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O THE GENERIC STRUCTURE C;F MULTIVARIABLE ROOT-LOCI
by
D.H. Owens
Department of Control Engineering, University of sheffield, UK
ABSTRACT
Although the root-loci of linear multivariable systems have many of the characteristics of there classical
counterparts, there are a number of essentially multivariable possibilities that require careful identification.

It is shown here that classical characteristics are generic in a carefully defined and very important sense and
that non-generic behaviour only occurs in bad design conditions.

To be presented at the 1981 JACC Charlottesville, Virginia, USA



INTRODUCTION

Recent years have seen the emergence of a consi-
derable increase in understanding of the nature of the
root-locus of a linear multivariable system S(A,B,C)
subjected to unity negative feedback with scalar gain
p 2o (1) - (4). A number of computational procedures
based on algebraic (1),(5),(6) and state space (7) -
{9) methods arenow available and a practical approach
to their use in compensator design (1), (10) has
emerged. Although it is now clear that multivariable
root-loci possess many of the general properties of
their classical counterparts, there are a number of
essentially multivariable possibilities that require
careful identification if root-loci are to be a viable
design tool. It is the purpose of this paper to exa-
mine the notion that the structure of the unbounded/
asymptotic branches of a multivariable root-locus is
generic in a carefully defined sense, to identify what
relevance this concept of genericity has to practice
and to point out physical conditions corresponding to
the non-generic case. Many of the results can be
found in embryonic form throughcout the literature and

-hence the major contribution of the paper is that of

unification.
THE BASE STRUCTURE

The pseudo-classical base structure taken for the
unbounded closed-loop poles of an m-input/m-output,
invertible system S(A,B,C) subjected to unity negative
feedback 1s taken to be either

l/vj
ajg(p) =p njE + uj!(p)
—l/vj
g P uy )0, 1stévy,lsdsm (1)

or, imposing a little more structure on p.. ,

/v 3
]
s,,(p)= N ¥ 0 & &0 0p)
iz P it ] jL
14 = 0 Lek® <3 g
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(Clearly the validity of the base structure (la) imp-
lies the walidity of (1)) where the real positive
are

numbers vs; 2> 1 are integer and the Ny, 1l g2 g vs,
the distinct v-th roots of a non-zero, complex number
- Aj. In (now? standard jargon, sS4, is said to be an
infinite zerc of order vy with asymptotic directions
LT and pivot a;. The obvious gquestions to ask about
such a base characterization are

Is the base characterization (1) always valid for

(a)
suitadle choice of parameters? If not, then in
what sense is it sometimes valid?

(b) Can the integers v],v2,...,Yy be naturally identi-
fied with algebraic or geometric system struc-
tural invariants?

(c) What can be said about situations when (1) is not
applicable?

(d) Do the parameters njg, a4 have any continuity/
sensitivity characteristics?

(e) Is the characterization (1) invariant under state
feedback and output injection?

To answer some of these guestions, we introduce
the following notion of 'genericity'.

Definition: A property P(A,B,C) of the invertible,
square system S(A,B,C) is C* - generic if the set

p* & [(F,KN.M) : P(A+BF+KC,BM,NC),|N!#0,|Ml#0} (2

A n_m m N m e
has interior dense in L=L(R,R )xL(R ,R })xL(R )xL(R )
(regarded as a metric space). In cther terms P 1s



the collection of state feedback, output injection and
constant post- and pre- compensators that ensure the
validity of P. The notation is suggested by the work
of Morse (ll) and the authors work (12) connecting
root-loci to the c*- transformation group. Our main
results will be that both base characterizations are
C*-generic but there are a number of other (related)
results of significance to practical applications. As
many of the proofs rely heavily on techniques already
in the literature, prcofs will frequently only be
outlined.

