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SUMMARY

This report evaluates the Advanced Continuous Simulation
Language ( ACSL ). 1t describes the language structure and
assesses its features. '

The user—-computer interaction, ease of use of the package and
its capabilities in result analysis are discussed. The report
also considers the ways to improve the software.
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1. INTRODUCTION

The Advanced Continuous Simulation Language ( ACSL ) is an
equation oriented simulation language which 1is available for
several different computers. This report 1is concerned with the
IBM XT version which is being run on an Olivetti M24 5P computer
in the Department of Control Engineering, University of

Sheffield.

During a six month period various models ( linear, non-linear
etc. ) have been simulated on ACSL by student users with widly
divergent programming experience. This report assesses the
package based on the experience gained in wusing the ACBL. It
examines its ability to provide the features required by users in
the Control Engineering Department and users at the British Gas
Research Centre for their simulation studies. The requifements

can be summarized as follows:

1) Ease of wuse; the language should cater for both novice and
expert users.

2) Provision of extensive simulation functions; e.g. wide
range of integration algorithms.

3) Ability to split a program into submodels and to create and
use submodel libraries.

4) Extensive facilities to manipulate the data output from a
simulation run.

A more general discussion is also made on the ways that the

package may be improved. This, however, mostly concentrates on
the user-computer interation, as this requirement Iis not
satisfied by most ( if any ) of the existing simulation
languages. The availablity of microcomputer to a wide spectrum

of users has clearly put more emphasis on this requirement,
especially in using technical programs such as simulation.

It should be noted that this report 1is concerned with
evaluation of the PC version of the ACSL. Versions of ACSL for
mini and mainframe computers offer a wider range of features
e.g. more options for graphical display of results.

2. THE ACSL LANGUAGE

The basic structure of ACSL follows the specification
established by the 8SCi Technical Committee on Continuous System



Simulation Language ( CS5SL ) [1].

There are three REGIONS in the ACSL structure each of which may
be further sub-divided into smaller conceptual units.

2.1 The Initial Region

The initial region is wused for the execution of all those
operations which must be performed before the simulation begins.
In practice, the initial region is used for:

1) Setting of constant values for both model and experiment.
2) Setting of integration parameters.
3) Initialising output, e.g. printing headings.

4) (Re)initialising of system ( state) wvariables to initial
conditions.

For multiple simulation runs, the initial region is re—entered
after each individual run for re-initialisation of those state
variables which require it. This region contains procedural code
( i.e. FORTRAN code ) [ 2 1.

2.2 The Dynamic Region

The dynamic region is the active portion of ACSL simulation

program, the heart of which is the Derivative Section. The
derivative section contains the model equations which are
evaluated under the control of the integration system. This

section is strictly non-procedural.

The procedural parts of the dynamic region are used for those
operations which do not have to be performed 'continuously' at
each integration step. Typically, these periodic operations are:

1) Output of system variables.

2) Calculations which are dependent on the independent variable
but which do not form an integral part of the equation set.

3) Testing of conditions to determine whether or not to



-

terminate the simulation.

The ‘parameter whicﬁ represents the period over which the

integration system exercises control of the derivative section is
the COMMUNICATION INTERVAL.

The statements in the derivative section need not be ordered
but will be automatically sorted into the correct sequence 5o
that intermediate values are calculated prior to their use.

2.3 The Terminal Region

When contfol is passed to the terminal region from the dynamic
region, it implies that the simulation run has ended. Any final
computations, which might be required, are performed and program

execution is halted.
2.4 ACSL Structure Statements

The ACSL program skeleton is shown in Figure 1.

INITIAL

................
................
................

................

END

TERMINAL

Figure 1. ACSL Program Skeleton.



Note, if no structure statements are present ( e.g. INITIAL ),
the program is to be treated as a single derivative section. If
a region is not required, it can be omitted.

3. PROGRAM GENERATION AND EXECUTION

ACSEL is implemented in FORTRAN. It acts more like a
pre-processor as ACSL programs are first translated to FORTRAN
which are then compiled by the FORTRAN compiler. The sequence of
the program generation and execution is shown in Figure 2.

