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Summary

The study of Part 1 concerned with least-squares estimation,
identification and prediction is extended to include problems concerning
the generalised inverse of a singular matrix, the optimal control of the
linear dynamic system based on finite- and infinite-time performance
criteria, and the reduction of system order. The solution of the time-
varying and steady-state matrix Riccati differential equation associated
with the optimal filtering and control problem is developed on the basis
of a transition matrix and eigenvector representation. The sensitivity
of the sequential algorithms for state estimation, prediction and optimal
control is also investigated.

The paper develops a number of important computational techniques
which complement the algorithms outlined in Part 1 to form a comprehensive
review of certain aspects of linear system theory which are suitable for
direct practical application. Current research work being undertaken in
the general field of process mocelling and online control which will
investigate the application of many of the techniques developed in the
present study is outlined.



Introduction

The study of Part 1 concerned with state estimation, parameter
identification and prediction is extended in Part 2 to consider ¢ther
closely related problems in order to form a comprehensive review of the
computational techniques available for investigating the optimal control
of the linear stochastic dynamic system, The concept of a generalised
inverse of a singular matrix is associated inherently with least-squares
minimisation, and practical methods of solution, including methods of
polar decomposition, partitioning, and iterative and recursive algorithms
similar to those developed for least-squares filtering are reviewed.

The optimal control of the linear dynamic system based on finite- and
infinite-time quadratic performance criteria is studied using the maximum
principle and the discrete and continuous form of dynamic programming, and
practical computational methods for solution of the time-varying and
steady-state matrix Riccati equations are developed.

The study illustrates the close relationship of the optimal
control problem based on quadratic minimisation to the problem of optimal
estimation based on sequential least-squares theory. The discrete
algorithms obtained for state eatimation and optimal control are also
shown to reduce in the limit to the form of the continuocus-time Riceati
covariance-type equation and to the optimal control law given by the
maximum principle. The steady-state matrix Riccati equation is solved
explicitly within the structure of an eigenvalue analysis, and a similar
form of solution is obtained using a transition matrix representation.

The techniques are also shown to be applicable for solution of the
Lyapunov equation which forms an inherent component of the covariance-type
Riccati equation. Practical methods for computation of the discrete time
response of the linear system, including techniques based on the matrix-
series expansion, an eigenvalue analysis, Sylvester's expansion theorem
and a partial fraction expansion are reviewed. The constituent matrices
of Sylvester's expansion related to the algebraic eigenvalue problem are
seen to play an important role in many aspects of linear system theory,
particularly with reference to the spectral analysis, the generalised
inverse and the residual vector of least-squares theory.

The high-order process model used for dynamic optimisation and
stochastic approximation will introduce problems of dimensionality, and
a reduction of system order for isolating the signifiicant dynamics
represents an important area of study in linear system theory. Methods
of reduction which have been developed on the basis of modal analysis and
the concepts of least~squares estimation theory are outlined., The review
is completed with a sensitivity analysis of least-squares estimation, of
the spectral prediction algorithm based on eigenvalue and eigenvector
sensitivity and of the optimal control algorithms which may be required
for assessing the effects of inaccurate data and plant parameters. The
paper also outlines a range of research work which is currently being ‘undertalen
in the general field of process modelling and online computer control
which will investigate the application of the general techniques of
least-squares estimation, identification, reduction, control and
sensitivity.
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Generalised inverse of a rectangular or singular matrix

The concept of a generalised or pseudo inverse of
a rectangular or singular square matrix analogous to the regular inverse
of a nonsingular matrix was introduced by Moore (1920, 1935)92,93 ana
rediscovered independently by Penrose (1955)%%,95, Bjerhammar (1951)96
and Hurray and von Neumann (1936)97, The problem has particular relevance
to the least-square minimisation solution of inconsistent sets of normal
algebraic equations9 associated with problems of filtering, identification,
prediction and control., A detailed account of the development of the
generalised inverse is given by Ben-Israel and Charnes?? and Raol00. ' The
various methods of solution proposed, and the close relation existing
between the concept of the generalised inverse and the methods of least
squares previously discussed are illustrated.

The problem is concerned with obtaining a solution of the
linear equations

Ax = Y (1}+8>

where in general A is a matrix of order mxn and rank r (<n). The general
solution has been defined?

x = Ay (1 - INFP (149)

where AT is the generalised inverse matrix of order nxm and z is an
arbitrary n-column vector. The problem is associated with determining
an approximate or minimum-norm least-squares solution of eqn 148 in the
sense of minimising |l Ax - y|[° such that ATA approximates the wunit matrix
I_, or AAY approximates the unit matrix I as closely as possible. In
nost practical cases A will be of maximal™or full-column rank n<m and the
least-squares solution will be given by the form of egn 7, Part 1. The
vector of residuals in the least-squares solution of eqn 148 is?

y-Ax = (1_-a")y (150)

Matrix (I_ - AA*) is symmetric and idempotent and the sum of the squared
residuals™is a minimum given by

I o= yUT, - sy (151)

similar to the form of the error covariance matrix of egn 143, Part 1.
The generalised inverse also possesses the properties - 4:95’9

T T VA SV L\ W S L
=
wherg A" denotes the conjugate transpose of the matrix A, Matrices

A, A8, AY, %A all have rank equal to trace A'A.

Various methods developed for computation of the generslised
inverse are reviewed.

o 1
Method 1 Penrosega, Ben Israel and Charnes99 and Aoki ! consider a

polar decomposition of the matrix A with rank r which has been credited
to Gibbs (1931)99. The matrix &' is defined by the spectral form!!

1
AN S A Ay =P (> 0) (152)
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where p, are r nonzero eigenvalues of the matrix AHA or AAK and g., . are
n- and ﬁucolumn orthonoml eigenvectors associated with the matrlﬁes
A®A and AA® respectively. The spectral form of solution may also be
defined directly_in terms of the Sylvester expansion theorem applied to

i =
the nxn matrix A"A., Thus

(a™)" - zp; &(p,) (153)
A =z e(p,) (154)
with the proaactlon $r idempotent matrices G( ) defined by the form of
eqn 298and p = (p >O) or 0 if p, . 'Then |
£ oo ) ar (155)

The spectral methods require calculation of eigenvalues %nd eigenvectors
and may be sensitive to errors in the computation of p(A A)99

Method 2 Penrose95 considers a method based on partitioning which
permits the generalised inverse of any matrix to be expressed in terms

of the regular inverses of the partitioned submatrices. Thus any matrix
can be partitioned in the form

A B

2 - e (156)
C CA B

where A is any nonsingular submatrix of rank r. Then

3 S
+ AﬁPAx AKPC % %, -1 =® % =1
D = x % = x| » P=(AUBBY) A(AA4CTC) (157)
BFA BPFC
The method has the disadvantage of requiring selection of the matrix A

and the forming of the submatrices in eqn 156.

iethod 3 Penroseg5 also iilustrates an iterative method similar to
Frame s method for computing the regular inverse of a matrix, Let
= A®A and define a sequence of matrices C( ) J=1,2.. by

Sty = T Cpgpqy = To g twmoe (B 55B) = 0y (158)
C(rm?)B = 0, trace (C(r)B) A0
where r is rank of B. Then
rC
¥ = (r) jf (159)

trace (C(r)B

Method 4 Greville93 considers an mxn matrix A of rank r>0 expressed as
the product ‘ .

A = BC (160)

where B is of order mxr with its columns forming a basis for the column-
space of A, and C is of order rxn with rows forming a basis for the row-
space of A, Then

At - ¢'st . C’(CC')_JI(B'B)_'IB' (161)
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Method 5 Bootm1 considers the generalised inverse as a problem of

constrained maximisation of a quadratic function and develops results
similar to those of liethod L, The matrix A is partitioned with the

leading rxr matrix of full rank

‘DE |
= | 5
A = LFGJ (162)
Matrix G is of order (m-r)x(n-r). Since A is of rank r
[FG] = H[DE] and EJ = EJK (163)
Then _ ~ |
[ D= D DK ,
f ; -1 ~1
where B =lgls @ = [IX], H = D', K = D E (165)

H and K represent the row and column dependencies. The unique generalised
inverse is then given by

Ab . Q(qu)'1n'1(R'R)'1R' (166)

The disadvantage of the method is the requirement to make the leading sub-
matrix of full rank. ©Eqn 166 is then reduced to a form which avoids
calculation of H and K
t : -1 |
= A Al 'A ! 16
A _A2(22) D(AH) A; (167)

D
where Az = [DE:T ’ A,] = [F:’

An improved computational method is obtained by considering
the constrained minimisation problem - minimise trace X'X subject to the
nxm equations A;AX = A;. Thus consider

trace X'X - trace M (A;AX - A;) (168)

where M is an mxr matrix of Lagrange multipliers. Differentiating with
respect to X and i' then gives an equivalent solution to eqn 166

