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Summary 14 

DOC in acid-sensitive upland waters is dominated by allocthonous inputs from 15 

organic-rich soils, yet inter-site variability in soil DOC release to changes in acidity 16 

have received scant attention in spite of the reported differences between locations in 17 

surface water DOC trends over the last few decades. In a previous paper, we 18 

demonstrated that pH-related retention of DOC in O horizon soils was influenced by 19 

acid-base status, particularly the exchangeable Al content.  In this paper, we 20 

investigate the effect of SO4
2-

 additions (0-437 eq L
-1

) on DOC retention and release 21 

in the mineral B horizon soils from the same locations.   22 

DOC release decreased with declining pH in all soils, although the shape of the 23 

pH-DOC relationships differed between locations, reflecting the multiple factors 24 

controlling DOC mobility.  DOC release decreased by 32-91% in the highest acid 25 

treatment (437 eq L
-1

), with the greatest decreases occurring in soils with very low 26 

%base saturation (BS<3%) and/or high capacity for SO4
2-

 retention (up to 35% of 27 

added SO4
2-

). The lowest DOC retention (i.e. greatest DOC release) occurred in the 28 

soil with the highest initial base status (12% BS).  These results support our earlier 29 

conclusions that differences in acid-base status between soils alter the sensitivity of 30 

DOC release to similar S deposition declines. However, superimposed on this is the 31 

capacity of mineral soils to sorb DOC and SO4
2-

, and more work is needed to 32 

determine the fate of sorbed DOC under conditions of increasing pH and decreasing 33 

SO4
2-

. 34 

Introduction 35 

Increasing concentrations of surface water dissolved organic carbon (DOC) 36 

during the last two decades or more have been reported for sites in the UK, Europe, 37 
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and North America (e.g.Driscoll et al., 2003; Evans et al., 2005; Skjelkvale et al., 38 

2005). A number of diverse drivers for this trend have been proposed, including 39 

climate-related effects (Evans et al., 2006), but many studies reporting DOC increases 40 

across regions (e.g. Worrall et al., 2008; Hruska et al., 2009) and at the national scale 41 

and beyond (Evans et al., 2006; De Wit et al., 2007; Monteith et al., 2007), have 42 

implicated the decline in atmospheric sulphur (S) deposition and subsequent recovery 43 

from acidification and/or decrease in ionic strength as at least partly responsible. 44 

However, despite the near-ubiquitous increase in DOC amongst monitoring networks, 45 

attributing widespread trends to recovery from acidification has been difficult, partly 46 

because there is considerable local variability in the strength and temporal pattern of 47 

the DOC response (e.g. Worrall et al., 2003; Evans et al., 2005).  Considering that 48 

DOC in acid-sensitive upland waters is dominated by allocthonous inputs from 49 

organic-rich soils (Palmer et al., 2005; Billett et al., 2006), it is surprising that the 50 

recent debate on the site-to-site variability in surface water DOC trends has not 51 

focused on inter-site differences in soil sensitivity to changes in acidity.  Recently 52 

Clark et al. (2011) demonstrated a decrease in DOC release from organic soils from 53 

six locations that are part of the UK Acid Waters Monitoring Network (UK AWMN), 54 

following laboratory addition of H2SO4. Clark et al. (2011) observed that O horizons 55 

of podzols and throughflow influenced basin peats were more sensitive to acid 56 

additions than were ombroptrophic blanket peats, and attributed this relative 57 

sensitivity to differences between soils in base saturation and exchangeable Al 58 

contents such that DOC retention was greatest in O horizon soils with highest 59 

exchangeable Al.  Inter-site differences in mineral soil sensitivity to acid loading at 60 