ACEL Program Statements

i TRANSLATOR '

FORTRAN Statements

COMPILER Passli

COMPILER Pass?2

'
1
i
1

i LINKER

6]
0
i
o
M
o}

! model .CMD i——=>! FILENAME | <---- Run-Time
] H : i Commands
fmm e RESULTS ——=---—=————————=- :
model .OUT model .RRR 1 1

model . RRR N

Figure 2. ACSL Program Generation and Execution.

A model.RRR file recieves binary data produced at run time. This
data is used later to plot or print the results.
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3.1 A Benchmark Test

The Pilot Ejection study was used to determine the speed of
ACSL translator, compiler, linker and the execution run. The
results are summarized in Table 1. A listing of the program 1is

given in Appendix A.

Compilation Time ( SEC )

Translator 12.4
Comp. PI1 15
Comp. P2 21
Linker 61

Run-Time Time {( SEC )

110
12.8
6

Tabulated O/P
Time Res. Plot
X, Y Plot

Table 1. Benchmark Test Results.

4. ACSL FEATURES

An ACSL simulation consists of two sections: a model definition
and run time commands ( or experimental definition ). Using this
structure, a continuous system is mathematically modelled with
ACSL statements in the model definition section, then the model
is analysed under the control of instructions interpreted in ~ the

run-time command section. The advantage of this structure is
that once the model is defined, it can be saved on file and
analysed indefinitely with any run-time commands specified

interactively and/or in batch mode.

The basic facilities provided by ACSL for each section will be
assessed in the discussion which follows.

4.1 Model Definition
4.1.1 Integration Algorithms

There are seven integration algorithms available in ACSL, as
listed in Table 2. The integration algorithm can be changed by

the SET command ( section 4.2 ) at run time.



1ALG ALGORITHM

Sampled Data System

Adam's Moulton; wvariable step
Gear Btiff; wvariable step
Runge-Kutta First Order or Euler
Runge-Kutta Second Order
Runge-Kutta Forth Order

User Supplied Subroutine

N R W -

Table 2. Integration Algorithms in ACSL. ‘

The Adams-Moulton and Gear's stiff are both wvariable step,
variable order, integration routines that are self-initializing.
In general they will keep +the per step error in each state
variable below the desired wvalue. Gear's Stiff integration
method can take calculation steps that are orders of magnitude
larger than the smallest time constant. There 1is an overhead
involved, however, since a linearized state transition matrix
must be formed and inverted. For models in which the range of
time constants extends over one to two decades, there is little
benefit in wusing this method: the Adams-Moulton technique is
invariably faster. If the range of time constants covers more
than three to four decades, then the Gear technique should be
significantly faster than any other [ 3 1.

Integration algorithm zero is used to model discrete
controllers with samplers controlling transfer to and from the
continuous section. '

More .than one Derivative section may be used, each with its own
independent integration algorithm and integration step size.
Although this technique can save execution time when correctly
used, any implementation must be approached with caution since,
in general, incorrect answers will be obtained unless the model
is split with full understanding of the effects of computation
delays for variables that cross block boundaries. Novice users
should use no more than one derivative section in their program
unless it is to model a discrete controller where natural delays

occur.

ACSL also provides functions for detection of discontinuities.
Essentially, two features are required, (i) the discontinuity
must be able to be specified as a discontinuity ( or specified
value ) function and (ii) the integration algorithm must be able
to adjust its step size wunder the control of some detection
scheme to coincide with the occurance of the discontinuity.
These features are supported by the functions DBLINT ( double
limited integrator ) and LIMINT in ACSL.



Note, Partial Differential Equations ( PDEs ) can also be
solved using Vector Integration.

4.1.2 Macro

The macro facility is the most powerful and advanced feature of
ACSL. It allows the user to expand the language capabilities by
defining new operators as the need arises.

A macro may be used in one of two essentially distinct ways.
The first is akin to a subroutine or a function which is defined
once and called from many places. The only way to define
operators involving integrators is by using this Macro operator.
The second approach °‘is to define blocks and write all the
equations in terms of standard nomenclature. Those blocks can
become part of a system library ( e.g. an Actuator ).