ORDERS AND ASYMPTOTIC DIRECTIONS

We can say immediately that the base characteiza-
tion (1) does not always hold. Consider, for example,
the system with transfer function matrix

o 1
-3
o(s) = (3)
= o
2
s ) 2/3

which has infinite zeros s = p exp (k2ri/3) ,k=1,2,3,
of non-integer order 3/2 whilst, interchanging the
loops leads to

i o

ols) = |° * (4)
O l

e— b e
s

which has infinite zeros of integer orders one or two.
Clearly the orders of the infinite zeros are not in-
variant under constant forward path compensation and
may not even be integer. It is possible however to
prove the following results (12):

There exists a set of ordered integers

np (namely the C* integer struc-
tural invariants of S(A,B,C) (11)) such that infinite
zeros of S(A, BKO,KlC) have orders v = ny for all
nonsingular mxm matrices (K3, KD) beionging to an open
dense subset K of L (RP)xL(RD) satisfying Kn{Iglx L

Lemma 1:
lgnypgnzg ... ¢

(RM)) # p.
Proof: The first part of the result can be found in

(12) and is based upon the existence of (F,K,N,M) with
|N|# 0 and |M|# O satisfying

N C (sI - A-BF- xo) s M=diag{%" seees Y 5

mBulw

8

More precisei}, taking K5 = K] = I and defining
I'= NM, the invariants {nj} are taken to have g distinct
<

entries mj ,mp,..., satisfying m; < my < ...
where mj has multiplicity.djin {nj} . Defining
= ]
T= Ty +=nt rlq (6)
r."""tr
| al Qq
where T has dimension d ,xd. and
i3 ) i3

P, -(rii sere By (7

T
| qi rqq

“s e

then (12) S(A,B,C) has mjd; infinite zeros of order
mji , 1< 3<aq, if |P ! #0,1¢ i< q. Moreover,
under these CGndltlth the proof given in (12) indi-
cates that both the orders and asymptotic directions
of the roo-locus depend only upon the structure and
numerical magnitudes of the elements of T. Considering
now the system S(A,BKy,K;C), it is clear that the
corresponding (N,M) pair is just (HKE*.K;IH} so that
the introduction of the constant compensators Ko and
K] induces the transformation T + Tl=N(K,Kk;) lm.
Let P%, 1l £ i g g, be the submatrices of I'l obtained
by the same procedure as equations (6) and (7). It
is easily seen that |§l{# 0, 1 £i<gq, for KgK; in
an open dense subsgt Klaf L(RD), The result now
follows as {Ip)} x K< K*b § (K1Kg) 1K Ky € K1 which is
open and dense in L(R®)xL(RD) .

Iemma 2: If (K,,Ky) € K*, the orders and asymptotic
directions of the infinite zeros of the root-locus of
S(A'BKO'KIC) are invariant under state-feedback and
output injection transformation of the form

K, C A+ F+
(A,BKD; 1 ) =+ BKD KK C,BKO,KlC) (8)

1

Proof: see reference (12).

Given these results, it is now possible to prove the

following theorem:

Theorem 1l: Given the invertible, square system
5(a,B,C), the property P, (A,B,C) that the infinite
zeros have the base structure (1) with V=D, lg3js<m,
is C*-generic.

Proof: From lemmas 1 and 2 it is clear that L(RD,RE)
XL(RE,RN) xK* < P} = L and hence that P} has interior
dense in L as K* is open and dense in L(Rm)xL(Rm)
This completes the proof of the result.

Despite the generality of this result, it is natural
to focus attention on only those aspects of the plant
S(A,B,C) that can be affected by constant forward path
and state feedback compensation. In these terms,
Theorem 1 gives rise to the corrollaries.

Corollary 1.1: It is not necessarily the case that
the base characterization (1) hclds for S(A, B C) but
*

(0,0,In,Ig) lies in the closure of Pl

Proof: The example of equation (3) proves the first
point whllst the second follows as Theorem 1 indicates

that Pl is dense in L.

Corollary 1.2: There is an open, dense subset
K2<= L(RD) such that

LRY, R x {0} x (1) x K, =P, (9)
K m 2 1

Proof: Write K*n (1} x LE™) = {1} x K, where K_
is dense in L(RM) and, noting that lgmma 2hclds with
K = 0, an argument almost identical to that used in
proving theorem 1 can be used.




