y(nL-%) + y(nL+%) taken over all even values of n for a
particular arbitrary station, %, measured from one end of the pass. Figure 1b

*
shows a sequence of such stations diagramatically. Confining attention to

* ., ;
All odd wvalues of n could be used as an alternative but the distance £ in |
figure 1b would then need redefining from the r.h.s. of the diagram.
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these stations only, v is restricted to the values given by
v = 2mL-% and v = 2mL+% (38)

where m is any integer.

From equation 37 therefore, we have that

1]

R(s,Vv) 2mL-g (39)

<
1]

EXP(—RS) ’

[

and R(s,v) exp[—(L—R)s] .

<
Il

2mL+4L (30)1

The bidirectional output sequences y(2mL-{) and y(2mL+%) may therefore be
regarded as the outputs of two equivalent unidirectional processes of pass-length
¢ and L-¢ respectively, the former sampled at instants v = 2mL-£ and the latter

at v = 2mL+4.

5.3 Stability of the Bidirectional, Present-Pass Controlled Coal-Cutter

Applying the foregoing concepts to the coal-cutting process described by
equations 1 to 3, yields a bidirectional system block-diagram shown in figure
13, which produces as output the time-series, Vs defined by

y, = y(2ml-2) + y(2mL+L) (41)

The two sub-processes of figure 13 are clearly identical to the unidirectional
process of figure 4 apart from the delay distances in the interpass feedback
loops. Now if either of these subprocesses is unstable then sequence ¥, will

be unstable since, in general, there will be no synchronism between the operation

concluded that the unidirectional process, (figure 4), would be unstable for

all X<L, the bidirectional subprocesses will likewise be unstable for most

values of &. In fact it would appear that, for all multipass processes involving
present-pass sensor delays X, (<<L), then,if the process is unstable on uni-
directional operation, it will also be unstable when operated bidirectionally, for
most values of 2.

The predicted instability of the vertical steering system of the bi-

|
|
|
of the samplers and the oscillations of the sub-processes. Since it was
directional coal cutter is here confirmed by figure 14 which illustrates the



transient response to a step fault in the coal/stone interface. A sensor
time—-constant T2 and an actuator time-constant T3 have here been included in

the system dynamics but their inclusion has no bearing on the analytical

stability conclusions.

6. Conclusions

A method of modelling multipass processes in terms of a single inde%endent
spatial variable has been presented and successfully applied to the processes
of longwall coal-cutting, ploughing and metal rolling. The inverse Nyquist
technique has in all cases predicted total or potential instability arising
from either repeated excitation of the single-pass resonance or from the
profound effects of the output sensor delay, both of which should therefore be
avoided in such processes.

The stability of bidirectional processes should be assessed by observation
of the discrete time-series output of the process at fixed distances from one
end of the pass, (or at fixed relative distances in the case of variable
pass-length processes). Such an approach reduces the bidirectional process
to two repetatively-sampled unidirectional processes. Unidirectional
instability would therefore imply bidirectional instability.

The effective time-variation in the output sensor delay in processes of

Other multipass systems such as many machining operations and perhaps
television signal processing should also profit from investigation on the

lines here indicated.
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Fig. 1. Illustrating Possible Pass Sequences
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Fig, 2. Block Diagram of General Multipass Process

Unidirectional interpass
feedback loop

=—— + o= . — Possible control loops

P ) N ;_—7_ E(s) [9]

u(n,2)
ontreller G. (s) y(n+l,2) F::n
EA(S)ﬁ_J . P ‘*1'
g:" ; "
. r—-—-—:—»—. l'
it I
2,/’/’r3 m===9 l:

e i o - Py
rot iRt LN =

Bidirectional interpass | SN |
feedback loop



Fig. 3. Illustrating the "Record & Reverse' Process
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Fig. 4. Coal Cutter Steering System - Block Diagram
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Fig. 5. Inverse Nyquist Diagram for Coal Cutting Process
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Figs /e

Block Diagram for Self Steered Tractor
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Fig. 8. Computed Response of Self Steered Tractor

to a Step in the First Furrow
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Fig.

9. Showing Physical Basis of Rolling Process Model
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Fig. 10. Block Diagram Representation
of Rolling Process Dynamics
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Fig. 11. Simplified Block Diagram of
Rolling Process
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Fig. 12. Inverse Nyquist Diagram for Rolling Process
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Fig.

13. Block Diagram of Bidirection Coal

Cutter Steering Process
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