UK acid-sensitive sites have not been investigated.   61 
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The effect of altered acidity on dissolved organic matter (DOM) mobility is 62 

primarily due to a change in net charge as DOM molecules become deprotonated, 63 

such that DOM mobility increases with pH (De Wit et al., 2007).  However, DOM 64 

binding to polyvalent cations (particularly Al
n+

 species) depresses DOM charge and 65 

may counter any pH-related effect on DOM solubility (Tipping & Hurley, 1988; 66 

Kalbitz et al., 2000) and hence any changes in activity of these ions, as a result of 67 

changes in acidity, also needs to be considered.  Recent modeling analysis has 68 

highlighted the role of soil Al pools in mediating the effect of pH and ionic strength 69 

on mineral horizon DOC response to acid deposition (Löfgren et al., 2010). 70 

Direct effects of pH on DOC charge and binding to polyvalent cations likely are 71 

ubiquitous in both organic and mineral horizons. However, in mineral soils the overall 72 

control on DOC retention-release in response to changes in SO4
2-

 deposition 73 

potentially is more complex because DOC has a high affinity to sorb to soil minerals, 74 

particularly to amorphous Al- and Fe- oxides (Kaiser & Zech, 1998a). An increase in 75 

DOM sorption with pH decrease has also been attributed to ligand exchange between 76 

mineral surfaces and functional groups of DOM (Tipping, 1981; Gu et al., 1994). 77 

Hence, DOC retention could increase if high SO4
2-

 loading leads to pH-related 78 

increase in either positive surface charge on soil Al- and Fe-oxides or ligand exchange 79 

mechanisms. The presence of Ca
2+

 and Mg
2+

 may further enhance adsorption due to a 80 

co-adsorption or cation bridging effect (Tipping, 1981).  81 

However, much depends on the soil’s ability to buffer increased acidity. Mineral 82 

soils also have a capacity to sorb SO4
2-

 (Moore et al., 1992; Kaiser & Zech, 1998b), 83 

thereby potentially buffering the effect of acid SO4
2-

 loading on solution pH and 84 

subsequent DOC protonation.  Sorption of negatively charged species is pH 85 

dependent (e.g.Nodvin et al., 1986) so that at lower pH a greater range of mineral 86 
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surface sites will become available for sorption of DOC and/or SO4
2-

.   Sulfate and 87 

DOC are competitive for sorption sites (Vance & David, 1992), and desorption of 88 

both has been observed when the other is present to excess in percolating solutions 89 

(Guggenberger & Zech, 1992; Kaiser & Zech, 1998b; 1999), although DOC has a 90 

higher affinity for soil minerals than SO4
2-

 (Kaiser & Zech, 1998b).  Nevertheless, the 91 

very small increase in DOC retention with decreasing pH in spodic B horizon soils 92 

from Bear Brook watershed in Maine (David et al., 1990) was attributed to pH-related 93 

SO4
2-

 retention (Vance & David, 1992).  At very low pH, Vance and David (1992) 94 

found that DOC sorption decreased and attributed this to solubilization of metal-95 

humic complexes.  96 

Considering the variety of pH-dependent mechanisms for DOC retention and 97 

release in acidic mineral soils, a considerable inter-site variation in the soil DOC 98 

response to changes in acid loading might be expected.  Of particular importance in 99 

acid sensitive soils with low base status are: i) differences in SO4
2-

 retention, leading 100 

to pH attenuation; ii) differential competitive effects between SO4
2-

 and DOC for 101 

adsorption sites; iii) differences in availability of Al
n+

 leading to DOC coagulation 102 

and/or subsequent solubilization depending on pH. This paper presents an 103 

experimental investigation of DOC retention-release from mineral B horizon soils of 104 

selected upland sites (organic horizons 10-40 cm thick) within the UK AWMN in 105 

response to additions of acid sulfate (H2SO4), to determine whether the magnitude of 106 

DOC release varies between different soils in response to identical SO4
2-

 additions.  107 

Our focus in this study was to identify inter-site sensitivity of native DOC release 108 

rather than the specific mechanisms of DOC-SO4
2-

 interactions, which have been 109 

investigated by others (Vance & David, 1992; Gu et al., 1994).  Our objectives were 110 

to determine: 1) whether DOC decreased in all soils in response to SO4
2-

 additions; 2) 111 
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whether the pH-DOC relationship was the same in all soils, indicating a common 112 

mechanistic driver; 3) whether differences between soils could be attributed to 113 

differences in solution or soil exchangeable Al, similar to the outcome observed for 114 

organic soils (Clark et al., 2011).  We used batch experiments to assess the influence 115 

of chemical controls on DOC release for different soil types, as this removed 116 

confounding interactions with biological and hydrological processes that also 117 

influence DOC in the field (Clark et al., 2010). 118 

Materials and methods 119 

Experimental approach 120 

Batch extractions were performed with eight different treatment levels to examine the 121 

effects of acid SO4
2-

 (H2SO4) in a fully replicated experiment on soils collected from 122 

five acid-sensitive UK upland sites.  Summary details of site characteristics and soil 123 

properties are shown in Table 1.  Samples were collected from the top 10 cm of the B 124 

horizon.  For additional detail on sites, including grid reference, see (Clark et al., 125 