Some of the weaknesses of the macro facility in ACSL are:

1) The macro argument list is long and complicated. For
example: -

MACRO VALVE ( gvi, pup, pint, temp, z, cgl ...
n7, cgmax, g, fk, xt, ymax, fp )

"

MACRO STANDVAL n7= ...., cgmaxs . ...,
g% :awiey fk A

Also, any local constants used have to be declared in the macro
heading..

2) Macros written to handle arrays are extremly hard to read
since no mnemonic symbols can be used for the arguments [ 3 1.

3) Macro generates large numbers of dummy variables, for local

variables at each invocation, which have no physical
significance. An alternative approach is to wuse concatenation
feature to build unique symbols. This is, however, confusing as
symbols can be mixed. Using the concatenation feature the
argument list is simple, but there is no flexibility, and

arguments can not be expressions.

4) Care must be taken when a macro is called where expression
are used, wrong answers can be obtained if parentheses are not

placed around the argument. For example,



MACRO ACCUM ( tﬁt, wl, w2, ic )
tot= INTEG ( wi - w2, 1ic )
MACRO END
at invocation time
.ACCUM ( mass = win, wpl+ wp2, massic )
which would-give the line of-code
masse= INTEG ( win -wpl+ wp2 , massic )

which is wrong, since the wpz has a plus sign in fromt o: it.
The macro above should have been defined by

MACRO ACCUM ( tot, wil, w2, ic )
tot= INTEG ( w1l -( w2 ), ic )
MACRO END
to obtain
mass= INTEG ( win - ( wpl+ wp2 ), massic )

As the above discussion illustrates, the macro facility =hould
only be used by experienced users.

4.1.3 Subroutine

ACSL programs may contain FORTRAN statements. The FORTRAN
subroutines and functions are placed at the end of am ACSL
program. They may be called from the program body, Mmacro or
other subroutines. The wuse of subroutine has the following

drawbacks:

1) The wuser has to learn FORTRAN and obey the FORTRAN
programming rules ( eg. statements start at column seven ).

2) The ACSL translator does not check any of the FORTRAN
programming codes. It, therefore, takes longer to find any
errors in the program.

3) The user has to be familiar with the FORTRAN 'LIB' utility
program to be able to create a library of subroutines where the
subroutines are held in compiled form. He, then, can link an



ACSL program to the appropriate library.
4.1.4 Function Generators

One, two and three dimensional tables may be used to describe
an arbitrary function. The interpolation between points 1is

linear.
4.1.5.A1gebraic Loop Solver

ACSL uses the Newton-Raphson iteration method to find a
solution of simultaneous or algebraic equations. This operation,
however, increases the run time considerably, as an iteration has
to take place during each function evaluation.

4.2 ACSL Run-Time Commands

The commands, at run time, may be submitted either from a file
( batch run ) or interactively. In the latter case the wuser
types the desired. . commands one by one, whereas in batch mode he
only specifies the file which contains the appropriate run-time

commands.

Commands can also be grouped as a PROCED routine, with nesting
capabilities, and are invoked by its name. For example:

PROCED GOFPLOT
START

PLOT %, vy, =z
PLOT w1, v2, v3

END
If one wants to repeat a simulation with different values for a
constant, K ( say ) then command sequence for the set of runs

changing K is now:

SET K= 1.8 $ GOPLOT
SET K= 2.0 $ GOPLOT

with significant saving of input volume.

Data can be set into any known constant array or variable by

the SET command. This command would normally be wused for



changing the values of constants. They stay that way until
changed again. For example:

SET MERROR vi1= 0.0001 { Relative

SET XERROR v2= 0.0001 & absolute error bounds }

4.2.1 Output

In ACSL the output data from a simulation run can be tabulated
and/or plotted. The graphical output is produced off-line. The

data.is first written to a file as the run proceeds. The user
can then display these variables in different forms and
combination. Both overplots and crossplots of the results can be
produced.

