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Abstract

The paper illustrates an approach to the teaching of optimal control
in the presence of hard constraints at an undergraduate level. The
treatment is rigorous but simple and includes concepts essential for

postgraduate studies and the introduction of numerical optimization

methods.



1. Introduction

(
The teaching of optimal control theory 1,2)

to undergraduate
engineering students is a fairly recent phenomenum which presents several
difficulties to the lecturer concerned:-

(1) The choice of a mathematical level of presentation consistent with
undergraduate engineering mathematics courses.

(2) The choice of a conceptual level consistent with the need to produce
students capable of adapting the material to suite a larger class of
problem solving situationse.

(3) The case of optimal control in the presence of hard control constraints
requires a combination of mathematical rigour and interpretation
convincing to the good student but at a level attainable by weaker
students.

(4) The ordering of the material in a manner such that the more advanced
concepts are introduced one by one. For example, it has been found
that the students react more sympathetically if the solution of more
difficult two-point-boundary- value-problems is postponed until they
have investigated simpler problems-:(the linear cost problem) and
because used to the minimization of the Hamiltonian in the presence

of hard constraints.

These two papers outline the approach adopted for and the observations
made during a lecture course on optimal control for final year control
engineering undergraduates in the Department of Control Engineering of the
University of Sheffield. The course was designed to reach a compromise
between the above requirements and to emphasize the following pointsi-

(a) The mathematical source and interpretation of the costate and Hamiltonian.

(b) The implicit iterative nature of the two-point-boundary- value~problem

(TPBVP)

(c) The difficulties in the solution of the TPBVP due to control constraints
and the dependence of the solution on the constraints.

(d) Existence and uniqueness of the optimal control as a function of the
performance criterion and the control constraints.

(e) The need to apply common sense when applying all but the trivial results

of optimal control theory.

The course was split into two parts,



(i) The application of variational calculus to optimal control.

(ii) Control constraints and Pontriagins Minimum Principle.

The students responded very well to the variational approach and the concept
of the TPBVP with its implicit iterative nature. Difficulties were found
however when the concept of control constraint was introduced. In order to
overcome these difficulties the second part of the course was subdivided into
two main partse.

(a) The solution of linear cost optimal control problems (see section 2)

(b) The solution of minimum energy/minimum fuel problems.
The linear cost problem was found to be a very good vehicle to give the students
practice in the solution of simple TPBVP's where the Hamiltonian must be
minimized with respect to a -control restraint set and to provide a convincing

foundation for the derivation of the mathematical socurce and meaning of the

costate and Hamiltonian. The minimum energy problems illustrated to the students

the various difficulties arising when it is necessary to minimize the Hamiltonian

and satisfy state and costate boundary conditions simultaneously.

The papers present novel derivations of the Minimum Principle for these
two classes of optimization problems. The approach is rigorous but simple and
has the advantage of giving the students enough insight into the source of the
concepts involved to enable a sensible discussion of iterative optimization
methods in the solution of the linear quadratic optimization problems in the
presence of control constraints. One student successfully completed a final
year project implementing a gradient algorithm for the solution of a nuclear
reactor optimization problem.

The mathematical machinery required for the approach is simple integral
calculus, elementary matrix algebra and the concept of the iner product of

two nx1 column vectors x = (xi,xz,,,a,xn) y Y = (yi,yz,...,yn) defined by

n

_ m—
< x ,y> = ?m Xiyj (1)

j=1
and the simple properties (if A is a scalar)

Ex,y+2p = Lxyp + £x2D (2)
{xohy D
‘:X’Y:>

il

ALY (3)

Cy,xD (4)
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and, if A is a matrix with transpose A, then

<X=AY> = <ATXvY> (5)

2. The Linear Cost Problem

The approach was restricted to the analysis of linear systems of the form
x(t) = AlE)x(t) + B(t)ult) x(o):xO (6)

where u(t) is restricted to lie in a given control restraint set£) .

The performance criterion (T fixed) is

T
Ju) = Lot,x(T)) + x § < Al)x()P + glult),t)f at  (7)

o
Here A(t),B(t) are nxn and nam matrices, ®,f(t) are nx1 vectors and g is a
scalar function of both u(t) and t. All functions are assumed to be suitably
continuous in their arguments.
Using the normal technique in the derivation of numerical algorithms,
the costs J(ui), J(uo) of using two controllers ui(t) and uo(t) respectively

are compared by calculating the difference J(ui) - J(uo) ie.
T
Tlu,)=T(u )= ety (T)ox_(2)> + &Og L BUE) e, (£)=x (£)> + glu, () ,¢)
-g(uo(t),t)—f dt  (8)
Now, for any differentiable vector function P(t), equation (6) implies that