X = at - A'AJI(A;AA'A,I)%A)I (169)
requiring only one rxr matrix inversion and r independent columns of A.
Similarly, minimising trace YY' subject to AA'Y! = A gives
+ ~1
= = '(A_ATAA! At 1
Y = A AL(AABAL) A, (170)

based on a set of r independent rows of A.
- 02 . : :
ifethod 6 Foster1 defines an 'optimum' inverse which reduces to the

generalised inverse of Penrose and lioore in a limiting case of error-free
data. For a data vector related to signal (x) and noise (7),

y = Ax+y (171)
the 'optimum' inverse is defined by the solution

I s
R = Ay (I-4a48)x (172)
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where
A L s Fas L (173)
with covariance matrices
5 = (xX)(xx)' , N o= (G0 (174)
With N = Gﬁzl R 5 = GEEI =
I AX(AAE+I'2I)_1 ) (AXA+T.2I)—1A3£’{_2=G% (175)
o 1
S

The inverse exists since AA™ is nonnegative definite and!“?I is positive
definite. The presence of noise in the data improves the conditioning
of the optimum inverse and corresponds to the technique suggested for
inverting ill-conditioned positive-definite matrices by the addition of
small multiples of the unit matrix. The solution of eqns 173 and 175
is similar to the form of egn 15, Part 1.

llethod 7 Greville95 develops a recursive algorithm for obtaining the
psewdoinverse Al of a matrix A with k columns from A 12 which corresponds
to the successive addition of “higher-order terms in %he polynomial
approximation problem., Consider the partitioned matrices

+ ' Bk
= 8 =
b = My Bd 2 4 [ b, (176)
where ay denotes the kth column of Ak, then with relations
+ i + +
A A = A A A B = 1
fea Py k-1 7’ k-1 k-1"k Bk (177)
the pseudoinverse is given by
+ I
A ~-db |
1 k-1 k k t
Be = . J S T W 178)
k
With ¢, = a - A 4 A0, it is shown that b, = o, = (clo )'10'
k™ Tk k-1 k ’ k k kk k
and with c, = 0 , b_= (1 4+ a'a )" a' & ' (179)
I " o A s A

The algorithm is associated with the form of the least-sguares
sequential estimation algorithm incorporating new data, and the
correspondence with the Kalman-Bucy filterin§ equations for ¢, = 0
corresponding to the observable case with (A™A)~! existing, 1§
discussed hy;Kishi105. Kishi formulates the same problem with

Al

- +
A = =l » A = [B b ] from which the sequential least-squares
K & | K k k
solution is given by ~

a % . x 1 Vi1

= A = 4 = b.a’l b |
" R k]': ¥, J (180)

b
1

2N, &3 ~
Y
" R -1 7 O et Y B (181)
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lethod 8 Mayne104 also develops a sequential algorithm for the pseudo-
inverse matrix based on regression analysis and Wiener-Kalman filtering
theory. An observation scheme of m-parameters & is used to define the
pseudoinverse by the rth scalar observation

+
= 'e v = A 182
T Ip ¥+ ¥y I ( )
where y 1s a known m yector. Successive 'observations' are then used to
update The 'estimate' § of the pseudoinverse using an algorithm of the

. = . A
form of egn 26, Part 1, with er, Pr—T’ Vo Oy X corresponding to X,

gt ¥

1 ; ; :

! t h o the v f th
Pk’ Hk41’ Vk+1’ Tiea respectively, w efe oy T8 the variance o e :
measurement noise v, of zero mean and 6(0) = O, P0 =I, r=1..p. The

mxm symmetric variance matrix
- _ -~ _ ~ ' 1 8
P, E(e er)( e er) (183)

+
is given similarly by the form of egn 2%, Part 1. The jth row of A is
then given by the m-~dimensional vector ej(p), j=1..n.

Rao97 considers a step-by-step reduction of a matrix A to a

‘nonsingular generalised inverse using a method of sweepout and interchange

of rows. Ben-Israel and Charnes give an explicit expression for A as a
limit, due to den Broeder and Charnes (1962),
oo
+ x, -k
A = 3 AT %) (184)
k=1

The polar decomposition method 1 and, particularly, the iterative
and sequential methods 3, 7, 8 would appear to represent the preferred
methods of solution compared to the other methods requiring selection of
a nonsingular submatrix. However, further work must be undertaken in
order to assess the computational merits of each method. The generalised
inverse matrix is associated inherently with least squares methods of
estimation, and the corresponding residual vector, particularly, is seen
to possess properties analogous to those associated with all other least
squares minimum norm solutions.

Optimal control of the linear dynamic system

Optimal online control of a dynamic process subjected to random
disturbances on the basis of imperfect observations and ill-defined
parameters represents an important and, in general, complex problem,

If the state variables cannot be measured directly in a stochastic
environment, as usually encountered in practice, the control sequence

must be related to an estimate of the state variables using a performance
criterion related to some probability measure of the states, such as
ninimum expected value of a squared error criterion. For the linear
system subjected to additive white Gaussian random disturbances and with
linear observation coggaining additive white Gaussian noise, the Separation
Theoren!05-107,16,21,66,152 permits independent design of an optimal

linear filter and a deterministic optimal controller for overall optimum
performance,
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The structure of the optimal control law is then defined by the
deterministic problem assuming that all the state variables are available,
and the control input will be given by a functional of the past
observations by the form

W, o= K(;ck) (185)

where x_is the optimal estimate of the present state based on the available
noisy ﬁgasurements, and the performance index need not be quadratic108.
Optimal control of the noisy linear dynamic system based on quadratic
performance will be related to a linear function of the estimated states
and data %yo--yﬁ’1§ by

w, = K 5 (186)
and minimises the expected performance value EJ. . The derivation of the
optimal control law for the linear system, baseg on the discrete and
continuous forms of dynamic programming and on the maximum principle, is
illustrated in Sections 13.2 and 13.53. A similar discrete solution
obtained using Lagrange multipliers is given by Lee'®,  The solution for
discrete linear optimal control based on unconstrained quadratic minimisa-
tion is closely related to the solution obtained for sequential least-
squares estimation, as first discussed by Kalman. The. analogy is
illustrated by a comparison between the single-stage quadratic-fornm
algorithm of egn 328 for il and the sequential relation for the
estimation error covariancd hatrix of eqn 58, Part 1.

The matrix Ricceti equation110_117

The problems of optimal control theory, linear filtering and 5
prediction, identification and the model~in-the-performance index problem 5
assoclated with the minimisation of g quadratic functional lead to the
existence of a matrix Riccati-type differential or difference equation,

The theory of multiwire transmission lines also produces the same type of
matrix differential eguation as a matrix analogue of the impedance and
admittance functions!?3,

Optimal control of the linear dynamic system based on a finite-
time quadratic performance functional is related to the time-varying
solution of a matrix Riccati differential equation as outlined in Section
13.3. The resulting optimal trajectory may be defined in terms of a
transition matrix associated with the matrix-M of egn 343 with backward
time T = T-t, Thus

4(T) () , x(t ) =x(T) , p(r ) =p(T) =0 (187)
g,,(¥) B, ()]
B, (t) B,,(T)

i

2(v) = Hx) o), KT) (188)

and with boundary condition pﬁzo) =0
p(r) = £,(08, (V)7 x(v) = -B(1) x(v) (189)
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Differentiating eqn 189 and combining with the components of eqn 187
then gives the matrix Riccati differential equation for reverse time

P(t) = P(Y)A + A'P(T) - P(tﬁBGf1B'PCr) + 'Q, PGTO) =0 (190)
and for optimal control
w(t) = -G B'R(T-t)x(t) (191)

The time-varying matrix P(T-t) may be calculated using the transition
matrix programming algorithms of Section 13.1, or alternatively by direct
numericel integration of eqn 190.

