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A Neighbourhood Selection Method For Cellular Automata Models
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Abstract:

A mew neighbourhood selection method is presented for both deterministic and probabilistic
cellular automata models. The detection criteria are built explicitly on the corresponding
contribution which is made to the value of each updated cell from each detected cell in the
evolution. Theoretical analysis and numerical simulations demonstrate the effectiveness of this
new method.

Keywords: Cellular automata, Neighbourhood, Probabilistic cellular automata, System
1dentification

1. Introduction

Cellular Automata (CA) which were introduced in the 1950°s and 1960’s as models of self-
reproduction (von Neumann 1951) have stimulated a great deal of interest and research. The two
recent books by Ilachinski (2001) and by Wolfram (2002) discuss many of the results that are
currently available.

CA can be classified into deterministic CA (DCA) and probabilistic CA (PCA) depending on the
determinacy of the local transition rule. Both DCA and PCA have been widely used to model a
variety of systems with local interactions in physics, chemistry, biology, and the social sciences.
In almost all of these applications, the local transition rules were pre-chosen and the
neighbourhood w as predefined so as to capture the basics o f the 1ocal interactions of the real
systems involved. That is, both transition rules and neighbourhood were manually initialised.
More recently, system identification methods were introduced into CA applications so that the
transition rule could be extracted automatically from experimental data. Corno e al (2000)
proposed a solution based on a genetic algorithm to directly identify the CA rule and successfully
used the identified CA in fault coverage. A genetic algorithm was also used to extract the CA rule
from CA patterns (Yang and Billings 2000a). Billings et a/ (2003a) reformulated the binary rules
as s imple polynomial m odels, and introduced the modified orthogonal least s quares algorithm
into CA identification. However, in most of these studies, the neighbourhood was still manually
predefined as the cells that were immediately close to the cell to be updated. For instance, most
CA use either the von Neumann, the Moore neighbourhoods, or some proposed larger
neighbourhoods in order to model systems with long-range interactions (Kier and Cheng 1994),
while others simply choose a minimal radius of neighbourhood (Adamatzky 1997). This usually
introduces additional difficulties in CA transition rule identification because the rule space will
be hugely expanded if redundant cells are incorrectly selected as neighbourhood cells. For

example, a three-site one-dimensional CA will have N =2%" =256 possible rules while the

number of possible rules will explode to N = 2" =1.341¢+154 for a nine-site one-dimensional
CA. The worst case arises if the neighbourhood is predefined incorrectly. For example, if one of
the neighbourhood cells is not included in the predefined neighbourhood, then it may be
impossible to find the correct transition rule. Yang and Billings 2000 presented a neighbourhood
detection method to determine the neighbourhood before the transition rule was identified. But



this was essentially a ‘term selection method. The distinction between neighbourhood and terms in
CA  identification is important and can be illustrated using the CA rule presented as
x,(8) =655, +6,5,5, + 65,5, +8,5,5,5,. In this equation, s,, 5, and s, are the neighbourhood

cells while s,s,, s,5,, 5,5, and s,5,5; are terms, and &, (i =1,---,4) represent model parameters.

Note that the number of neighbourhood cells is often considerably less than the number of the
cells included in CA model terms. Determining the neighbourhood cells is therefore a
fundamentally important preliminary step in CA rule identification and in the present paper new
neighbourhood selection methods for both deterministic and probabilistic CA are introduced. The
new methods are based on detecting the contribution made to the value of each updated cell in the
CA evolution. Neighbourhood selection for deterministic CA is presented in Section 3.1, and this
1s extended to solve the neighbourhood selection problem for probabilistic CA in S ection 3.2.
Simulation results are given in Section 4, which show that the new method can find the
neighbourhood cell exactly, and conclusions are presented in Section 5.