2011).  126 

The pH of H2SO4 treatments ranged from 5.40 (level 1, zero SO4
2-

 added) to 3.37 127 

(level 8, 437 eq SO4
2-

 L
-1

 added), with a conductivity range of 1 to 162 S cm
-1

.  No 128 

solutes other than H2SO4 were added.  Field moist samples of B horizon soils were 129 

sieved through 5.6 mm sieves and thoroughly homogenized before being re-wetted 130 

with deionized water until saturated, consistent with the method outlined in Clark et 131 

al. (2011).  This approach to sample preparation is not uncommon for batch 132 

experiments (e.g. Kaiser et al., 2001; Zysset & Berggren, 2001).  For each soil and 133 

treatment level, triplicate 10 g samples were shaken for 20 hours with 100ml of acid 134 

SO4
2-

 treatment solution.   135 
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Following equilibration, the pH and conductivity of suspensions were determined 136 

on a 30–40ml subsample of the unfiltered sample. All other analyses were conducted 137 

on samples filtered to 0.45 m using a syringe filter system fitted with Whatman 138 

WCN cellulose nitrate filters, after gravity pre-filtering through Whatman GF/C.  139 

Total C (TC) was measured on the filtered water with a combustion-infrared analyser 140 

(Thermalox TC/TN, Analytical Sciences, Cambridge, UK). Preliminary 141 

measurements showed that total inorganic carbon concentrations in these acidic soil 142 

waters were negligible, and therefore total carbon was assumed to be equivalent to 143 

DOC. Major anions (SO4
2-

, Cl
-
 and nitrate (NO3

-
)) were measured by ion 144 

chromatography (Dionex); major cations, Fe
3+

 and Mn
2+

 were measured by 145 

inductively-coupled plasma mass spectromtery.  Total monomeric Al (Alm) was 146 

determined following complexation with catechol violet and colorimetric analysis at 147 

585nm wavelength using a UV-VIS spectrophotometer.  Potential interference by iron 148 

was overcome by the addition of hydroxylamine hydrochloride to reduce Fe
3+

 to Fe
2+

, 149 

followed by chelation with 1-10 phenanthroline (McAvoy et al., 1992).  Colour was 150 

measured at 254 nm using a scanning spectrophotometer (V-630, Jasco, Great 151 

Dunmow, UK).   152 

The speciation of Alm was calculated using the chemical equilibrium model 153 

Mineql+ v4.6, based on the equations in Schecher & Driscoll (1995).  This method of 154 

speciating Alo and Ali was preferred over direct measurement of Alo by cation 155 

exchange column (and subsequent subtraction of Alo from Alm to obtain Ali) because 156 

of the potential for Al-DOM complexes to become dissociated and thereby 157 

underestimate Alo (Lawrence et al., 2007; Tipping & Carter, 2011).  Specific ultra-158 

violet absorbance (SUVA254, L mg C
-1

 m
-1

) was calculated as the absorbance at 254 159 
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nm in units per m (au m
−1

) divided by the concentration of DOC in mg L
−1

 (Weishaar 160 

et al., 2003). 161 

Data handling and Statistical analysis  162 

The experiments were designed so that the variation in soil DOC release from 163 

different sites in response to additions of H2SO4 could be examined with respect to 164 

changes in pH using ANOVA (Clark et al., 2011).  Significant differences between 165 

sites in i) soil and ii) solution chemistries for a particular treatment level were 166 

assessed by one-way ANOVA and Tukey HSD post-hoc test.   167 

Results 168 

Bulk soil properties and ‘control’ solution chemistries 169 

All soils had low % carbon (means 1.60 – 4.75%) and were acidic (mean pH 4.03 – 170 