The least-squares state estimation problem formulated in
Section 3.1, Part 1, also leads to a continuous-time Riccati-type equation
associated with the error covariance matrix. Considering first-order
approximations, with small sampling interval h

g = I+an , M= B h (192)
and with arguments ki1, k— t+h, t, and117’118
-1
B(t) = lel " R(t) = vk+1 h (193)
then limiting conditions applied in egns 58 and 59 give
P(t+h) = (I+&h)P(t)(I+Ah)' + (B1hJQ(t)/h(B1hJ' (194)

and P(t+h) B(t+h) - P(t+h)H!'[RE | 4 HB( t+h)H' ] HB(£+h) (195)

1l

i

P(t) + BAP(t) + HP(t)A' + hB Q(t)B]
- n{ PP [R + WB(teh)Er T THR(E) 4 o(h)] (196)
Then in limit h—+0, [P(t+h) - P(t)]/h—P, and
P = AP 4+ PA' 4 B1Q(t)3; - PH'R(t)_iHP s P(to) =0 (197)

representing a continuous-time nonlinear first-order matrix Riccati
differential equation associated with the dual problen of optimal filtering.
Solutions based on eigenvector and transition matrix components apply
similarly in this case using the augmented system matrix

-0 R g
M = (198)
B! A
B1Q i

with P = U 1U 4 - Solution for the optimal error covariance matrix
representi%g %he propagation of uncertainty in the continuous dynamic
system under the influence of forcing by B,QB' with a linear additive

noise measurement system may be obtained by direct integration of eqgn 1875
or by computation of the sequential algorithm of eqn 58 for the discrete
system. The existence of the Riccati equation illustrates the close
relationship between the optimel control problem and the sequential least-
squares filtering problem, Kalman and Bucy5 develop an analytical solution
of the variance equation using the form of eqn 198 and also propose a
solution related to transition matrix components.
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8.1 Solution of the steady-state matrix Riccati differential equation

The steady-state converging solution of the matrix Riccati
differential equation is associated inherently with the infinite-time
regulator problem, and with the steady-state filtering problem associated
with a stationary random process. The solution of the steady-state
algebraic matrix Riccati equation may be obtained by direct integration,
and iterative methods of solution of the resulting simultaneous nonlinear
equations have also been developed119: . Simplified computational
techniques have also been cbtained using partitioned eigenvector and
transition matrix solutions related to the set of 2n simultaneous linear
differential equations in the n-state variables and the n-adjoint variables .
The techniques are also suitable for solution of the Lyapunov stability'
matrix equation which is associated inherently with the form of the
algebraic matrix Riccati equation.

The existence of asymptotic stability conditions in the linear
optimal control problem, with the optimisation interval extending to
infinite time, enables a simple analytical control design to be obtained
that is both linear and time invariant. The optimal control law can then
be related to limiting values of the partitioned components of the time-
varying transition matrix, and also to the eigenvector components associated
with the stable modes of the augmented system of 2n differential equations
defining the optimal trajectory.

Thus using eqn 189 for a steady-state solution of eqn 190 with
?(T) = 0,

4
P = ‘z:‘ijoo g,,() 8, () (199)

The transition matrix components can now be defined using matrix series
expansions. Thus

00 .. '
Bt) = = WYy (199a)
j:O
-4 G _ i
where M = s G = =BG B (199)
L-Q A

and with repeated squaring

0 G o) ™, Bl ) | o), o),
)
s

L{(Mj—1)21("A)+(Mj—1)22(_g)}{(Mj—1)2@§+(mj_1)22A" ] _(Mj)21(Mj)22

(199¢)
Then from egn 199a the transition matrix components will be given by
5 i 2 g j
g,(t) = T 4 (') t+ (%) t5/21 4 .. = 3 (W), t3/51 (199a)
14 n 14 11 . 11
i . - 1 =
where (u )1JI = =A (M )12 = G (199e)
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and (Mj)11, (Mj)12 are given by the components of egn 199c. Then
® . . .
B, (t) = I -atw 3 {107, (-4) + () ()16 /50) (199¢)
J=1
Similarly & ) ) s
g,,(t) = .Zi(MJ)21tJ/j1 , (M'1)21 =9, (i), =4 (199g)
J=

and including the components of egn 199

Bor(®) = v e = {100, () ()01 ] (19m)
d= |
Also oo . ; :
Brp(t) = Gt + _z1 ;[(MJ)11@ + (MJ)12A']tJ+1/(j+1)l} (1991)
j=
Bo(t) = T+atts 3 L10%) 8+ (%), A0 169 /0] (1993)

=1

The limiting solution of egn 199 can now be obtained by repeated squaring of
ﬁﬁt) which will give the translated transition matrix components

By(nt) = B (nt/2) + B (nt/2)p (nt/2)
Boy(nt) = B, (nt/2)8, (n6/2) + B (nt/2)8,, (nt/2)
(nt). Then the symmetrical P matrix will be

and similarly for @,  (nt), &
given by the form o}zeqn 1992%ith n--~00 for convergence, The components

B, 5 B, will increase in magnitude with increasing argument and cancellation
iéireq%lred in order to ensure the existence of convergence for the steady-
state solution P.

i

(199%)

Potterﬂ12 derives a steady-state solution of the nth-order matrix Riccati
differential equation in terms of the eigenvectors of an associated 2nx2n
matrix, which leads to an explicit solution of the optimal control problem
for the linear system with quadratic performance based on the maximum
principle. A simple derivation of this result is now illustrated by
elimingting the effects of the unstable modes for asymptotic stability of
the linear system. The time response of eqn 343 of Section 13.3.1 may be
defined in terms of assumed distinct eigenvalues and eigenvector component s
for the matrix i. Thus

%t) = Ué“Tu"1 z(to) i T = t-to (200)

which is associated with the eigenvector matrix equation

where U 1s a 2nx2n modal matrix of eigenvector columns and A is a diagonal
matrix with elements 11..12n. Matrix M possesses convergent and divergent

mode pairs with A, = [xi], i = 1..n with negative real parts, and

1
A, = [xi], 1 = ne1..2n with positive real parts. Partitioning the solution

of eqn 200

- _ 1 A1T s . I -
{xiti ) u,, U {e % . U22 U12 x(to) (202)
p

-y' U
LO e 1}-U5 U, |e(ty)

- _ 21 22
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gives the state-variable solution
AT AT

x(t) = Tj,e 1 [055(t,) = U3 p(t )] + U, e : [0}, e(t )T x(t )] (203)

Then for conditions of asymptotic stability

-1
= 1 ! t 204
we) = u, "y x(s) (201)
A1T -1 A1T -1
g 't~ U ! (t ) =1U 205,
M8 = Upye (U ~ ULy 0 0x(E) = Uppe T U a(s) (205
Similarly
T -1
= = U - -
p(t) = b= T, x(to) U, Uy, x(t) = -Px(t) (206)
Thus for optimal control with asymptotic stability
3 ~1
=5 1
uW(t) = & B'U,U " x(t) (207)

giving an explicit solution based on an eigenvalue analysis. Computation
of the 2n eigenvalues of the matiix i is required together with the n
eigenvector components associated with the n stable mode eigenvalues. The
asymptotic stability condition can be shown to be associated with the
algebraic matrix Riccati equation by considering the eigenvalue problem

SR T I N B
Sl BJ [Uﬂl 5 [%1J [, ] (208)

I
L e A Usy | Uy

Expanding and eliminating A, With P = —U21Ui;

-1
PBG B'P - PA-A'P=-Q = O (209)

then gives

where P is a symmetric positive semidefinite solution for all positive
semidefinite matrices Q.

The technique of constraining the equations defining optimal motion
for asymptotic stability is similar in principle to the methods developed in
Section 9 for reducing the order of a sét of matrix differential equations
by neglecting the insignificant high-order modes!2l,

The solution of the steady-state Riccati equation also contains
inherently the solution of the Lyapunov equation associated with the
stability of the free linear system, which can be obtained in terms of
eigenvector and transition matrix components. Thus the ILyapunov equation

PA + A'P = -Q (210)

where the symmetric matrix P is required to be positive definite for any
symmetric positive definite matrix § is related to the eigenvalue problem

defined by
[a ol[wu U
T4 _ 11

{L Q _.A_I—! LU21 =lu [’\1 ] (21’1)

21
. -1 B . "
with P = ~U 1U 4 + Lxplicit algebraic methods of solution have been
developed which require the forming of n(n+1)/2 sets of simultaneous
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equations for determining the unknown elements of the matrix P, A
solution can now also be obtained based on the n eigenvalues of A
associated with the matrix A and the corresponding eigenvector co%ponents
U,,U,_, for the augmented Znx2n system. However, such a solution
p}és%%poses knowledge of the system eigenvalues and thus stability, but
may have application i gerformance function weighting., By specific
choice of the matrix Q14 the solution can be related to the eigenvalues
and eigenvectors of the matrix A only, which will avoid the computation
of the eigenvector components U21 for the augmented system. Thus
expanding egn 211 with

=~
- ]
Q = (UHUﬂ) (212) |
1 -1 i
. = =(A 1 R !
and with a symmetric A matrix
;- -
P = “'Q_A 3 Q =1 (2‘”{-)

A transition matrix solution of the Lyapunov equation may also be obtained
in terms of the eigenvalue problem defined by

woolfu ] [
A o] UﬂJ = | Y [r,] (215)
- 1
- A“Um | Uy
which also reduces to the Lyapunov equation with P = —U21U&-1,
Now consider the transition matrix solution 1
([40] )
-A U 0 I £
46('&) = exp ‘> OI t) = U11 121 © A1tj U22 U‘12 (216)
sl Al =TT! 1
(Lot | {uy vyl 0 ot oy,
At
then with t—+w, e | ~~ 0 and i
- —A1t —f\1t ]
g, ()8 (t) B .8 ur_, ~U e g
1 2 ?
Lt ft) = Ltﬁ1(t)ﬁ1 e g il _U”e—,\1.tU‘f2 (217)
t—+ o t=oq’” 21 22 21 22° T2 12
and
=] =7
Lt t t s &= =
[8,,(t) B,,(£) '} = U, U, = -p (218)

t—om
thus giving a solution of the Lyapunov equation in terms of transition
matrix components, provided the limit converges.

