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On the optimal ragulator problem

Consider the lirear multivariable system

X = Ax + Bu (1)

~

v = (x (2)

where x is the n-state vector, u is the r-imput vector and v is the m~outpul
vector, and A, B and € are nxn, nxr and mzn constant coefficient matrices
respectively, where it is required to choose the input u(t), Ogtgw, such
that,

[==] * =
4 = I {(y~r) Q(y-xr) + u'Ruldt (3)
is a minimumu. r is the m-reference vector and Q and R are mxm and rxr

veighting matrices respectively.

Initi2lly augment the system to include the reference vector by
defining the new (n+m)-stata -—vector z where

o
z = (4)
d
and, hence,
A 0O B
z = z + u (3)
o of o]
y = |¢ 9of=z, (6)
and,
J = ém{[IC Qz ~ (0 I)z] Q[}G 0)z - (0 I)g] + u Ruldt (7)
e -og ,
ie J = [Tz z + u'Ru / dt (8)
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Now substitute the relevant matrices into the matrix Kiccati
equation to give
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wiere K. and K, are nxn and mxe symmetrical matrices vespectively and ¥

: : 2
is an nxm matrix,
Equation (9) then yields the expressions,
N =k
i = R + ¥ + A'E. = X ] 1
kl €'QC &IA \ 1 1BP B Ky (10)
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-K, = =C'Q + A'K_ ~ E_BR "B’}
K2 c'Q A 9 1 R "B (2 (11)
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It is known that the optimal control law is given by
Ky Kypl
O
u = -R "[Bf d][ 8, (13)
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i.e.u = -R”ls'[k S (14)
- 10 T z20d
where K . and K, = are the steady-state solutions of eqns (10) and (11)
respectively. "“Equation (12) is always satisfied regardless of the value

of K2 and can be safely excludad from the set of equations.

Thus to solve the optimal regulator problem all that is required
is ro sclve the algebraic nxo matrix Riccati equatiom
<k (e

5 T o = e
10h + A klo mlGBR B %0 ] (15)

C'QC + K

for X, using either the diresct method or the eigenvector method or the
transifion matrix method, and then solve the matrix equation,
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i.e. K. = (A" - K. BR "B') “¢'Q (17)
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The optimal control law is theu given by eqn (14).