it
So<p(t),A(t)ﬁxi(t)_xo(tﬁ + Bl) fu (b)eu (£)F - §2 (£)-%_(£)§ > at

1

-0 (9)

or, using the simple properties of the inner product and integration by parts

in the last term in equation 9,

T
S <alterpte) + Blt),x, (£)-x_(£)>dt

O

T

o (10)

il

i
o\ <BH(0)p(t) yu, (E)my (£ at=[< plt) i, () (£)> ]
1 1

e}
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Adding the left-hand side of this expression to equation (8), and noting that

x (0)=x (o0)=x ,
o o

1

J(ui)-J(uo) ={a - p(T), xi(T)-—xO(T)>
T pIE
+x £ BLEIAT (B)p(£)4B(E), x, (E)x_(£) at
@]
x T
i gog.{ Bp(t),u, (t)-u_(£)) + glu, (£),t)-glu_(£),£) at  (11)

At this stage in the analysis the students react sympathetically to the argument
that the arbitrary function p(t) can be chosen to simplify this expression as
much as possible by eliminating the dependence upon the state trajectory xi(t).
This argument is consistent with the normal technique used in the derivation of
numerical optimization algorithms in that, given a trial controller uo(t)
and its state trajectory xo(t), it is helpful if we can estimate the effect of
using an updated controller ui{t) without calculating the corresponding state
trajectory xj(t).

Using the above argument, p(t) must satisfy the differential equation

3E) = A EIplE) = ALE) (12)
with terminal boundary condition
p(T) = « (13)

These equations are easily identified with the costate equations of the Minimum

Principle. The above analysis illustrates how the idea of costate variables

arises naturally in the problem using elementary mathematical manipulations

and by appealing to the practical computational aspects of optimization theory.
Substituting equations (12) and (13) into equation (11) and defining the

Hamiltonian function
H(x,pyu,t) = <AME),x>+ glu,t) +{p, Alt)x + B(tlud> (13)

it follows that

i
Ilu, =Tty )= gog HOx_(£),p(£) 0, (£),£)-H(x_(£),p(t),u_(£),£)% & (15)



At this stage in the analysis it is assumed that uo(t) is an optimala

controller for the process. Hence, for any other controller ui{t),
J(uifz.J(uO) (16)
. T

or §§ HOx (£ ,p(8) ju, (£),6)-HEx_(£),p(8),u (8),0f at 2 0 (17)

Using graphical arguments the students readily appreciate that for these
conditions to hold, it is necessary that, for all ogtZT,

H(xc(t),p(t),ui(t),t) = m%'_ln H(xo(tJ,p(t),u,t) (18)

where the minimization is performed with respect to the restraint set £L .
Moreover, in this case the condition is also sufficient for u to be the optimal
controller. This analysis demonstrates how the Hamiltonian minimization

condition arises natirally in optimization problems.

The two point boundary value problem to be solved for the optimal controller

uO(t) can now be summarized as
x (£) = Alt)x (£) + B(t)u (&) , x (o)=x
o o o o o}
" T
plt) = A7 (t)p(t) - Alt) , p(T) = «
H(xo(t),p(t),uo(t),t) = m%n H(xo(t),p(t),u,t} , 0L tET (19)
and can be solved in the following step by step manner:-

STEP ONE: Solve the costate equations backwards in time for p(t). Because of the
particular structure of this problem the costate is independent of
the state and the controllers.

STEP TWO: Given p(t) perform the minimization of the Hamiltonian for ofts T,
Note that the resulting controller uo(t) is independent of the state
trajectory xo(t).

STEP THREE: Calculate the state trajectory xo(t) using uo(t)ln

The simple structure of this TPBVP enables the student to concentrate
upon the meaning of equation (18) and to obtain expertize on its application

to different systems and a class of control restraint sets ) without the usual



difficulties arising from the need to satisfy the costate boarding conditions
and minimize the Hamiltonian simultaneously. The particular examples emphasized are
(1) glu,t)=%<u,Ru>, control unconstrained, R positive definite.
(2) g(u,t):%uZ, lulg ™
(3) glu,t)= \ui , Jul € M
(4) glu,t)= © y ul € M

which relate the results to previous results from variational calculus and
provides a lead into techniques useful in the minimum fuel/minimum energy

problem and time-optimal control.