2. Cellular Automata

Cellular automata are systems that evolve in discrete time over lattice structures composed of a
large quantity of cells. The next state of each cell in a cellular automaton is updated
synchronously according to local rules which depend on a given neighbourhood. If the state of
the cells can only take either the value 0 or 1, this defines a binary CA. Attention in this study
will be restricted to binary CA. When the transition rules are deterministic, these CA willbe
referred to as deterministic cellular automata (DCA).

Consider a d-dimensional lattice L consisting of the set of all integer coordinate vectors
J=U» s j,) € ZY . The n-cell DCA model of a spatio-temporal dynamical system defined over
the lattice L can be expressed as follows

x; (1) = f(N(x,(5))) (1
where x,(¢) € Bis the updated state of the jth cell in L at time step ¢, fis the transition function
which describes the local transition rule, and N(x ,(#)) 1s the neighbourhood of the jth cell in L at
time step ¢. The neighbourhood is defined as follows

N(x ()= (x_,+p (1)(1 D, Xt (I)(t L)y Xiep, m(l)(t 1y
J+p (k) (t k)’ j+p (k) (t k) J+p (k)(r k) J+p (“(R}(I k) (2)

frﬂ.(r)(f 7)s X itp, (r)(f () SRS J+p;,[r)(t T))

where x,, ,(t=k) , (1<k<7,1<i<m(k), and Y m(k)=n ) is the state of the /'th
k=1

( [=i+ Zm(k') ) entry in the neighbourhood region of the jth cell at time step ¢, p,(k) is the
1<k'<k

integer coordinate difference vector between the jth cell and the /th entry in the corresponding

neighbourhood region, which specifies the spatial location of the neighbourhood cell, and & gives

the temporal location of the corresponding neighbourhood cells. The neighbourhood structure is

therefore defined by these parameters.

For convenience, the neighbourhood cells will be coded from 1 to n, and the neighbourhood cell
X4 p (¢ = k) will be denoted as ¢/ (t) (I=1,--,n ). The neighbourhood described in eqn(2) can
then be rewritten as



N(x, ()= (] (1), ¢] (1), ¢] (1)) (3)

In some real systems, the transition rules of the CA will be statistical rather than deterministic,
and CA with these properties are called statistical CA or probabilistic CA (PCA). The
neighbourhood of PCA are defined in the same way as those for DCA, but the transition rules of
PCA will be probabilistic. For an n-cell PCA with the neighbourhood defined as in egn(3), the

conditional probability for the cell x; to take the value 1 when this cell evolves from a certain
neighbourhood state is
a,= P(IN(x, () = N,) (4)

shera AN ctarvde Far Al 4l oot Bl L] bt S oIl Sl il
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value i = Y 2"7¢/(r).

1<isn

An alternative expression for the transition rule of a PCA can be obtained by decomposing the
statistical evolution into a virtual DCA evolution together with a noise term (Yang and Billings
2000). The updated state of the cell x, can be expressed as

x,(6) = x5 (1) + e(N(x,; (1)) = F(N(x;(2))) + (N (x, (1)) (5)

where the term xf (¢) is defined as the state of the updated cell in a virtual DCA and the function

f() is a deterministic function, which represents the local rule associated with this virtual DCA.
The output of this function only depends on the neighbourhood states. The noise term
e(N(x,(#))) may take the values 0,1 or -1 since the cell state in a binary CA can only be O or 1.

From the Appendix, it is clear that the noise (N (x,(2))) is stationary up to orderl (Priestley
1981) when the cell is updated from the same neighbourhood state N,. That is

E(e(N(x, (1)) = p,, forallN(x,(£)) =N,,1<i<2" (6)
where 4, 1s a constant independent of «.

3. CA Neighbourhood Selection Method

The transition rule specifies the relationship between an updated cell and the corresponding
neighbourhood. T he neighbourhood shown as eqn(2) defines the cells that are involvedin the
evolution o f each cell inthe CA. The neighbourhood together with the local rule p roduce the
dynamic behaviour of the CA system. Neighbourhood selection is therefore one of the most
important issues in CA modelling. In this section, new CA neighbourhood selection methods will
be mtroduced for both deterministic and probabilistic CA.