The practical implications of these results are
clear, namely that we cannot expect in all cases that
our plant S(A,B,C) will have a root-locus with the xe-
quired asymptotic base characterization (1) but we can
always find a forward path constant precompensator K,
to ensure that the compensated system S(A,BK,,C) has
a root-locus with the base characterization (1). In
particular, as Ky is dense in L(RD), we can choose Kg
on a 'random basis' with probability one of success.
In fact, it appears that, from the point of view of
applications studies, it is only necessarv to con-
sider this characterization! There is, of course, no
general rigorous justification of this point of view
but it has been noted in (13) that the non-generic
cases appears to occur only in cases where 'loop-
interchange' phenomena dominate at high gain and that
loop-interchange intuitively corresponds to that un-
desirable design condition where the loop phases are
additive, hence reducing gain margins in the closed-
loop system. On this basis it appears to be best to
steer clear of controllers that do not guarantee base
characterization (1)!

Finally in this section, the following result
has been conjectured (13) to be true in all cases:

Theorem 2: In all cases, the square, invertible
system S(A,B,C) can only have infinite zeros of
orders equal to arithmetic means of subsets of

{ny1,n3,---,/ng).

THE PIVOTS

Turning our attention now to the base characteri-
zation (la) including the pivots, the analysis tends
to increase in complexity but it can be unravelled
using the techniques of dynamic transformation intro-
duced in (1) and (£). The basic lemma is as follows:

Definition: Let K" be the subset of nonsingular
pairs (Kj,Kg5) & L(RP)xL(R®) such that there exists a
nonsingular matrix T and unimodular matrices L(s) and
M(s) of the form

Id o . - % 5 s v ?
1
L(s) = = . (10)
o(s ) i, .
2
. -
| 1
o(s 7). Z -0(s ) Id
qd
M(s) = hd ots™h . ... ots™H) (1)
1 .
(o] 5 =
s d2 .
. 0(9-1)
D .. . - - - 0 I
d
q
such that, if Q(s) = C(sIn - A}-lE, we have

—

=1
L(s)T KlQ(s) KDT M(s)

-(m +2)

+o(s ¢ (12)

= block diag {Qj(s}} )

1<jsq
where Qj is a djxﬂj transfer function matrix of uniform
rank mj

(Note: a function is Dts-k) if 1im sk'lo(s'k) = 0 and
a TFM G(s) has uniform rank k § 517 4f lin sk g(s)
is finite and nonsingular (1)) . | sp+=
3 (1) (KLKIEK **

Lemma J3: P K iff Ky K
Lemma 3 1Ky (I.KK)E K

1) vk kv E K "

(1i K /KVIE K Qff (K ,K K if| V|0
Procf: replace T in (12) by KlT. to prove (i). (ii)

follows from (i).

W
Lemma 4: K has interior dense in L{Hm)xL(Rm) and
contains a subset of the form {In} x K3 where K3 is
open and dense in L(RD). Moreover K**c— kK*.

Proof: The proof is given in outline only. It is
sufficient to show that K3 exists for then lemma 3
indicates that K** contains the open, dense subset

{ (K1,Kp) KoK1 € K3}. Using the results of section
4 and, in particular, exercise 6.4.2 in (1), note that
there exists a K, such that QKy has the required de-
composition with {mjy}, {d } and g replaced by {k3},
{dl} and gql. This decom9051t10n is generated (l) by a

finite number of operations on a generic structure

for [CBKO, CABK_,..., Can—lp K&] and it is clear that
this decorposition exists in an open dense subset LE!

of L(RP). But {kjlare the orders of the infinite
zeros (1) for S(A,BK,,C) with K, & K3 and hence, com -
bining with 1emma l we conclude that g = ql, my = kj

(1¢j<q). This completes the proof

(lsj€q) and dj
< K* follows trivially.

of the result as K

2.

The main result of this section can now be stated:

Theorem 3: Given the square invertible system S(A,B,C)
the property P,(A,B,C) that the infinite zeros have
the base structure (la) with vy=ny, £ 3 £m, is
C*-generic.