4.54) with very low base saturation (means 2.4 – 12.7%), highlighting their sensitivity 171 

to acidic deposition (Table 1).  There were few significant differences between sites in 172 

terms of these key soil properties, except that ETH was characterized by significantly 173 

higher ECEC (11.40 cmolc kg
-1

; p<0.05) and % base saturation (12.7%; p<0.05) most 174 

likely due to liming in the 1970s. 175 

The solution chemistries in treatment level 1 (zero H2SO4 added) were ‘controls’, 176 

and unlike bulk soil properties, solution chemistries differed markedly between sites 177 

(Table 2).  For example, GWY was characterized by significantly higher equilibrated 178 

SO4
2-

 concentration (mean 29 eq L
-1

), lower pH (mean 4.58) and lower Alm (62 g 179 

L
-1

) compared to all other sites. ETH had significantly higher DOC concentration 180 

(mean 11.54 mg L
-1

) compared to other sites (means 3.69 – 7.79 mg L
-1

) despite 181 

having a very low soil C content, second only to LCNA (Table 1).  When DOC 182 

concentrations were normalized to soil C contents (nDOC, mg DOC g
-1

 soil C), there 183 
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was no significant difference between ETH and LCNA, and both were significantly 184 

higher compared to other sites. Differences in DOC concentrations between sites 185 

other than ETH and LCNA were not statistically significant.  AM had a significantly 186 

higher concentration of Alm (mean 233 g L
-1

).  All soils released some SO4
2-

 (6-28 187 

eq L
-1

), in the order GWY>ETH=DL>AM>LCNA.  188 

Effect of acid addition 189 

There were marked differences between sites in SO4
2-

 retention-release curves (Fig. 190 

1).  All soils released some native SO4
2-

 (6-28 eq L
-1

) when zero SO4
2-

 was added 191 

(treatment level one), and most continued to release SO4
2-

 up to treatment level four 192 

(42 eq L
-1

 added SO4
2-

; Fig.1).  At higher treatment levels, DL, AM and ETH all 193 

retained added SO4
2-

, with maximum retentions of 28-35% for DL (42-437 eq L
-1

 194 

added SO4
2-

), 20% for AM (437 eq L
-1

 added SO4
2-

) and 16% for ETH (291 eq L
-1

 195 

added SO4
2-

). By contrast, GWY and LCNA exhibited little capacity to retain added 196 

SO4
2-

 and for most treatment levels released more SO4
2-

 than added.  The higher 197 

concentrations of equilibrated SO4
2-

 in GWY and LCNA relative to other sites 198 

influenced the response of other variables, particularly at the highest treatment level 199 

(Table 2).  In particular, GWY and LCNA recorded the lowest pH values of the 200 

experiment (Fig. 2a), greatest conductivity (Fig. 2c) and high Alm concentrations (Fig. 201 

2d).  202 

All soils exhibited non-linear trends of decreasing pH and DOC with increasing 203 

SO4
2-

 concentrations in solutions, although there were differences between soils in the 204 

slope and shape of the response curves (Fig 2a and 2b).  Similarly, there were near 205 

linear increases in conductivity although the slope differed between soils (Fig. 2c).  206 

The trends for log10(Alm) were somewhat more complicated with all soils showing an 207 
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initial decrease in log10(Alm) at low treatment levels, and an increase in log10(Alm) 208 

(except for ETH) as SO4
2-

 concentrations increased (Fig. 2d).  Concentrations of 209 

log10(Alm) in ETH solutions did not increase but showed a slight decrease across the 210 

range of treatments (Fig. 2d).  The initial decrease in log10(Alm) was particularly sharp 211 

for AM, dropping to 0.73 at treatment level five before increasing again.  Soils other 212 

than AM and ETH (which showed no increase in in log10(Alm)), exhibited increased 213 

log10(Alm) concentrations at treatment levels six and higher.   214 

Considering that there were differences between soils in % C and in DOC 215 

released with H2SO4 treatment, DOC was normalised to soil C content (nDOC; mg 216 

