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The instrumental variable estimator and the unbiased
least squares algorithm developed by James, Souter and Dixon

are shown to be asymptotically equivalent.



Introduction

Over the last decade numerous modifications of the conventional
least squares algorithm have been developed to eliminate the bias
in the parameter estimates which occurs when the system output is
corrupted with correlated noise. Two of these algorithms commonly

referred to as instrumental variables ’

and suboptimal least
3 , .
squares are analysed and shown to be equivalent.

Consider an open-loop discrete time system described by the

linear difference equation
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whera LA and y, are the input and noisefree plant output at rime t,
z ig the measured output corrupted by noise L and Et is a white
noise sequence with zero mean.

For a sequence of k data points the system description can be

expressed in matrix notation as
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The conventional least squares estimates are obtained by
minimising

J = (Z - ¢ZUB)T(Z = ¢ZUB) (3)

to yield g = (o ‘¢ ) Y4 Tz (4)

This estimate will be biased unless the elements of W reduce to
: ; . . 3

white noise sequence. James, Souter and Dixon~ developed a

suboptimal least squares algorithm to eliminate this bias by

defining a modified least squares objective function
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The last Lwo terms in eqn (5) effectively subtract the bias associated

with the conventional least squares estimate to yield

B = e -l Tz2-0 (8)
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Provided (¢ b ~N) is positive definite eqn (8) gives an unbiased

ZU(ZU
estimate of the system parameters.
. . 3 oy s ;

The algorithm can be implemented” by initially assuming that
R and Q are zero and solving eqn (4) to give the conventional leasr
squares estimate. The predicted output ¥ and hence v_ can then

C

be estimated, R and Q can be formed and B computed from eqn (8).
Iterative updating of R, Q and B is continued until convergence is
achieved.

Alternatively, unbiased estimates can be obtained using an
instrumental variable estimator. Premultiplying eqn (2) bv an
y o el g
instrument matrix X gives
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Providing the instrument matrix X~ is selected to have the following

properties
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then B = (X'¢ ) XZ (1
LN zu
ig an asymptotically unbiased escimate.
The choice of instruments has been investigated by several
; S . s o= 4 1 ;
authors including Joseph, Lewis, Tou , and Young . However, Wong

- 3 ; s ;
and Polak™ showed that optimal instrumental variables exXist. They



formed XT by replacing z, in ¢zu by the predicted output Y. which
is estimated using an auxiliary model and the parameter estimates
of the previous iteration.

Hence selecting the instrument matrix as

© = 4.5 = .=k 3 (12)
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the instrumental variable estimate may be expressed as
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Consider the asymptotic properties of the instrumental variable
estimator for an increasing number of observations k. Taking
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the limir—in-probability and appiying Slutsky’s theorem yields
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The instrumental variable estimate, eqn (14) thus asymptotically

reduces to

T
p.lim BI = (wp.linflgﬂ?i‘gr—EE - p.lim L )_l
Y k k
koo Jgo0 ko
oz .
(s 110, e om p.lim,ﬁ') (17)
Jgroo ke

which is of exactly the same form as the suboptimal least squares

estimate when the limit-in-probability is taken, The two algorithms

are therefore asymptotically identical and instrumental variables

can be interpreted in terms of the modified least squares cost

function defined in eqn (5).

G . >
The algorithm of FJames, Souter and Dixon appears to be more

efficient computationally requiring only (5n-1)k asymptotic

multiplications at the second and succeeding iterations comparcd

to (9n-1)k for instrumental variabies. The two algorithms have

been compared using both simulated and industrial data by Clarkeh.
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