Taking Ky = Ip in (12) let K4 be the subset of
m 4 . -
s JQj(s) has distinct eigenvalues

Proof:

K3 such that lim

whenever KO(E K4. The results from root-locus compen-
sation theory indicates that K4 # @ and it is clearly
open in K3 (and hence L(R%)) and also dense as small
perturbations in eigenvalues can be generated by small
perturbations to the input compensator Kg. Noting
that {Iy} x K4 < K* and that the distinct eigenvalue
assumption is sufficient to cuarantee the validity of
the base characterization (la), the result is clearly
independent of the presence state feedback or output
injection by lemma 2. The theorem is therefore proven
as the base characterization (la) holds on the open
dense subsetL(RN,RT)xL(PE,R0)x {(Kl.KO):KoKOEE K4] < L.

Corollagx 3.1

*
(0,0,1 ,I ) lies in the closure of P2
mm




As K, is dense in L(R®), we can choose a
The result follows
close to (0,0,I ,I ).
m m

Proof:
K,& K4 arbitrarily close to I .
as (D,O,Im,xo) is arbitrarily

There is an open, dense subset Ksc:
— p*
x {Im}x KS PZ'

Corollary 3.2:
L(R®) such that L{(RM,RD) x {o}

The interpretation of the theorem and its corollaries
is identical to that of theorem 1 and its corollaries.
The inclusion of the pivot, however, does introduce
an entirely multivariable phenomena, namely (1), the
fact that the pivots of the m:th order infinite zeros
are discontinuous functions 0% input compensator data
in the vicinity of points when the matrix

m
lim s JQ,(S) has multiple eigenvalues. This beha-
|sls=
viour is non-generic but (1, p. 300) it happens at
what can be regarded as a common design condition and
hence needs careful interpretation.

OPTIMAL ROOT-LOCI

The notion of root-locus can be carried over
(see e.g. (14) - (17)) to the optimal linear state
feedback controller for S(A,B,C) minimizing

- - . - - .-
=% [ {y"(t) g y(t) +p " u () Rulr)} de
° T
D=0 >0 , R=R >0 , p>o (13)
by plotting the variation of closed-loop poles as p
increases from p = O+ to p = +». Clearly the idea of
C*- genericity carries through to this case in the
sense that it is possible to prove the following

result:

Theorem 4: If S(A,B,C) is square and invertible, then
the property P3(A ,B,C) that the infinite zeros of the
root-locus have a base characterization (1) with

vj = 2ny, lsjem, is C*-generic with P = L.

Proof: 1In (15) the validity of the base characteriza-
tion for S(A,B,C) with F=K=0 and N=M=Ij is proved,
whilst, in (18) it is shown that the infinite zeros
always have orders ¥j = an and that the orders and
asymptotic directions are entirely independent of any
state feedback or output injection maps introduced
into the system. Pg clearly is egqual te L in this
case and the result follows.

—— e

A similar result with base~characterization (1)
replaced by base-characterization (la) is proved in
an identical manner. This is not considered here as
pivots do not appear to play an important role in
optimal root-loci as they do in the output feedback
case.

CONCLUSIONS

The notion of a C*-generic property of a system
S(A,B,C) has been shown to be the correct concept of
genericity for the consideration of the asymptotic
behaviour of the root-locus (and the optimal root-
locus) of that system. In the optimal case the result
turns out to be trivial in that every optimal root-
locus is C*-generic in the sense that its asymptotic

behaviour has the structure of base-characterizations

(1) and (la) independent of the choice of Q and R, the
inclusion of state feedback and output injection loops
and constant input/output transformations. In the non-
optimal multivariable case, the notion is non-trivial
as non-generic structures can be constructed in
practice. It has been demonstrated here that base
characterizations (1) and (la) are still C*-generic
with orders equal to the integer structural invariants
of the C*-transformation group and that non-generic
behaviour can always be removed by 'random' choice of
constant forward path compensator. This last point is
of particular importance as it indicates that non-
generic behaviour can be ignored in practical terms
provided that care is taken to avoid its creation by
badly-designed control systems.

The proofs of the results have drawn heavily on
different techniques and results in the literature.
Further work should enable the construction of more
‘uniformly based' proofs. This problem is under
consideration.
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