3.1 Neighbourhood Detection for Deterministic CA

To introduce the new neighbourhood detection algorithm, consider the more general problem of
determining a component in a continuous function initially, where the determination can be made
for each component based on the corresponding contribution to the values of this function. The
results will then be modified to the binary CA case.



Let R" be the n-dimensional real space, x = (x,,---,x,) € R",and f:R" — R a differentiable
function. For any given component x,in x", let p, be the natural projection from R"to R"™ with
-+, X, ). Assume that f can be

tespect o Bethat iy Pl 8L lun )= %e a8 wlar

decomposed as
f=rop @)

where /' : R"" < R" - R, and o denotes composition.

Differentiating f* with respect to x, yields

Lo A )
ox, 0Op, Ox
Because p, is the natural projection from R"to R"™" with respect to x., it is clear that
Pp
b < BN 9
5 ©)
Substituting (9) into (8) yields
af(xISXEJ“.an)EO (10)
ox,
which implies that,
f(xls"'axi—lﬂxi’xfﬂ:' ? 'nxn) = f(xlz'ui'x[-laxjr:x[+1:“-nxn)
for all (x,,%,, X1, %5 x,)€R"™ Jand x] € R (11)

On the other conmtrary, if f(x;, - %, %, %00 %,) = f(X, XX, %500, %,) , for all
Of (X5 %55%+ %5, )

(X Xy, 3 X, Xy, %, ) € R, and x] € R, which implies that =0, then it

can be proved that f can be decomposed as f=jf'op . In fact, for any

Ky n-1
X' (e o Ry sk, ) € B, ot

Se=p  (X)={xeR’|p(x)=x} cR" (12)
Then S, = {5, %, %, %% )e R x, ¢ R}
Consider the image set of S, under f
FS)={f(0[xeS,}cR (13)

It is clear that the set f(S,) only containsa single point, denoted by y.. So that defining a
function /":R"" — R, f'(x")=y,,then f’ satisfies f=f'op,.



Based on the above analysis, the following conclusions can be made. For any given component
x, in x" , there exists a map f:R"'<R"—R, such that f=f"cp if and only if

Flxnx, )= Fls % , g R Mo, 20 YKl (xl,xz,-~-,xl.fl,xl.ﬂ,---,;cn)ER”"‘, and x; €R.

Egn (7) implies that the system can be described without the ith component x,. This conclusion

provides a significant clue that can be used for variable selection in system modelling. Essentially
this means that a variable is redundant if no contribution is made to the system output from this
particular variable. However, it will often be difficult to investigate all the input vectors in the
space R" to determine which variables satisfy eqn(11). Even for a low dimensional discrete
space, the number of the possible states of the variables which would need to be explored could
be too large. But Boolean systems where the input and the output can only take values of 0 and 1
seem to be an exception to this observation. For Boolean systems, the following corollary can be
drawn.

Let y= f(x.,x,---,x,) be a Boolean function from B" — B, B={0,1} . Then for any given
componentx, € B, there exists a Boolean function f':B"" < B" — B, such that f = f'o p,

where p.is the natural projection from B"to B"", if and only if f(x,,---,x._,x,,x
i 1

i—127"i2 :+i’”"'\'n)

f(xp”':x,'_p]-ij,x. i ) for all ()C], »in X - ,xn)eB"_{,and x[EB.

e B i =12 7%+ >

If this extended result is applied to neighbourhood selection for the DCA model, a new
neighbourhood detection algorithm can be derived. The basis of the new algorithm is to select a
neighbourhood candidate set initially. Then each cell in the neighbourhood candidate set will be
assessed according to the contribution made to the cell to be updated. The initial neighbourhood
candidate set must be large enough to include all potential neighbourhood cells. The procedure 1s
summarised below,