DOC g
-1

 soil C) for easier comparison between sites (Table 2; Fig. 3).  Relationships 217 

between pH and nDOC were complex (Fig. 3) with most soils exhibiting an initial 218 

small increase in nDOC with decreasing pH, followed by a decrease in nDOC as pH 219 

decreased further.  The greatest percentage decline in nDOC between ‘control’ and 220 

maximum SO4
2-

 treatment occurred for GWY (91% decrease) and the smallest decline 221 

occurred for ETH (32% decrease). However the steepest declines in nDOC occurred 222 

for LCNA, declining from 4.5 mg DOC g
-1

 soil C with 42 eq L
-1

 of added SO4
2-

 223 

(treatment level 4) to 1.2 mg DOC g
-1

 soil C at the highest treatment level.   The soil 224 

which had the lowest solution DOC concentrations in ‘control’ solutions (AM), 225 

demonstrated very little trend in nDOC with decreasing pH (Fig. 3). 226 

Discussion 227 

This experiment showed that in all mineral soils DOC concentrations and pH 228 

decreased with added SO4
2-

 except for the lowest treatment levels, consistent with 229 

observations in organic soils at these sites (Clark et al., 2011). However, variability 230 

between soils in both initial nDOC and the change in nDOC per unit change in pH is 231 

not consistent with a common mechanism for DOC loss with added SO4
2-

.  The two 232 
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soils with highest initial nDOC (ETH and LCNA) demonstrated remarkably different 233 

response to acid SO4
2-

 treatment.  For LCNA, the large initial nDOC and subsequent 234 

sharp nDOC decrease with pH decline of 1.0 pH unit, likely are all indicative of poor 235 

anion sorption capacity and consequently poor pH buffering with added SO4
2-

 236 

treatments.  For LCNA, retention of nDOC with decreasing pH is therefore likely due 237 

to protonation and subsequent coagulation. By contrast, SO4
2-

 retention was not as 238 

marked in ETH, and this may partly explain the more modest declines in pH and 239 

nDOC.  In addition, partial buffering of acid SO4
2-

 by base cation exchange for H
+
 240 

may have occurred in ETH, since both the ECEC and % base saturation were 241 

significantly higher for ETH compared to other soils. This suggests that the DOC 242 

response to similar amounts of acid SO4
2-

 is strongly dependent on the initial acid-243 

base status of soil, as suggested by Clark et al. (2011) for O horizon soils.  Regional 244 

differences in surface water DOC increases have also been linked to the acid 245 

sensitivity of catchment waters, as indicated by aquatic Ca
2+

 plus Mg
2+

 concentrations 246 

(Monteith et al., 2007).  Generally, mineral soils with base saturation <20% are 247 

considered acid-sensitive in terms of Al release and pH buffering (Cronan & 248 

Schofield, 1990). In this experiment, ETH with BS at 12.7% appears to be relatively 249 

robust to pH and DOC change, and insensitive to Al release, indicating that %BS is 250 

not a comprehensive indicator of acid-sensitivity for these soils.  However, it is also 251 

worth noting that this soil was limed in the 1970s, and significant concentrations of 252 

Ca
2+

 are still present in the O-horizon (Clark et al., 2011).  253 

Low initial nDOC and strong SO4
2-

 retention with added SO4
2-

 indicates a 254 

capacity for anion sorption in DL. The SO4
2-

 retention clearly attenuated pH change in 255 

DL compared to other soils, yet nDOC retention did occur with a maximum treatment 256 

effect (85% decrease in nDOC) that was similar to that observed for GWY and LCNA 257 
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(91% and 75% decrease in nDOC, respectively) which had little capacity to retain 258 

added SO4
2-

 and experienced large pH declines (Table 2).  This suggests that at least 259 

part of the DOC change in DL was due to sorption rather than increased protonation 260 

and subsequent coagulation/precipitation, which are often used to explain changes in 261 

DOC in organic soils (e.g. Evans et al., 2006; Clark et al., 2011), and that there is 262 

little or no competition between SO4
2-

 and DOC for sorption sites.  This is consistent 263 

with reports from other researchers that DOC sorption dominates over SO4
2-

 in 264 

mineral soils at pH>4 (Courchesne & Hendershot, 1989; Gobran et al., 1998), 265 

presumably because DOC is protonated and therefore not available for sorption at 266 

lower pH values, whereas sulfate exhibits the opposite behaviour (Nodvin et al., 267 