The solution of the Lyapunov equation will also exist as a
limiting solution of the dynamic programming algorithm of egn 327 with
A = O, thus

PI‘ = ﬁ' PI"‘1 ﬁ-{» Q, r—= (219)
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A solution can also be obtained by expanding the transition matrix
components for ﬁ11(f), ﬂ21(t) in terms of the augmented matrix of eqn

215, giving

By (t) = ()t + [(-Q)(-4)-41Q]6%/21 +[ (Qa-2"Q)(-4)-4'Q1t7/3¢ 4...
+ [(previous term)(—A)—A'quQ]tF/kl i (220)
g,,(t) = e (221)

Repeated squaring of f(t) will then give the translated components required
in the solution of egn 2187 However, eqn 219 based on the transition
matrix_ﬁKA) would appear to offer the simplest computational algorithm for
solution of the discrete equation. Barnett, et all63, also consider a
convergent infinite matrix series numerical solution of the Lyapunov equation.

The techniques developed for solution of the algebraic matrix
Riccati equation will have direct application to the steady-state sequential
filtering algorithms using the augmented matrix of eqn 198. The numerical
problems involved in solving the Riccati equation, particularly with regard
to round-off errors are discussed in ref. 66.

Reduction of dynamical model °°mplexity121“150

The lumped-parameter process model, such as may be developed for
a distillation column or a power station boiler-turboalternator unit, will
generally be associated with a relatively large number of state variables
and controlled inputs. The responses of such processes, however, will
usually be of simple form, representing the effects of a small number of
significant time constants or modes. A problem may thus exist for reducing
the order of the system model to include only the essential dynamics which
will produce a transient response close to that of the original system,
The various methods developed for simplifying lumped-parameter process
models based on mode reduction, corresponding to the filtering of high
frequency components by truncating the spectrum, and the concepts of linear
least-squares estimation are outlined.

The high-order modes or small time-constant effects associated
with the transient response of a linear system may be eliminated by
isolating the modes using the modal-matrix transformation

x = Ugqg (222)

which transforms the system of eqn 280, possessing distinct eigenvalues
1i, to the normal coordinate form

=1
q(t) = ~q(t) + U B u(t) (223)
The system states and defining matrices are now partitioned

a. | A A B
x - . B = 1},A= 11 712
& 3

3
A_ A B
.-./\ o-' U U e V V V_l
Ao | ,U:1112’U1=[1112:A
2 U2 g

22 L 21 22 LB
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with the eigenvalues arranged in order of increasing moduli, A&2A <..(ln.
With a reduction to order r, U,, is an rxr and U_, an (n-r)xr hat®ix
of modal vectors associated wi%% the first r sighificant modes and the
required state variables. Neglecting the transient solutions eM' for
the higher modes, with 4k—v0, k = (n-r)..n in the partitioned form of
eqn 222, gives
=1
= U, U 22

*2 21 11 ™ (225)
Partitioning the free system of eqn 280 and combining with egn 225 then
gives the reduced-order system matrix

= =1 i
= A 26
A= A+ 40,0, (226)
Egn 225 illustrates the similarity between the method of mode reduction
for simplifying system response ana the technique of rejecting unstable
modes for asymptotic stability of the optimal controlled linear system.

The driving-matrix coefficients for the reduced system are
obtained by considering the response due to forcing

Ty = ft e (BT u(z)aT (227)
Qo
and for the reduced system
t A1(t~tj 4
x, =£ u,e v, Buwaz ( 228)

Neglecting modes in the solution of eqn 227 and equating partitioned
responses then gives the rxp-dimensional driving matrix

B o= ] 22
Bow W, T, (229)
The reduced rth-order system associated with the signifiicant eigenvalues
is then represented

ij(t) 1 ;1(1:) + B u(t) (230)

with the remaining variables x_ given by the algebraic relation of eqn 225,
It is important to select depefident variables for the reduced system which
will avoid ill-conditioned matrices, such as might be obtained with
variables of similar character, such as steam and metal temperatures in a
boiler model. With such conditions it mgy then be appropriate to consider
the application of the generalised inverse matrix.

The modal method of reduction is valid for real and complex
eigenvalues of the matrix A, and also for repeated eigenvalues with non-
degenerate eigenvectors?2b, Tt is also valid for repeated eigenvalues
with degenerate eigenvectors if the eigenvectors are related to the Jordan
canonical form of A. The method, however, introduces error in the steady-
state values of the reduced model compared to the original system. These
may be compensated by combining the dynamics of the reduced system with
the new state variable

5‘:1 = 5‘:1 +{ K”‘é-[ﬁ A ]Bzu (231)
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with the inverse of the original system matrix partitioned in terms of
the retained variables

~

A
21 22

Witn a singular system A-matrix the steady-state values may be obtained
by suitable partitioning.

=

A

=4}

A similar method of reduction has been considered by assuming
derivatives 4.~ 0'%%,  This produces a reduced system which retains the
original steagy—state values but may introduce errors into the form of
the transient response: Combining the partitioned forms of eqns 222
and 223 gives

X, = U_ U ~TAT (233)

U -V B V_.B Ju
2 21711 % T Vg (VpyBy + V)
and substituting into the original partitioned system equations gives the
reduced-order form
= s =1 . =]
= U - A V__A B V_.B. )lu (234
o= Oy AU U )Ry By = A Vs (Vg By + VB0 (238)
A method of reduction based on the geometric projection of a
known state vector onto a linear subspace associated with a reduced number
‘of states of a discrete lig ar system represented by transition equations,
has also been considered!<0, The method is based on a non-sequential
least-squares fitting of r known response components of the original
vector to the discrete response of the reduced system

- # A (T 2
oxy o= A e B(T) uy (235)
where § and A are the transition and driving matrices of reduced orders
rxr and rxp respectively. Including r states and p control components
at each interval i eqn 235 is then reformed to

bl = Dyl w JIBAT , d=tiad (5repe2)  (236)

or Xk}1 = mj C (237)

of orders (ke1)zr , (keDx(rsp), (r4p)xr
Then for a least-squares solution of the transition and driving matrices

k1 (238)

¢ = (uw)”! oy x
Jd J J

The method represents a particular application of the results for least-
squares parameter estimation of Section 4.3 with offline fitting based on
the use of block data obtained over an extended response period, In
online application the reduced-order model identification algorithm could
be developed for sequential solution using the methods of Section 4.3.
The fitting of data to the reduced-order model could then be extended
beyond the range of the available data X to give improved identification
using the additional information availabEE1with changing control and
disturbance conditions.,



Mitra128’129 considers an optimal method of model reduction
related to the best reduced-order subspaces spanned by the set of
eigenvectors corresponding to the r largest eigenvalues of the outer
product matrix of vector impulse responses of the linear system defined
over an extended response period. The best subspace is thus specified
in terms of the eigenstructure of the matrix of impulse functions

T

W= f { r(t) r(t)'} at with the

0

ninimum value of the projection error given by the sum of the remaining

n-r eigenvalues n
2 A, (W)
: i
i=n-ryi

For the linear system with input

u(t) = J/D8(t) (239)
then oHt) = S (240)
T oAt At |
and W(T) =f & ' BD B'e = at (241)
o]

It is shown that matrix W satisfies the matrix Riccati equation
W = AW 4+ WA' 4+ BDB' (242)

With asymptotic stability the resulting algebraic matrix equation can be
solved using the results of Section 8.1. The methods involve properties
of the covariance matrix of impulse responses which are similar in concept
to those associated with the spectral analysis of the covariance data
matrix of Section 5. They introduce similar properties with the value

of the performance function related to summated eigenvalues. The methods
imply a rejection of the smallest eigenvalues of a covariance matrix by
projection onto a linear subspace and are analogous to the methods of
modal reduction which define the best subspace for the reduced model by
neglecting the largest eigenvalues or short time-constant modes associated
with the system A-matrix,

12
Brown / considers a procedure based on a minimisation of the
difference between the time derivatives of the states of the reduced-
order model and the original system model, specified by the conditional
ensemble expectation
PRI RN >
5 {(x %) Gey = &) (243)
where §1 = K11(t) x, + 51(t)u (24d)

and u is an assumed nonstationary random control input.
The variables s = (x u)! and x2 are assumed jointly normal with given

covariance matrix

v, (t) v (%)
B(sx))'(sx,) = v;(t) Vi;(t) (245)
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The low-order model coefficients obtained by minimisation of eqn 243 are
then given by

el B "'1 hl Y "1
[AH(t), B1(t)] = [AH,B1] 3 Aﬁ2V21(t)Vﬁ(t), E[x2| 8] = V21(tﬂﬁ(t)s

(246)

The method produces a reduced model similar in form to that obtained by
mode reduction but requires the computation of time-varying coefficients,
Similar methods based on integrating the fit of derivatives of a flunction
have been used successfully in numerical analysis!56,

Reduced models obtained by the above techniques may not, in
general, be considered appropriate for use in an overall system design
study, but they have usually been found to be sufficiently accurate for
control design based on dynamic optimisation.