Define the initial candidate neighbourhood of the cellx; at time step ¢ as N;(x;(?))= (Clm (&),
e (t),-+,eV (1)), where ¢ (2),(i=12,--,n) denotes the corresponding candidate cell. The
initial neighbourhood candidate set is NCS,, = {c(¢),c{ (), --,c\”(t)} . Set the initial number of
selected cells as /(0)=0. The state of cellx, at time step ¢ can be obtained through the evolution
from the candidate neighbourhood Ng(x;(z)). A series of data pairs can then be constructed as
(Ng(x S (t)),xj ®)), (t=1,2,...,m) from the observed CA pattern. At the k’th iteration step, the
candidate neighbourhood is Ng(x,(#)) , the neighbourhood candidate set 1is
NCS,; ={c/” 0),e @), el @, @), cY) (@}, where d,, d,, -+ , djy, 2 the
[(k-1) indices of the «cells that are selected as neighbourhood cells from
(¢ (),,cY(£)} after (k-1) steps detection. Assume that the detection decision is to be made

for the cell ¢/, (2), where the data pairs (N (x;(0),x,(2)) (#=1,2,...,m) are obtained from the
observed CA pattern. These data points are then searched to determine if the conditions

e =) foralli<n+1-kandi=4d,,d,,

.'{i. 1))
el ) =1-e% . @) (14)

X 5 (o)) wesyexpmy ® %5 00| ves, iy



hold, where ¢, and ¢, (¢, €[l m], ¢, €[l m]) are two different data points, and 4|, denotes the

cell state A4 1s updated from the neighbourhood state B. If eqn(14) is satisfied, the cell
¢/, ., (1) will be selected and is kept in the neighbourhood candidate set, so that,

1) =1(k=1)+1, ¢}y, =, (£), NCS, = NCS,_,.

n+l=k

Otherwise, the cell ¢/, _, () is removed from the neighbourhood candidate set, so that

I(k)=1(k-1), NCS, = NCS,_ \{cl._,} where A\B denotes A" B . After n iteration steps, all
cells in the initial candidate neighbourhood will have been processed, and all the I(n) cells in the
final neighbourhood candidate set NCS, will be the selected neighbourhood cells.

The data pairs obtained from the CA pattern reveal the information about the relationship
between the cell to be updated and the other cells. Therefore, the neighbourhood selection will be
more reliable if more data pairs are obtained. In principle, for an n-cell neighbourhood, the
number of data pairs should be near 2" so that the information will be enough to make the
neighbourhood selection. If the data pairs are not sufficient, the neighbourhood selection will
produce an incorrect result, which should be detected at the validation stage.

3. 2 Neighbourhood Detection for Probabilistic CA

For PCA, the cell state may be flipped during the evolution of the CA, this is usually referred to
as dynamic noise and is much more difficult to deal with than DCA (Billings and Yang 2003b).
The criteria used for neighbourhood selection given in Section 3.1 can not be applied directly in
the PCA case. Consider the dynamic noise CA case and for a given updated cell x ;(¢) , defme the

initial neighbourhood candidate set as NCSO:{cl(”(r),cgﬁ(r),---,cﬁ”(t)} . Assume that this

neighbourhood candidate set has been selected to be large enough to include all potential
neighbours. Denoting the neighbourhood set as NS, the objective of neighbourhood selection is to
determine the cells in the neighbourhood candidate set NCS and select all the cells

cj (t)  =12,---1) which satisfy c;j (t) e NS . Assume that the detection decision is to be made

for cell ¢/(¢) , and ¢/(1)e NS . Therefore the change of cell ¢/(z) will not affect the
neighbourhood states. In other words, the updated cell x ;(t) will have the same neighbourhood

state no matter what value the cell ¢/ () takes. That is,

— r
N(x.f (f)) cf.=fs,"-.cfj_|=5.-; & =gl =500 =8, B N(xj ('t )) C{:-‘::"'vcil:fn—l e =l=3; -C.JQ:SM =8,
YV (5,,8,,~5,)B” (15)

where all the cells except ¢/ (¢) take the same value on both sides of the equation.