Various run time commands are available to freeze, reinitialize

and continue the simulation. Some of them are briefly discussed
below:
Ctrl-C; stops the simulation. The values of the constants may

be changed ( using the SET command ). The simulation can then
continue via the CONTIN command.

CONTIN; the run may be continued where it left off. This
operation bypasses writing the initial condition into the state
vector so that the program will continue to integerate from the
previous position in state space. For example:

model :

CONSTANT TF= 10.86
TERMT ( T.GE.TF )

run—-time commands:

START { Run to 10.8 sec }
SET TF= 15.0 { Extend to 15.0 sec }
CONTIN { Run 1.0 to 15.0 sec 1}

REINIT; reinitialize the current value of the state variable and
writes them back to the initial condition table, thereby

destroying the original numbers on the table.

To recover back to an original condition the commands SAVE (
store the initial condition table ) and RESTOR can be used.



4.2.2 Linearization ( ANALYZ Command )

The ANALYZ command invokes a linear analysis capability that
can evaluate the Jacobian, trim the state wvariables to null the
rates and also <calculate eigenvalues and their associate

eigenvectors.

The steady state solver allows the computation of the steady
state at less computational cost than wusing an integration
method. The algorithm, however, often fails in non-linear
cases. This is illustrated in the following example:

The Jacobian matrix for a non-linear chemical ( reaction )
system:

g 172

X1 = 1 - Pl % X1 % X4

; 1/2

X2 = P1 ¥ X1 % X4 - P2 % X2
X3 = P2 ¥ X2 - P3 ¥ X3

X4 = P3 * X3 - P4 x X4

evaluated at its steady state values ( for Pi= P2= P3= P4= 1 );

A - By hand: -8.5 8.0 0.0 -1.0
®.5 -1.0 0.0 .0
6.0 1.0 -1.0 .0
0.0 0.0 ] -1.0

B - Using NAG Routine [ 4 1, gives similar results to A ( up to
four decimal point, using step length h= 1.8E-05 ).

C - Using ACSL, ANALYZ command {( h= 1.0E-04 ):

e. Q. a. ~1.41085400
0. -1.0000000 @. 1.4106700
B. 1.0000000 -1.0000000 a.

o. 0. 1.0000000 -1.0000000

It took the program 15 minutes to evaluate this matrix. With
integration step length h= 1.8E-85, the program went into an
infinite loop and never recovered.



5. EASE OF USE

5.1 Model and Experiment Definition

To be able to write an ACSL program, the user has to have an
understanding of:

1) The ACSL structure and its functions.
2) The FORTRAN programming language.

3) The Editor on the computer.

Obviously, learning all of these is a demanding task,
especially on a novice and/or an infrequent user.

The difficulties in wusing the operators in ACSL has been
stressed in [ 5 1. This is partly .because there are a large
number of operators existing in ACSL. The user has to remember
many of them to use the ACSL effectively. The operators also
have unfamiliar names which do not reveal their '"functionality' (

e.g. REALPL for first order lag ).

5.2 Model Amendment

ACSL is not designed as an interactive language, and amendments
have to be made to a source file using a system editor. This
does not 1lead to a very fast or very convenient model

development .
5.3 Simulation Verification

Although ACSL diagnostics are good, the lack of interactive
features as noted above does not aid the verification process.

6. SCOPE FOR IMPROVEMENT

6.1 Model Description Language

To define a model in an interactive and easy to use system, the
user needs to remember very little about the system or the
description language syntax. A menu driven or a form filling
type system presents the user all the necessary model components



and parameter which are to be specified.

Any structure of this sort, however, need to be reasonably
efficient in terms of the time required to define a model.

6.2 Editing

Interactive simulation system must permit the user to correct
or alter a. model before simulation or when simulation has been
interrupted. A dialogue type edition may be used, where the user
is prompted for the type of model component to be edited. A
simple command language may also be added for an experienced user

to modify the model rapidly.