Linear least-squares sensitivity

The effects of the accuracy of measured data and of changes in
the elements of the matrices H,jﬂ O, V, Q and G associated with the least-
squares estimation, identification and control problems are of considerable
theoretical and practical importance. The least-squares problem will
of'ten be affected by ill-conditioning, and round-off errors may be
introduced by numerical integration and metrix inversion. Model
parameters will be affected by uncertainty, and linearisation of non-
linear dynamic equations will also introduce inaccuracies. In practice
knowledge of the noise statistics will be limited and may not be known
with certainty and will, inherently, contain inaccuracies. It is thus
important to consider the effects of rerturbations on the transient
response, the controlled inputs and performance criterion~and on the filtering
algorithms for estimated states and error covariance matrices, The
sensitivity of the properties of linear systems produced by parameter
change thus represents a fundamental and important problem and provides
a more detailed understanding of the behaviour of linear multivariable
systems which may be used to form the basis for overall system design.

BootJj o1 has considered the sensitivity of the convex quadratic
programming problem and Neall3! studied the sensitivity of the Kalman
estimator to small changes in the transition matrix elements. Aoki!
considers the effects of variation of gain and of changes in the transition
matrix and also the effects of imprecise noise statistics, and also
considers methods of simplification in a sensitivity and error analysis
of the Kalman-filter, Griffin and Sage1#1 discuss both large and small
scale sensitivity of the optimum estimation algorithm and consider the
effect of model errors and of errors in the plant and measurement noise
covariance matrices. Price!20 and Heffes'5! also consider the effect of
modelling errors and of errors in the noise models on the filter estimates.
Nishimural53 studies the effect of errors in the a priori information on
the variance of the estimates and determines an upper bound for the
variance andits effect on the final--estimation. The effects of
differential changes in the elements of a matrix have been considered
with resgect to changes produced in the system eigenvalues and eigen=
vectors! 32-140 Such variations will also affect the components of the
state-transition equation and will produce corresponding changes in the
discrete state variables,
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10.1 Sensitivity of least-squares estimation

The effect of differential changes in the elements of F,A , [,
H, V on the sequential state estimation algorithm for the dynamic system
with control can be determined by perturbing eqns 56-59, or the solution
given by the form of egn 44. Including control related to the estimated
states, egns55, 57 and 59 will combine to give

) = ""1 ~ ™
= H 'V s H 2
Fht (7 + PPt + P B V(B k+1‘f5xk) (247)

then with perturbation the differential change in the estimated state
will be given by

o _1 ~ b= —'1 — —1 ~
kit = Pl BRK)ER + [P P e v a(py P AR

~

dx

' - % d vy -H Fa
Pt T iy [y ~(QH, AR ] + P 1Bt Vi1 (T, ]fcﬁu'rlgxkJ
(248)
where

e wd = _ oy - - "
‘ = F = P B (ar)K
P i Frp oK) = (8 Py aK =Py (P (3P P 0K 4 P (as)

ki1 It
v P, B A(EK) (249)
d(Pk+1HL#1vk&1) = (de41)Hi}1vk}1+Pk+1(dH£+1)V£»1+Pk+1H£}1(de#1) (250)
de+1 = Pk+1[ﬁ;i1(d§k+1)§k:: B d(Hi+1vk+1Hk$1)JPk+1 (251)
eu?'kn = a(fe.§r +rQ 1) (252)

-~

It will be noted that the perturbed equation for d is of
sequential form with the coefficient of the previous-stage cﬁgﬁ%e ax
unaffected by perturbation. Egn 251 gives the sensitivity of the actual
covariance matrix related to error in the model process and in the
weighting matrices. The equations will simplify with and I existing
as constant incidence matrices and with constant weighting matrix Vk 52
and the process would appear to be stable with terms of the form H
Pk}1Pkf1 producing effects of cancellation with small changes. Persistent
component variations must not be permitted to affect the positive-definite
character of certain matrices,and changes in off-diagonal matrix elements

must be offset by appropriate changes in the diagonal elements!Ol,

Changes in the matrices_gﬁ 4 and K will be associated with the differential
changes introduced into the defining system A-matrix,and these will
correspondingly affect both the state estimation problem and the time

solution of the system modell39, Similar techniques may also be applied

to obtain the sensitivity of the identification algorithm of eqns 94-98Part 1,
and the effect of small variations on the minimum value of the performance
index will also follow directly.
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10.2 Sensitivity of the spectral prediction algorithm

The sensitivity of the prediction algorithm of Section 52; Pavt 1,
based on spectral expansion will require knowledge of the sensitivity
of the eigenvalue analysis of the defining covariance data matrix.
Various techniques have been developed for relating eigenvalue change
to 4ifferential matrix element changes, and the basic role of Sylvester's
expansion theorem associated with the spectral decomposition of a matrix 39
and of the constituent matrices in this development have been illustrated -,
The inverse eigenvalue sensitivity problem concerned with the requirement
to synthetise a differential change in the elements of a matrix to produce
a desired eigenvalue change, with applications in control design, has also
been considered by reformulating the eigenvalue sensitivity problem to
obtain a direct relationship between the matrix elements and the corres-
ponding eigenvalue changes.

A differential change of dA in the matrix A possessing distinct
eigenvalues has been shown to produce the small first-order eigenvalue
variation

i, = v dAu (253)
r Ir xr

where the eigenvector and eigenrow u_and v_ respectively associated with
the eigenvalue A are defined by eqnk 290-282. The eigenvalue sensitivity
has also been refresented as the sum of inner products formed by the rows
and columns of two nxn matrices!33

d = uv %di = trace v dA 2
Kr T * ae (ur r ) (254)
The n-square idempotent matrices u Vv represent the constituent matrices
of Sylvester's expansion theorem whith expresses the polynomial function
of a matrix, with n distinct eigenv?luﬁs, in the form of egn 298. Then
QA
g,

G-(?\i) = uivi = E;TE) (255)

where Q(%,) is the adjoint of the characteristic matrix (AI-A) and g'(2)
representd the derivative of the characteristic determinant | A\T-4] with
respect to . Laughton!3* and Crossley and Porter'™0 define G'(nr.) as
the matrix of eigenvalue sensitivity coefficients or condition numbers
with respect to the elements of A, for all eigenvalues, by the form

G'(ki) = E;xj/%ajk] (256)

Now g'(x) = trace Q1) (257)
trace[@(lr)dﬂj

thus dkr frace Q(?\.r) (258)

13k,137,140

The eigenvector sensitivity problem has also been studied.
Reddy considers a method based on the properties of the derivative of
a determinant associated with the adjoint matrix Q()\) of the characteristic
matrix of A. The method can be explained simply by considering the
characteristic matrix

My = in % A (259)
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The corresponding adjoint matrix or transposed matrix of cofactors, with
columns pro¥ortional to the eigenvector u_ and rows proportional to the
eigenrow v 59, is then defined by

r
c, (M) ..c () ..C_ (M)]
o) = 1157 SR nl’ i (260)
i = B M s e rhi_
L Gyn(¥y? CJ'n(l ! anty)

where elements C_ (M,) represent the cofactors of the matrix M,. An
eigenvector assotiatdd with the eigenvalue ), can now be defindd in terms
of any column of the matrix Q(%,), and the sdnsitivity of the eigenvector
to a parameter change will then be given by

du, = d[Cj1(Mi) . & cjn(mi)] (261)

Now the derivative of a determinant with respect to a parameter
is given by the sum of n determinants obtained by replacing individual
rows (or columns) by their derivatives with respect to the parameter.
Thus for the cofactor element Cj1(Mi) given by an n-]-order determinant

| d . . d4(c c 2 & LB i
} (031)11 ( j1)1,n—1 ( 31)31 ( 31)1,n—1 '
- - o L 3 L] d— C
dcji(Mi) = (031)21 (Cj1)2,n—1 + d(cj1 21 ( 31)2,n—1 !
‘[ = (C . C l
i (Cj1)n—1,1 N jT)n—1,n-1 (Cj1)n—1,1 ( jf)n—1,n~1
051)11 * e (Cj1)1,n—1
By . w LB,
+ o o+ J1721 J172,n-1
la(c.,)
L3 01,1, d(Cji)n_1,n_1
n-1
= I K (262)
r=1 2

and expanding each determinant X in terms of cofactor elements C(Kr)'j
r i

. n—-1 n-1
(M) = a(c . c(K .. rd(c . C(K 2
a0 5, (1) g & 31)1,k ( 1)1,k * + 2 Ji)n—T,k ( n—1)n—1,k (263)
kA k=1
c(k . . c(x a(c . . dc 1
( 1)11 (‘1)1,n—1 ( 31)11 ( j1)n—1,1
- tI‘ace . . 3 . - L] e [ L] L) . '] . Ll ° L] - . . '] . - @
..C(K il
C<Kh—1)n—1,1 ( n—1)n—1,n—1}hé(cj1 1,n-1 (Cji)n—1,n—1
(26k4.)