From eqn(5), the transition from (s,,"-:s,,,5,,5,,,,"**5,) tox,(¢), there exists

i-139
x,(1)

v I o s 7 g Y
CF T80 B T8 0Cf =805, =8j41 77060 =5,

Beags +5(N(xj (1)) ol

(16)

d
:xj‘(t)cj_ N ST S SO i=
1 =810 G T8i0aC) T80 =8 E Cn =5

el g oal wy
S G S8 TS0 S8t n



Taking the expected value of both sides of eqn(16), and considering the determinacy of the
virtual DCA, yields

E(x,(t) \

Fome viind = g ] o=
Cp =510 85 =8 i0C) =500 =547

-
Ch=35,

., +EENC ),

(17)

d
- xj (I) il =iz -C!j = )

Ji J o - el = J= - S
ci =5, ¢ A St T (o Spam Gy T8 aC] =80 S =S,

Similarly, consider another transition from (5,5, ,] —5,,5,,,"-'s,) tox,(¢'), where all the

i+13

neighbourhood candidate cell states, except the cell ¢, (), are the same as those in the transition
shown in eqn(17), so that

E(xj(r,)!clj=

f P i ;
510 Ci T8 L)€ S1m8p 07, =8 e =5,

o, T EE(N G (D)

Consider the assumption that ¢/(¢) is redundant, applying the results from Section 3.1 to the
virtual DCA, yields

10

(18)

d ror
=X; Ny i Pyl o iz VR S Joo )
T e L B T = e e e e L L S Nl 0% Gt L B

Lrgiee e
(19)

i
i+l

=t ()
Faw ol = I N F 3 et & I
Cf S8 G T5iaCf =8;,C04 =506, =5, 4 Cf =81amm 0Ly T8 0Cf =1=8,07, =500 =8,

Consider the results of eqn(15) and eqn(6), which shows that (N (x, (¢))is stationary up to order
1, for all the same neighbourhood states, so that

BN Gy s o =BGy s )
YV (5,,8;,"*5,)€B” (20)
Substituting (19) and (20) into (18) and comparing to (17), yields
E(IJ (f) c{ =y ,-~~,c,-j_| =8epicf =5 ,cf+,=5,-‘y--,c;f=s,, ) = E(xj (tr) Clj =5 !"‘!Efi-l =8 f"ij:lﬁ‘r 'CEfH =5l =5, ) (21)

Therefore, eqn(21) will hold if the cell ¢/(z) is not a neighbourhood cell of the updated cellx iy

In other words, if there exists a (s,,s,,":-s,) € B", such that
B, (1), L))

then ¢/ () is one of the neighbourhood cells of the updated cell x, (¢) .

) (22)

n

. J_ Jo—e N Fevinpd J_1_ J o N
SpattaCin T80 =80 =S O =S iy TS 6] S80S 6 =S

In practice, the expectations in eqn (22) will have to be replaced by the sample means computed
over the data obtained from the observed CA pattern. Eqn (22) should therefore be modified to
allow for a tolerance.

<X, i B Xl

sl el e S e S e
1=k, J|ef =8y 50l =simaef =1=s;.00 =500

e Z 2 Eouop (23)

T Y Ji= 3 =
Cp S8 Gl T8 aCf =81.C7 1 =540 n =5y

where <-> denotes the mean value, and ¢,,, €[0.020.20] is a range of typical tolerance

values. The tolerance value can be chosen depending on the number of historical data from the
observed CA patterns. The tolerance value should be reduced the more data that are available.

After n iteration steps, all the cells in the neighbourhood candidate set should have been detected
and all the selected cells constitute the CA neighbourhood.