1986).  In this experiment, DL solutions measured pH≥4.2 in even the highest SO4
2-

 268 

treatments, hence it is likely that solution DOC in DL remained deprotonated and 269 

available for sorption across all treatment levels.   270 

A number of researchers have noted that a significant proportion (30-40%) of 271 

SO4
2-

 retained is irreversibly sorbed to soils and reduces the soil’s capacity to further 272 

retain anions (Harrison et al., 1989; Guggenberger & Zech, 1992; Gobran et al., 273 

1998).  The implication is that soils with a history of enhanced S deposition will have 274 

a decreased capacity to sorb DOM and other anions compared to soils that have 275 

received less S loading.  GWY and LCNA were the most westerly of the sites used for 276 

this study and in an area where atmospheric deposition rates during 1986-2001 did not 277 

decline as much as in other parts of the UK, possibly due to a combination of factors, 278 

such as: i) continued S emissions from shipping (Fowler et al., 2005); ii) high seasalt 279 

deposition events that the UK experienced during the 1990s (Monteith et al., 2007); or 280 

iii) lower proportion of dry deposition due to distance from terrestrial pollutant 281 

sources. High initial nDOC and poor SO4
2-

 retention are consistent with SO4
2-

 282 
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saturation in LCNA, but low initial nDOC in GWY suggests that a history of SO4
2-

 283 

loading has not impacted DOM retention.  The legacy of continued S deposition may 284 

therefore have impacted differently on these two soils, although further investigation 285 

is needed to determine the exact mechanisms involved and the extent to which this 286 

has occurred. 287 

AM exhibited the lowest DOC concentration in ‘control’ solutions, and after an 288 

initial increase decreased to a modest 50% of initial nDOC and mean pH of 4.43 with 289 

83 eq L
-1

 of added SO4
2-

.  With higher SO4
2-

 treatments, the nDOC response was 290 

more or less static, suggesting that retention and release of DOC reached some 291 

equilibrium.  That some SO4
2-

 retention occurs even with highest SO4
2-

 addition, and 292 

that the minimum pH was close to pH 4.0 suggests that neither limited anion sorption 293 

capacity nor DOM protonation is the reason for low nDOC.  A similar pattern of 294 

initial decrease in DOC followed by a flattening of the DOC-pH curve across the pH 295 

range 4.9 to 4.4 was observed by Zysset & Berggren (2001).  Zysset & Berggren 296 

(2001) attributed this pattern of DOM release to precipitation of metal-DOM 297 

complexes at higher pH and subsequent solubilization as pH decreased.   298 

Scheel et al. (2008) also observed co-precipitation of Al and DOM that was 299 

greater at pH=4.5 than in more acid conditions (pH=3.8).  However, in an experiment 300 

on the formation of Al-fulvate complexes Farmer & Lumsdon (2001) demonstrated 301 

that DOM loss was independent of pH across the pH range 4.2 to 5.1, but was related 302 

to Al:C ratio.  Precipitation of DOM occurred when the molar C/Al was less than 50 303 

(or when Al/C>0.045 g g
-1

; Farmer & Lumdson (2001)).  In this experiment, 304 

Alm/DOC and Alo/DOC at pH>4.3 were on average greater for AM than for any other 305 

soil studied.  Indeed across all treatment levels, only AM consistently approached 306 

Alo/DOC>0.04 g g
-1

 (Fig. 4).  This suggests that Al-DOM complexation, and 307 
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subsequent solubilization as pH decreased, was a relatively important influence on 308 

DOC solubility for AM.  309 

Recent field studies have observed a decline in DOC concentrations in soil 310 

solutions from mineral horizons over the last 10 years (Löfgren et al., 2010; Wu et al., 311 