Other derivative eigenvector components dC..(¥,). . in eqn 261 will be
given similarly in terms of the cofactor c@mpoﬁents C.,» « The result

is similar to the form of egn 18 in reference 139 whie% states that for
any square matrix M()\) with elements m the derivative of the determinant
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is
: dm,_
Zlu)| = =2 [c(n,,)] —id (265)
a RO S I
and for H(A) = AT -4
4 -nl - 4 - _
- | AT - 2] = trace [Q(2) = (T -24)] = (V) (266)

Reddy158 uses the eigenvalue and eigenvector sensitivity functions to
obtain a closed-form solution for the sensitivity of the response of the
linear system subjected to parameter variations, !

The above results will now form the basis for the sensitivity
of the prediction algorithm of Section 5 based on a spectral expansion.
Thus small variations in the elements of the covariance matrix R will
perturb the eigenvalues by dA and the eigenvectors by df according to
eqns 258 and 26k. Then from egn 114, Part 1 the coefficients ¢ will
change according to

ac = (ax)f + x(ag) (267)

The differential changes df will determine particularly the sensitivity of
the sequential prediction algorithm of eqns 139 and 140, Part 1, to
changes in the data X defining the characteristic functions, and in the
data occurring during the prediction interval. Ferturbing eqn 137
then g%ﬁés the differential change in the prediction coefficients

af ]. =4[

Mt i3

~

], P P+ {l ax, (3) = [e., ] (dﬁ;L(J))}ﬁi(j)Pj

Mat y1i7 31 g1 Ml 1 j-1

. {%1(3) Sl CUN N 116) (L(dﬂ'i(j))Pj « 8,(3)(a,)] (268)

§ 3

and from egn 135,

;= PP (e, - als(3) (3, (269)

Changes in the eigenvectors £.(Jj) will be based on changes in the original
data using the form of eqns 261 and 26l.. Corresponding variatioas in the
coefficients [cM ’ ]j will then affect the predicted values

+
[£M+1(j+1)..ﬁﬁ+1(Nj] according to the perturbed form of egn 140. The

sensitivity analysis may be used as a basis for improving the accuracy of
prediction, and may have application particularly for compensating the
errors encountered during the peak periods of electrical load prediction
based on a spectral analysis/'.

10.3 Sensitivity of the linear optimal control problem

The sensitivity of the control law, performance index and state
vector to parameter perturbation in the linear optimal control problem
has been considered by Pagurek (1965)142 Barnett (1966)143 and Barnett
and Storey (1966)144. Barnett and Storey develop conditions for an
insensitive optimal control law and show that optimal control is more
sensitive to small changes in the system B matrix “than. to small changes
in the. corresponding A matrix.
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The sensitivity of the optimal control law of eqn 353 related to
differential changes in the elements of the matrices G, B and P is given by
= - Sl -1
dX = & (d&)G e - G (@B')P - ¢ B'ap (270)

With asymptotic stability, the differential change dP will be associated
with the perturbed steady-state matrix Riccati equation

(@P)A + P(d4) + (AA')P 4+ A'(dP) - (GP)BG-—1B'P - Pd(BG“‘IB‘)P
- PBG 'B'@P 4+ dQ = O (271)

Then for changes in matrices A and B with P_ representing the original
P matrix ©

(aP)L + A'(dP) + (@ + @y + Q) = 0 (272)
where A = A - BG-_TB'PO = A+ BK
Q = Po(rm) + (dA')PO 1 (273)
- o
0, = P [(aB)e 'B' + Be (aB')Ip,

Egn 272 defines the perturbed equation for the nxn symmetric sensitivity
matrix dP which is governed by a modified Lyapunov-type equation. ilatrices
Q, and Q_ are symmetrical forms related to the changes dA and dB
r@sPectively and must be constrained in order to retain the positive-
definite character of the overall Q-matrix, A solution for dP can now

be obtained using the techniques of Section 8.1 based on transition matrix
and eigenvector components. The sensitivity of the matrix P of egn 206
related to eigenvector components will be given by

=
@ = (Pau,, au,, )UH (27k4)

1
with eigenvector changes dU, , dU_, related to differential changes in

the defining system matrix.11 Sim%ﬂarly, the sensitivity dP may be related
to perturbed transition matrix components in the limiting relation of

egqn 199, which may then be related to A-matrix element changes139. The
sensitivity of the reduced-order model based on modal reduction will

also be related to the sensitivity of the corresponding eigenvalue problem
and particularly to the differential changes produced in the components

U11 ’U21 :

The discrete optimal control algorithm of eqns 325, 327 and 328
will also perturb in e similar manner to the seguential algorithm for state
estimation. Thus from eqn 325

A -

a, = B[P o, f-(aa)p_g-N@_ )F-oP_(af)] (275)

= . 1
Py = AP b +6 (276)

and from eqns 327 and 328 the perturbed matrix dPrh1 reduces to

dPr-i = (dﬁ' )Rr—ZPr—Zp'+ ﬁ'Pr—ER;'—2(d‘@ * ﬂ'Rr—2(dPr-2)R;'~Zg

A—-‘l A-—-‘1
-1 1 Rl dﬂ ]
jﬁ‘[Pr--z'l"\‘Pr—.?(d'& )Pr~2 r—2+Rr—2Pr~2( )Pr-EA Pr-2
A A=,
- Q
PP _(a0)P e 18 + a0 (277)
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A B y A
P, = 8P _, +G1 (278)
_ _ - ' 2
R., = I-P_,aP A (279)

The above relations will permit a study of the effects of all
parameter changesand can be developed to consider, in particular, the
sensitivity of the controlled response to variations in the control-law
weighting parameters and in the system model equations, and alsc :
the conditions required to minimise the performance sensitivity. Chen
and Shen! investigate the effect of variations in the controlled system
A-matrix and the corresponding differential changes dP produced by the
elements of dQ. The eigenvalue sensitivity equation is then used in an
iterative algorithm for determining the weighting matrix Q and the optimal
feedback gain matrix based on desired closed-loop eigenvalues,

Sensitivity of the estimation, identification and control
algorithms associated with the linear dynamic system is particularly
important for assessing the effects of inaccurate plant and noise model’
parameters and-also the effects of the weighting coefficients on performance,
In particular, the covariance functions associated with the state estimates
and the noisz sequences will not be known exactly in practice, and
computational techniques for adaptive sequential estimation within the
framework of a sensitivity analysis are required for estimating and up-
dating these functions from available data.

; 1
Research applications

A wide range of research activities relevant to the general |
field of linear system theory has been discussed and referenced. Research
work is now being undertaken in the Department of Control Engineering,
University of Sheffield which will also include online application of the
techniques of state estimation, parameter identification, prediction and
control of processes which require detailed investigation under near-
actual operating conditions. The process computer is an extremely
versatile machine and it is believed to possess enormous potential for
extending the present areas of application to include more advanced
adaptive optimal control techniques using detailed and changing plant
models related to the steady-state and dynamic characteristics of the
plant., The research work will thus be concerned essentially with extending
the application of the process computer for online control using techniques
based on modern control and linear system theory for obtaining integrated
control of large-scale systems in the power, steel and glass industries.

Optimal online scheduling of a multimachine power system is
being investigated on a multilevel basis. A process computer will
operate as a grid process controller for the real-time automatic scheduling
and control of a power system simulated in a large central scientific
computer, The computers will be interconnected through a date link,
and the study will incorporate techniques of linear programming for
optimal scheduling and methods of network solution based on partitioning
and updating using sequential algorithms, together with load prediction
based on spectral analysis. The application of pattern recognition
techniques for line security assessment will also be investigated.,
Process modelling of a glass-tube manufacturing process, marine boiler,
multi-stand cold rolling mill, electric arc + furnace, steel bar mill
and billet furnace is also being undertaken. These studies, and other
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work concerned with factory production control, road tunnel ventilation
and traffic control, online identification of a boiler model, and the
analysis of medical data will also consider the application of many of
the sequential computational algorithms developed in the papers.