3. Interpretation of the Hamiltonian Function and Costate

An additional feature of the linear cost problem and the simple but
rigorous derivation of the Minimum Principle in this case, is that it provides
an ideal means of illustrating the meaning of the Hamiltonian function and
costate. Consider the case of n=m=1, and let uo(t) and ui(t) be admissable

controllers such that

e - £ & 0
u, () l u_(e) i ogt<t, (20)
u (t)+Au ; t € t<t _+6
@] 1 1.
uo(t) 3 t1+6$ti’:T

£

and let Xo(t} and Xi(t) be the corresponding state trajectories at X_+ Schematic
examples of these responses are shown in Fig. 1. It is noted that, whereas the

control perterbation ui(t)—uo(t) is non-zero only in the interwval t_ £ t<:t1+6,

1
the state trajectory xq(t)~xo(t) is, in general, non-zero for all t > t, i.e.
the state carries information on the control function in a forward-time direction.

From equations (415) and (20)

2t +06
Jlu)=du ) =\ & >
1 o s Hix (t£),p(t),uy(t),t)-Hlx (£),plt),u (£),t)§ dat (21)
& o] o o
-

so that all information concerning the difference in cost is contained in the
interval tis'tﬂ‘t1+6. This observation rather surprises students until it is
pointed out that the costate equation(12) has a terminal boundary condition and
must be solved backwards in time. Interpreting this as a reverse-time information
flow, it is readily understood that the costate collects all the information on

the effect on the performance of the state perturbation for t > t1~+ & into the

Hamiltonian function on the interval tj;g t <€ t1-+6



& T

If & is small, a further interpsetation can be given to the Hamiltonian

function as follows,

I(u, )=l ) 2 b EH(XO(ti) () ou (b J+du,t )-Hix (t,),p(E, u (5) ,ti)g

m| m
ou

15

o}

Xo(ti)’p(t1>7uo(ti)’t (229

1

That is, the gradient of H with respect to u represents the sensitivity of the

H
cost to control perturbations - the larger the value of el the greater the

ou

sensitivity. For the case of unconstrained optimal control (EH = 0) these

ideas lead naturally to the characterization of the optimal control as a

controller producing a cost which is insensitive to admissible controller

perturbations.

4. Typical Worked Examples

4.1 x(t) = —x(t) + ult) , x(o) = 1

{ule)] M

A

15
Ju) = x(1) + X 4u”(t) at
&

(23)

(24)

(25)

Following the step by step procedure given in section 2, the costate equation is

pf{t) = plt) y pi1) =4
which is easily solved to obtain

p(t) = et_1
The Hamiltonian function is (eqn 14)

H= plt) ult) - plt) x(e) + u(E)

so that the optimal controller is obtained using graphical arguments as

uo(t) = ~piE) ; ‘p(t)\ < M
-Msgn p(t) ; |p(t)} > M

(26)

(27)

(28)

{292
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By plotting this solution graphically as a function of M, the students can be
given a preliminery insight into the dependence of optimal controls on the
control constraints and the fact that optimal controllers do not necessarily
touch the constraint boundary. Examples of this type are also an excellent

preparation for minimum energy optimization problems.

4.2 Xl(t) = xz(t) Xi(O) =1

iz(t) = ult) X2(o) =D (30}

Jultt)] < M (31)

J(u) = -2x1(’1) + xz(’l) (32)
The costate equations are

2 = ) &= e

pi(t) = 0 pl(i. 2

. _ ) -

pg(t) = pi(t) p2(1 i (33)
so that pz(t) = 2t-1 (34)
The Hamiltonian is

H = p2(t) ult) + pl(t) xg(t) (35)
so that the optimal controller becomes

%Jt):-Msm1pgt) = | 4M o€t<i (36)

=M 2<tg

Practice with this type of problem can be a good preparation for later

discussions of bang-bang types of optimal control and switching concepts.

5. Discussion

The first part of an approach to the teaching of optimal control in
the presence of hard constraints to undergraduate engineering students has
been presented in this paper. The course uses elementary material normally
given in undergraduate mathematics courses and yet enables a rigorous
deviation of the Minimum Principle for lineaf® cost problems at a level convincing

to the better students but at a level attainable by the weaker students.
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The restriction of the material initially to a discussion of linear cost
problems makes possible an interpretation of the concepts of costate and
Hamiltonian and enables the student to master the Hamiltonian minimization
ideas in the presence of a variety of control constraints without the normal
difficulties associated with the simultaneous satisfying of the Hamiltonian
minimization and costate of~ state boundary conditions. An important aspect
of this rigorous but simple introduction tothe Minimum Principle is that the
approach uses techniques fundamental to postgraduate studies of numerical

optimization methods (eg. first-ordergradient algorithms).

In the second part of this paper a similar treatment of the minimum
energy/minimum fuel type problems is presented, and a detailed example described
which illustrates these features of the TPBVF mentioned in section 1 which

cannot be illustrated by the linear cost problem.
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Fig. 1. The Effect of a Control Perturbation.