2010; Borken et al., 2011), and have speculatively attributed these trends to a number 312 

of possible mechanisms related to declines in SO4
2-

 deposition, including: i) 313 

competitive sorption of DOC with decreasing SO4
2-

 concentrations (Wu et al., 2010; 314 

Borken et al., 2011); ii) increased aggregation with Al as a consequence of increased 315 

net charge on DOC with increasing pH (2010); and iii) increased biological 316 

consumption due to reduced Al activity (Borken et al., 2011). Our data suggest that 317 

SO4
2-

 and DOM retention may be compromised by previously adsorbed SO4
2-

 and that 318 

Al-DOC precipitation may be an important mechanism of DOM retention/release for 319 

some soils. However, considering
 
that SO4

2-
-driven DOM solubility mechanisms are 320 

unlikely to be fully reversible (Harrison et al., 1989; Gobran et al., 1998), 321 

considerable further work needs to be undertaken to determine whether recent DOC 322 

trends are attributable to SO4
2-

 declines. 323 

Conclusions 324 

The results of this experiment showed that acid SO4
2-

 treatment to mineral soils 325 

caused a decrease in DOC that was primarily driven by a decrease in pH, although the 326 

pH-related response differed between soils, reflecting different controls on DOC 327 

solubility.  All soils studied here can be considered base-poor and therefore acid-328 

sensitive to a degree; even so the initial base status was extremely important in 329 

determining soil’s capacity to buffer acid inputs and therefore to control the solubility 330 

of DOC and the solubility of Al-DOM complexes.  This has implications for the 331 

interpretation of long-term DOC trends in recovering acid waters, and may partly 332 
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explain why some apparently acid-sensitive catchments have seen declines in DOC 333 

whilst others have not (Clark et al., 2011).  The soil sorption capacity was equally 334 

important for two reasons: i) in determining initial DOC release and ii) in attenuating 335 

pH change through SO4
2-

 retention, with some evidence that soils have responded 336 

differently to a similar history of S deposition. If SO4
2-

 is partially irreversibly sorbed, 337 

as observed by some studies, a legacy of historic S deposition may have permanently 338 

reduced the capacity for both SO4
2-

 and DOC sorption in some soils, whilst others 339 

may be unaffected.  Such inter-site differences in mineral soil sensitivity to 340 

experimental SO4
2-

 additions make it difficult to assess how DOC has responded to 341 

past changes in SO4
2-

 loading, or indeed to predict future change.  The extent to which 342 

SO4
2-

 sorption is reversible under conditions of increasing pH and decreasing SO4
2-

 343 

deserves further investigation. 344 
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FIGURE CAPTIONS  

Figure 1 Plot of SO4
2-

 retained or released expressed per unit mass of soil as a 

function of initial SO4
2-

 added as H2SO4
2-

.  Mean of n=3 replicates.  Error bars for 

LCNA indicate ± one standard error.  Error bars for other data sets omitted for clarity. 

For full details of site codes, see Table 1. 

Figure 2 Means (n=3) of (a) pH, (b) DOC, (c) conductivity and (d) Log10 Alm in 

equilibrated solutions. Error bars omitted for clarity.  For full details of site codes, see 

Table 1. 

Figure 3 Mean (n=3) of nDOC as a function of pH for all sites and replicated 

treatments.  Error bars indicate ± one standard error. For details of site abbreviations, 

see Table 1. 

Figure 4 Boxplot of Alo/DOC for all treatment levels, by site. 
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TABLES  

Table 1 Summary site characteristics and key soil properties (mean with standard error in parentheses; n=5).  

 Allt A’Mharcaidh 

(AM) 

Dargall Lane (DL) Etherow (ETH) GWY (GWY) Loch Coire nan Arr 

(LCNA) 

Site characteristics: 

Geology Biotite-granite Greywackes, shales & 

mudstones 

Millstone grit Mudstones, shales & 

grits 

Torridonian sandstone 

Soil type Podzol Peaty podzol Podzol  Peaty podzol Peaty Podzol  

Depth of top of B horizon from top 

of  O horizon, range 

 15 to 30cm 15 to 29 cm 17 to 23 cm 15 to 25 cm 6 to 22 cm 

Vegetation Calluna vulgaris Calluna vulgaris, 

Eriophorum spp., 

Molinia spp. 

Agrostis spp. Festuca spp., Agrostis 

spp. 