Conclusions

An attempt has been made to review the development of the closely
related sequential algorithms foér state estimation, parameter identification,
prediction and control of the noisy linear dynamic system using classical
least-squares theory. The techniques have particular application in the
fields of automatic control and stochastic approximation,and also link
together many other areas of study involving online data processing for
the fitting of model parameters and decision making in stochastic environ-
ments. The linear least squares theory which has developed naturally
from the original work of Gauss, and Aitken and Plackett among others,
and Wiener and Kolmogorov also provides a basis for the study of the
more difficult problems of nonlinear stochastic estimation and control.
Computational algorithms have been developed and illustrated in a readily
accessible form suitable for dirasct application, which it is hoped will
promote the undeystanding and motivate the use of these powerful
techniques of data processing in many other fields.

There is an increasing and active interest in the use of
sequential algorithms in problems concerned with nonstationary processes,
and particularly in problems of pattern recognition and data classification.
In the power system control problem there is an application for obtaining
online sequential solutions for load flow and optimal load scheduling.
There is undoubtedly many fields remaining to be explored, .
particularly those concerned with process system identification and control
and with the modelling of biological systems. The techniques of pattern
recognition and machine classification incorporating sequential processing
using the methods of potential functions and spectral analysis will also
find application in these fields. Collaboration between different
scientific disciplines in the universities and in industry is now essential
in order to obtain increased effort for investigating applications of the
developments which have been achieved in the theory of state estimation,
system identification, prediction, reduction and control, and for reducing
the gulf now existing between theory and practice. Present-day
knowledge of the underlying theoretical basis for optimal control and
stochastic approximation is at an advanced stage, and wider experience
in practical application is now required in order to demonstrate the
effectiveness of the techniques which can be applied for the solution of
an increasing range of scientific problems,

Appendix

13.1 TIhe discrete time solution of linear state equations

The complete time solution of the linear continuous-time dynamic
system x(t) = Ax(t) + Bu(t) (280)
is defined by

x(t) = eAtxO +_[t eA(t_taB wr)aT (281)
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representing solutions of the homogeneous equation and convolution
integral, similar to the form for scalar variables, Tabulated integral
solutions are available!?? for impulse, step and ramp-type forcing
functions, which can be used to approximate continuous inputs. A
discrete time solution, with the forcing functions changing only at the
sampling time iT as step inputs, is represented by the recursive vector-
difference eqn 1, Part 1, where §(i+1,i) or §(T) represents the nxn
transition matrix defined for a sampling period T by the relation
AT > adnd
glr) = e = T ATY/5 (282)
J=0

and A(T) is the nxp driving matrix defining the effect of an input u, at
time t = iT on the state of the solution at time t = (i+1)T, given by

T [ oo i
A(T) = jeMT"r)Bar % i 3 AJTJM/(jH)!} B (283)
L&) J=0

sy - 1B (28L)

H

with nonsingular matrix A, Wi*th disturbance and control inputs u, ., Uy,
the matrix & will include partitioned components A,, 4_. Various11 -
computational algorithms have been developed for o%tai%ing the matrices

B and A . A closed-form solution can be obtained using an eigenvalue
analysis, the properties of the constituent matrices or a partial-fraction
expansion of the equivalent transfer matrix. An arbitrary sampling
period T can be defined but the methods usually require a complicated
programming routine. A simpler computational algorithm with arbitrary
sampling-period can be obtained using the squaring and translation
properties associated with the matrix series expansions1 .

13.1.1 Solutions based on matrix-series expansions

A simple programming loop can be used to derive the expansions

B(t)

a(t)

I+ (At) + (AL)At/2 + (Aztz/zl)ﬂt/E oy (285)

n

It + (It)At/2 + (At2/21)At/3 1 (A2t3/3t)At/4 + ..(286)

n

where the brackets contain the previous terms in the expansion and each is
multiplied by the expression At/j. Rapid convergence with limited
iteration will be restricted to relatively small values of step length t
for avoiding computer overflow. An extended-period solution can then

be obtained using the repeated squaring and translation properties of the
matricesﬂﬁ'and QA . Thus for a required sampling period T = nt, where t
is a reduced step length producing rapid convergence of g(t) and A(t),

the squaring properties afjﬁ‘can be used to give

Het) = )

Hnt) = F(nt/2)

Similarly the following relations may be developed for obtaining the
driving matrix &(T)

(287)

2t _
A(2t) = j eA(zt_T)Bd’t = .fﬁ[ezAzt - 1]B (288)
o]
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reducing to

&(2t) = [T+ f(t)]&(¢)
n(nt) = [I+ f(nt/2)]a(nt/2)
This algorithm may be programmed directly in conjunction with eqn 287,

giving both H(T) and &(T) based on the converging results for f(t) and
A(t) obtained from egns 285 and 286.

(289)

13.1.2 Solutions based on an eigenvalue analysis

The response of the linear system may also be investigated in
terms of the transient modes assoclated with the solutions of the
characteristic determinant. These are related to the eigenvalue problem,
which for a matrix A is defined by the relations

(krI - A)ur = 0 (290)
vr()\rz -A) = 0 (291)
vu =1, vu = 0, k Zr, r = 1..n (292)

where u_ and v_ represent the eigenvector and eigenrow respectively,
associafed with the eigenvalue A_. The eigenrow v_ is also defined as
an adjoint eigenvector of the trgnsposed matrix A'.Y In terms of a
square modal matrix of eigenvector columns u_ the resulting eigenvector
matrix eguation is *

AU = UA (293)

where A is a diagonel matrix with elements A , A_, ..A . The transition
matrix based on calculated eigenvalues and e&gen@ector% can then be
defined as

AT AT -1
Br) = e - uUe U (29%)
AT 7\1T lzT AT
where € = is a diagonal matrix with elements e , e <, ..e n
Similarly

A(T) = f UeA(T_T)U-Jle‘Z’ - UAU B (295)
Q
where
A=n T (296)

AT AT
is a diagonal matrix with elements (e 1 41)/11, el = —1)/1n.

153¢1.3 Solutions based on the constituent matrices of Sylvester's
expansion theorem

A discrete time solution can be defined in terms of the spectral
decomposition of the matrix exponential obtained using Sylvester's
theorem which expresses the polynomial function of a matrix, with n
distinct eigenvalues, in the form

F(4) = _;:11 F(?\i)G(?\i) (297)
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where G(li) is the n-square constituent matrix defined by
) o(r,) n(A-2T) )
e(r,) = — .-=‘1—|'Z—__L). 298
* e'0y) 5 By
JFL

Q() is the adjoint of the characteristic matrix (AI-A) and g'(1)
represents the derivative of the characteristic determinant | AI-A]
with respect to A. Thus the matrix exponential can be defined by
the spectral decomposition
AT n 1T
Hr) = 7 = 5 el @(r.) (299)
11 *
Similarly for the driving matrix
AT

’ T n A
am - | M Fpae _ z iflﬁfsll e(n,) | B (300)

The constituent matrix may also be defined by the form of a normalised
dyad expression, in terms of the outer product of an eigenvector and an
eigenrow

G(li) = v, (301)
n AT
Then GAT = & e* (uv,) (302)
i=1 e

The constituent matrix sequence G(l,) can thus be used in a computational
algorithm for determining # and A in terms of the eigenvalues and eigen-
vectors of the matrix A and its transpose, or in terms of the eigenvalues
and the adjoint matrix of egn 298. The matrices G(k.) represent the set
of constituent idempotent matrices of A with the propdrties

Be(y) = W o< L, (60,01 6(a,), 601,601 = 0, (503)
izl
E

13.1.4 BSolutions based on the partial-fraction expansion

Laplace transforming the continuous-time state egqn 280 gives
the transformed state solution

X(s) = (sI -4)x(o) + (sI - &) Bu(s) (30L)

-1
where (sI-A) B represents the system transfer matrix., The transition
matrix will then be represented by the closed-form solution

By = 277 (e - )™ (305)

Now ) . Q(lr)
im (A - Kr)(ll - A) = uVvV = §7Ti;7 (306)

r
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which represents the matrix of residues corresponding to the distinct
poles in the partial-fraction solution associated with

(s1-8)"1 - g c_(s-s)7" (307)
K - r r
r-=1
whers c = lim (s-s )(SI‘A)—1 (308)
r T
s5+5
Thus -4y - g (wv )(a-2 )™ (309)
- i rr r

and inverse transforming with Laplace variable A gives the transition
matrix

D = 2703 (ar )] (510)

corresponding to eqn 302, Columns of the matrix of residues C given by
the outer product u v , and thus also of the adjoint matrix Q(kr), are
proportional to there{genvector n , and the rows are proportion£1 to the
elgenrow v_. Eqns 307 and 309 i¥lustrate the relationship of the
constituent matrices with the matrix of residues associated with the
equivalent partial-fraction expansion of the transfer matrix. The
Leverrier algorithm can also be used as a computational method for
determining (sI-A)~1 161,

The constituent matrices play an important basic role in the
theory of linear systems, and are also of fundamental importance in the
eigenvalue sensitivity problem associated with linear systems, as discussed
in Bection 10. They are related to the algebraic eigenvalue problem and
provide a unifying relationship between the various methods of solution
developed for the time solution of linear vector differential equations.
The use of the algorithm of egn 310 will avoid the problems of convergence
using the matrix series expansions based on arbitrary step lengths., It
will, however, require the calculation of eigenvalues and residues, and
for the usual, relatively large asymmetrical process model, difficulties
will be introduced with the existence of complex eigenvalues, In this
case, the preferred method of numerical solution for determining the
matricesJﬂ'and /A will be given by the series expansions of egqns 285 and
286 combined with the squaring and translation properties of eqns 287 and
289.