3.3 Verification

Verifying the selected neighbourhood cell is not straightforward. This is because often no a-
priori imformation regarding which cells are involved in the CA evolution is available since only
the s patio-temporary patterns generated by the CA rule are observable. H owever, the selected
neighbourhood can be verified implicitly. Using the selected neighbourhood, the CA rule can be
identified from the observed pattern with the help of a suitable CA identification algorithm. With
the selected neighbourhood and the identified CA rule, a prediction of the CA pattern canbe
generated and this can be used to verify the identified model and the neighbourhood.

4. Simulation Results

4.1 Neighbourhood Selection for a Deterministic CA

Consider the 1-dimensional CA on a 250x 1 lattice with the totalistic ule T88:
J+3

X0 1 if Z‘,xﬁx,. (t-1)=340r6

0 else
which is defined on the one-dimensional Moore Neighbourhood with radius »=3. The initial
configuration was chosen as *0...00111111111101100...0°. The pattern illustrated in Figure 1
(a), which is known as Park’s glider gun (Tlachinski 2001), was generated after S00 time steps of
evolution. For each cell location 500 data points were generated. Periodic boundary conditions
were used when considering the neighbourhood candidate data points. The initial candidate
neighbourhood of cell x,;(f) was chosen as N(x,(1))= ( 200—1) . &, 50 -1) , X,.4—1) ,
5= . x,0-1)
Beg—1 , B, W=l
X (@=1) , x,,0-1)
xj+4(t —1),x;,5(¢-1)). The
series of  data pairs
(N(x; (1), x,(2))) were
reconstructed  from the
observed CA  pattern
shown as Figure 1 (a). The
data pairs were exactly the
same for all the cells which
were updated from the
same neighbourhood
candidate states and were
only considered as one data
Figure 1: Example for a DCA pair. Finally the data pairs
(a) Park’s gun gliders pattern (b)Pattern generated using the identified model were collected from
250x 500 raw data points
and were then used for
neighbourhood selection using the algorithm presented in Section 3.1. The-results of using the
new algorithm were that the cells x (t—1), x,_,(r-1), X5 @=D, 0=, x,0-1),

(24)

x,,.(t=1), x,5(t = 1) were selected as the CA neighbourhood. To verify the selection result, the

reconstructed data pairs were further used to identify the CA rule based on the selected
neighbourhood. An equivalent integer polynomial CA model was identified using the CA



Orthogonal Least Squares algorithm (Billings ez al 2003a). After 500 time steps of evolution with
this identified polynomial CA rule, the pattern shown in Figure 1 (b) was generated from the
initial configuration chosen as ’0...00111111111101100...0°, This produced either a left- or
right- moving glider once every 238 iterations and was exactly the same as the pattern shown in
Figure 1 (a). This implies that the neighbourhood cell selection and the identified CA model are
correct.

4.2 Neighbourhood Selection for the Stochastic Version of Conway’s Game of Life
The Game of Life (GoL) created by John Conway (Berlekamp 1982) 1s a two-dimensional lattice
system in which the state of each lattice site depends on the neighbourhood cells according to
deterministic local rules. Conway’s original deterministic rule is an outer totalistic(code 0T224)
rule defined on the two-dimensional Moore Neighbourhood, which is given as:

Xa (@) =%, 3 x(e-1) + 25 (0%, > x(-1) (25)

Nixgi, jy () Nz, j) ()

where x, , is the Kronecker delta and S 'x(t-1) is a sum over all neighbours of the site

N(v‘(r,;)(f))
%;.,(2) . This can be extended into a PCA version and the rule of the extended stochastic GoL is
x(i,i)(t) = Pﬂxa, 3 x(e- = PSx(f.J‘)(r)xz, > ee-1) (26)
N(x(i, jy ) Nix(i,j) (1)

where P,, P, are the birth probability and survival probability respectively. When P; =1 and
P, =1 this stochastic rule becomes the same rule as the original deterministic GoL rule.