Calluna vulgaris, 

Eriophorum spp., Molinia 

spp. 
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Soil properties: 

%C 4.15 (0.93)  4.75 (0.66)  2.02 (0.21)  3.14 (0.41)  1.60 (0.35)  

pHCaCl2 4.54 (0.07)  4.44 (0.05)  4.09 (0.07)  4.03 (0.06)  4.20 (0.02)  

ECEC /cmolc kg
-1

 1.59 (0.36)  4.54 (0.57)  11.40 (1.56) 5.43 (0.48)  2.07 (0.16)  

%Base saturation 3.6 (0.5)  2.4 (0.2)  12.7 (3.9)  2.6 (0.3)  4.6 (0.6) 

Exchangeable Al /cmolc kg
-1

 1.07 (0.27)  2.45 (0.20)  7.56 (1.23) 4.02 (0.43) 1.46 (0.12) 

Exchangeable H
+
 cmolc kg

-1
 0.46 (0.09)  1.98 (0.43)  2.54 (0.44) 1.26 (0.08) 0.51 (0.07) 

%Al saturation 65.4 (3.1)  56.1 (5.2)  65.3 (2.6)  73.5 (2.0) 70.6 (2.3) 

%H saturation 31.0 (2.6)  41.3 (5.3)  21.9 (1.9)  23.8 (2.36) 24.5 (2.3) 
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Table 2 Mean (with standard error in parentheses; n=3) of equilibrated SO4
2-

, pH, conductivity, DOC, Alm and SUVA254 for ‘control’ solutions 

(level 1: zero SO4
2-

 added) and in level 8 treatments (437 eq L
-1

 SO4
2-

 added). The last column gives the maximum treatment effect on nDOC 

(differences between treatment level 1 and treatment level 8; 1:8).  

 

Site Equilibrated 

SO4
2-

 

eq L
-1

 

pH Conductivity 

S cm
-1

 

DOC 

mg L
-1

 

nDOC 

mg DOC g
-1

 soil C 

Alm 

g L
-1

 

SUVA254  

L g
-1

 cm
-1

 

nDOC 

mgDOC g
-1

 

soil C 

Level 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1:8 

AM 15 

(1)  

378 

(18) 

4.94 

(0.01)  

4.09 

(0.00) 

3 (0)  48 (1) 3.69 

(0.26) 

1.76 

(0.06) 

0.89 (0.06) 0.42 

(0.01) 

233 

(19) 

1370 

(117) 

2.99 

(0.08) 

0.80 

(0.09) -0.47 (0.01) 

DL 23 

(1)  

285 

(15) 

4.79 

(0.02)  

4.20 

(0.01) 

7 (1)  44 (2) 5.55 

(0.91) 

0.80 

(0.02) 

1.17 (0.19) 0.17 

(0.00) 

155 

(24) 

839 

(328) 

2.57 

(0.11) 

1.98 

(0.15) -1.00 (0.00) 



 

 23 

ETH 22 

(1)  

406 

(43) 

5.05 

(0.01)  

4.34  

(0.01) 

11 (0)  57 (0) 11.54 

(0.41) 

7.86 

(0.25) 

5.71 (0.20) 3.89 

(0.12) 

154 

(11) 

94 (9) 4.96 

(0.26) 

4.49 

(0.08) -1.82 (0.12) 

GWY 29 

(2)  

437 

(61) 

4.58 

(0.02)  

3.85 

(0.00) 

10 (0) 69 (3) 6.03 

(0.80) 

0.56 

(0.04) 

1.92 (0.25) 0.218 

(0.01) 

62 

(15) 

942 

(96) 

5.38 

(0.37) 

4.07 

(0.56) -1.74 (0.01) 

LCNA 6 (1)  421 

(17) 

4.94 

(0.08)  

3.95 

(0.02) 

8 (0) 91 (4) 7.79 

(0.63)  

1.94 

(0.62) 

4.87 (0.39) 1.21 

(0.39) 

132 

(8) 

1512 

(225) 

3.18 

(0.21) 

1.79 

(0.74) -3.65 (0.39) 
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Figure 1 
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Figure 2 



 

 26 

Figure 3 
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Figure 4 

 