13.2 Optimal control of the discrete linear dynamic system

For optimal control we require to determine the control sequance
[uo,u1..uN_1] which minimises the N-stage process performance index

N
= . 'L G
Iy z [xi x, +u !, ui_1] (311)
i=1
subject to the constraints of egn 1, Part 1, withw, = 0. Q is an nxn

positive semi-definite symmetric matrix and G is a %xp positive definite
symmetric matrix, Including a measurement matrix H then @ = H'QH.
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From the 'principle of optimality' in dynamic programming with
a backward tracing of the trajectory, the minimum cost over any 'future'
interval is a function only of the present state and the future control.
Optimal performance at the Nth period associated with a single-stags
process is then given by

o . ' '
gy o= min (g xo+we  Gouy ) (312)
=

Now relating the state to conditions at the instant N-1 for proceeding
backwards, using egqn 1, Part 1, gives

I, = % 'QﬂxN_1+u' 4'Qfx +x'+ﬁQ6uN1

vy (a'Qna +G) (313)

Setting BJ'JI/ZEH.II\I_JI = 0 for a single extreme (minimum) value then gives

-1
- =(A - -
= -@'Pay ) A'POJ?TXN_1 = P =0 (314)

K x
"y 17N-1"
Matrix K, represents a linear feedback control law based on a single-step

decision. For suboptimal control on the forward trajectory it relates
control inputs to system states at each instant.

For control at instant N-2, summated performance

o] .

J, = min (J1 + X Qx + ur'q~2G uN_2), k = N-2,N~1 (315)
Y

Then including egn 312,related to conditions at the instant N-1, and

eqn 314 ,gives

= x! P '
To = B Pyt Ut Yo e
where
P, = (,Qf+AK1)'Q(_ﬁ +QI€1) + KIGK, + Q (317)
Now translating the state _,tocxditions at the instant N-2 using egn 1

and settingBJz/auN_2 = 0 gives
.—1
= =(A! =
W o = (a P1A+ G) A'P,[ﬁXN__2 & KZXN-2 (318)

1. o} ; (o] 2 :
Similarly J, = Ln;n (Jp + % A%y o + uN-BG%I-i)’ k = N-3,N-2,N-1

Then including eqn 316 related to N-2 and eqn 318

(o}

T3 = M2 Fp Tyt U3 & Uys (320)
and minimising with respect to U3 gives
=]
= == é' VAl =
Uy ( P2 + G) Afpg_ﬁ -3 K3 xN_5 (321)
where
P, = (ghmc)P (p*+aK)+KéGzc2+Q (322)
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Continuing this procedure to the initial state gives the
optimal inputs as a solution of the functional equation

o] _ - 1 " (1 " 0 J o — e
Iy = :;n [x19,x1 FulGu o+ JN_1(x2,u2, N_z)_], k = 0,1..N~1 (323)

The problem thus reduces to minimisation with respect to a single input

u (=K x ) as a single-point boundary value problem. In the limit as
N o With an infinite time interval, the control law and quadratic form
sequence converge to limiting steady-state values, The dynamic
programming algorithm for optimal control of the discrete linear system
with quadratic index may be summarised -

= w2 N 2l
UN"I‘ KI‘ XN—I‘ s T 1, (3 )
where K_ is a pxn feedback gain matrix determined by the recursive relations
T
=
= =(A'P ' 2
K, (8'2_a+6) " atp (325)
= ! K K' GK 26
g = Box )P (B4 q) KL GK 4 Q (326)
P = @, r=1
o

Substituting the relations for K_ into those for P_ the general algorithm
may also be stated by eqns 324 ahd 325 with &

p = fgru F+q (327)

r-1 =1
-
i = = ! / G !
M, P o Pr_za(a Pr_zc, +G) A P o5 (328)
P, = Q = H'OH (329)

With the performance criterion including a term relating to the final state

LxﬁFxN) then
P = H'QH + F (330)

With given mltricesjf,&, Qs G and F the feedback control law matrices
Pr—1’ M and K will be computed offline, and with convergence in a
d851re&riﬁtervalrthe linear invariant feedback control law is given by

u o= Kx (331)

In the limit as N-» o, the control algorithm can be related to a non-
linear algebraic matrix equgtion by combining eqns 327 and 328 to give

P - B'BF - PalsPae ¢) aeF 4 g (332)

13.3 Optimal control of the linear continuous dynamic system

Consider the optimal control of the system
x,(t) = £, (xut) , i=1.n (333)

for transferring the initial state x(t ) to a terminal state x(T) with

control u(t) which minimises the perfofmance functional
T

J = min x,u,t)dt 33l
u(t) {; fo R ( )
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13.,3.1 Solution based on the maximum principle

Define additional state variables

io(t) = fo(xauat) ’ xo(to) = 0, XD(T) =d (355)
and adjoint variables
n
% = - ' i=0,1.. 6
pi .Z ij/axi Pj y 1 > n (33 )
J=0
The Hamiltonian is then defined
H(p,x,u) = p'f(x,u,t) (337j
thus ii = afvbpi , ii s -aH/bxi, i=0,1..n (338)

For the linear system with quadratic performance

£ = (x'Qx + u'Gu)/2 (339)
)

H = po(x'Qx + u'Gu)/2 + p'(Ax + Bu) (340)

b o= ~p@x-Ap, b =0 (31)

with boundary conditions
p(t) = =1, 0<tsT, pT) = O

For maximum H along an optimal trajectory, differentiating egn 340 with
respect to control u gives

w(t) = &' B p(t) (342)

Combining eqns 280, 342 and 341 then gives a 2n-dimensional vector
differential equation defining the optimal trajectory

()] _ | B¢ B {'x(t)‘
ﬁ(t)J Q  -A! p(t)

or z(t) = U (%) (343)

with boundary conditions x(to) =0, p(T) = 0.

Including the assumed relation p(t) = -P x(t) in eqn 343 then gives the
nonlinear matrix Riccati differential equation

P = PBE B'P - PA - A'P - Q ( 3hd)

For the linear system with a quadratic performance criterion defined over
a finite-time interval, the optimal control problem reduces to two sets
of single-point boundary value problems for which explicit solutions can
be obtained as in Section 8.
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13,3.2 Solution based on the continuous form of dynamic programming

The continuous form of dynamic programming can be developéd as
a partial differential equation'?

n
Min 27 | 2
t'—'— e— =
u(t) fo(x,u,t) + 3 fi (2;1isk) = 5 5 0 (345)
i=1 X
For the linear system with
J = x'Px, »J/at = x'Px, d3JAx = 2Px (346)

eqn 345 gives

Min { (x'Qx + u'Gu) + (Ax + Bu)'Px + x'P(hx + Bu)i + X'Px = 0 (347)
u
and differentiating with respect to u gives the optimal control law

u(t) = - ¢ B x(t) (348)

Combining egns 347 and 348 then gives the nonlinear matrix Riccati
differential eqn 344.

For integration with reverse time, ¢ = T-t,
P(¥) = PA 4+ A'P . Q- PBG B'P, B(t ) = B(T) = 0 (349)

The optimal control law is thus time varying and related to the nxn
symmetrical matrix P given by the solution of the matrix Riccati differential
equation. Integration in reverse time requires storage of P(t) for
implementation of u(t) and may cause realisation to be uneconomic.

The discrete reverse-time control algorithm of egns 327 and 328
of Section 13.2 developed by dynamic programming can also be shown to
reduce, in the limit, to the reverse-time form of eqn 349 for the continuous
system. Thus combining eqns 327 and 328 and using the first-order
approximations of egqns 192 with small sampling interval h, and arguments
ryr-1~+t+h,t, and following the derivation in Section 8 gives

1]

M(t+h) = P(t) - P(+)(Bh)[(Bh)'P(t)(Bh) + h@1'1(Bh)'P(t) (350)

Then

P(t+h) = (I+Ah)'M(t+h)(I+Ah) + hQ

P(t) + hA'P(t) + hP(t)A - hP(t)B[hB'P(t)B+G]—1B‘P(t)

+ O(b%) + hQ (351)

reducing in thelimit h— o0 to the form of eqn 349. The control law
algorithm of egn 325 will reduce similarly to the continuous-time optimal
control solution. Thus

K(t) = =[(Bh)'P(t-h)(Bh) + hG]“1(Bh)fP(t~h)(I+Ah) (352)

and with h-—+=0

K = -¢ 'Bip (353)
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