Let P, =0.98, P, =0.96, then using a 2 dimensional von Neumann neighbourhood, the initial
configuration of a 50x 50 lattice was set as the snapshot shown in Figure 2(a). The CA pattern
was obtained after 200 time steps of evolution using the rule defined in eqn(26).A set of space-
time “history”” data points were generated from 200 snapshots of the CA pattern, and these were
used for neighbourhood selection using the new algorithm presented in Section 3.2. Fourteen
cells were chosen as the initial neighbourhood candidate cells and the tolerance valuee,, . was

set to 0.18. The cells x, (¢ -1), x, ,,(¢t=1), x,,,(¢t-1), x_,,(¢t=1), and x,,, (¢ —1) were selected
as neighbourhood cells.

To verify the selection result, the selected neighbourhood cells were then used to identify the CA
rule using the CA Orthogonal Forward Regression algorithm (Billings ef al. 1988). An equivalent
polynomial CA m odel was estimated for the deterministic part of the model. Using the same
initial configuration, the predicted CA pattern was then obtained based on the identified model.
To compare these two 2-dimensional CA patterns, the column density and the row density were
used. The column density and the row density are given as

1 n, k=i+iy
i) =———— X, o (t 27
x(.0) = (Zz.ﬁl);k;_%m() 27
1 n, k=j+ju
Ay t)=———2 Y 5(x,;.1) (28)

n, {27 +1) = k= j—jy
where dx(i,t), dy(j,t)are the row density and the column density, »,, n, are row size and column
size respectively. Periodic boundaries were used when these densities were calculated. The
column density and the row density of the original CA pattern are shown as Figure2 (c), (f), while
those of the predicted CA pattern are shown as Figure2 (d), (g). Note that Figure (2)(c), (f) and
Figure 2 (d), (g) are not exactly the same. This is to be expected because the observed CA



)

Figure 2. Stochastic Game of Life and the prediction results
(a) The initial random configuration; (b) The row density of the DCA patern; (c) The row density of the PCA pattern;
(d) The row density of the predicted CA pattern; (¢) The column density of the DCA pattern; (f) The column density of the PCA
pattern; (g) The column density of the predicted CA pattern;



includes the noise, where as the prediction from the model is noise free. To analyse the prediction
result, the column density and the row density of the DCA pattern (observed from the CA
evolution with the same rule as the above PCA but withP; =1, P, =1 ) are shown as Figure2

(b), (e), which are the same as those of the predicted pattern respectively. These results implicitly
indicate that the neighbourhood cells were chosen correctly.

4. Conclusions

A new neighbourhood selection method has been derived for both deterministic and probabilistic
CA models. The new algorithm allows the neighbourhood detection problem to be decoupled
from the CA rule determination or CA model identification problem. The neighbourhood
detection criteria are built explicitly on the contribution made to the value of each updated cell
from each detected cell in the evolution. Simulation results on two complex CA rules confirm the
effectiveness of the new method and demonstrate how CA models can be determined based on
the selected neighbourhood.
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Appendix
Given an n-cell probabilistic CA, which has the transition rule expressed as eqn(4), the transition
rule can also be represented as eqn(5). If the x; have evolved from the neighbourhood N, the

state of x; can be given as follows

d
Xy (t)' N(x (=N, = < (t)\N(.rj (EN=W; e N(x; ()=N; (Aﬁl)

Taking expected value on both sides, and considering the determinacy of xj', yields,

B Y s B 0 sy + B i) (A-2)
where the expectation of the state x; can be obtained from the eqn(4)
Bty weeyome) =1+, +0-(1 =) = g, (A-3)

Substituting (A-3) into (A-2), yields
E(E’ Wexyn=m) = G = 55 (O weganen, = He, (A-4)

where 4, 1s a constant independent of 7. This implies that the noise term in eqn(5) is stationary

up to order] when the cell is updated from the same neighbourhood state », .
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