6.3 Simulation Monitoring

Separation of model and experiment definitions is becoming very

important in simulation languages. The complexity and size of
the systems being simulated has grown rapidly in recent years.
These systems are usually implemented by experts. To allow the

novice users to access such large models, we need:

1) A flexible and interactive experimental frame specification
system. ;

2) Some sort of security system, which protects the model being
corrupted or modified by the user.

7. CONCLUSION

ACSL is a powerful simulation language. It provides many
robust integration algorithms, extensive simulation function
library, Macro, good algebraic loop solver and has reasonable
graphics capabilities.

ACSL, as many other existing simulation languages, is not
tailored for the need of the people with little or no experience
in simulation. It assumes that the wuser is familiar with

computer programming techniques and in particular with FORTRAN.
From the discussion given in this report, it is apparent that the
areas in which major step need to be taken to improve the user
interface are model definition and experiment specification. In
summary, the main requirements are:

1) Minimisation of what the user needs to type.



2) Flexible representation of model components. For example,
differential equations and transfer functions.

3) Sub-model specification and connection.
4) Provision of user libraries.

5) Provision of a security system.

There are several different approaches which can be taken to
produce better simulation software. Writing a new simulation
language is, obviously, not a satisfactory solution, as some good
facilities ( which have been through an evolutionary process in
the last two decades ) are already available in languages like

ACSL.

Designing a 'simulation environment' [ 6 1 is a more
constructive approach, where a simulation language is integrated
with other tools such as a pre-processor, a post-processor and/or

an expert system. Together, they form an interactive and

intelligent simulation environment. The simulation language will
be the heart of this system. Other tools will act as interface
between the user and the simulation language.- The EASE+ [ 7 1]
package is one such systems which is already available. It is a
pre and post processor for the ACSL and allows programs to be
developed graphically. For a more detail discussion of EASE+

facilities see the report 'Evaluation of EASE+ACSL' [ 8 1.
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APPENDIX A

PROGRAM EJECTION

INITIAL

e DEFINE ALL PRESET VARIABLES "
CONSTANT THEDEG = 15.08, DEGRAD = 57.3

,MASS = 7.0 , Yl = 4.0
,CD = 1.8 , 8§ = 10.0
JB = 88D ~ , RO = 0.0023769
L,VE = 40.0 , VA = 900.0 ... \
JXMN = -60.0 , YMX = 30.0
,TMX = 4.0

C INTERVAL CINT = 0.01

e =2———EJECTION ANGLE IN RADIANS"

THE = THEDEG /DEGRAD .

et SEAT INITIAL VELOCITY"

VX = VA - VE*SIN(THE)

VY = VE%COS (THE)

VIC = SQRT(VX*%2 + VY%%2)

THIC = ATAN2(VY, VX)

END $" OF INITIAL "

DYNAMIC
DERIVATIVE

M RELATIVE POSITIONS"

) 4 = INTEG(V%COS(TH) - VA, 0.0)

Y = INTEG(V*SIN(TH), 0.0)

B ittt SPACE VELOCITY AND FLIGHT PATH ANGLE"

v = INTEG(YGE1%(-D/MASS - G*SIN(TH)), VIC)

TH = INTEG(YGE1%(-G*COS(TH)/V), THIC)

M COMPUTE DRAG"

D = D.5%RO%*CD*S*Vx%%2

M ——————_USE PROCEDURAL FOR SWITCH TO KEEP SEAT"

" CONSTRAINED TO GUIDE RAILS. THIS OPERATION IS BETTER DONE BY - "

" YGE1 = RSW(Y .GE. Y1, 1.0, 0.0)

" BUT 15 SHOWN HERE TO DEMONSTRATE USE OF A PROCEDURAL BLOCK "
PROCEDURAL( YGEl= Y, Y1 )

YGE1 = 1.0

IF(Y.LT.Y1) YGE1 = 0.0
END $" OF PROCEDURAL "

END $" OF DERIVATIVE "

W i et s e SPECIFY TERMINATION CONDITIONS"
TERMT(X.LE.XMN .OR. Y.GE.YMX .OR. T.GE.TMX)

END $" OF DYNAMIC "

END $" OF PROGRAM "



