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Abstract

Kernel methods now provide standard tools for the solution of function approx-
imation and pattern classification problems. However, it is typically assumed
that all data are available for training. More recently, various approaches have
been proposed for extending kernel methods to sequential problems whereby
the model is updated as each new data point arrives. Whilst these approaches
have proven successful in estimating the basic parameters, the problem of es-
timating the hyperparameters, which determine the overall model behaviour,
remains essentially unsolved. In this paper a novel approach to the hyper-
parameters is presented based on a multiple model framework. An ensemble
of models with different hyperparameters is trained in parallel, the outputs of
which are subsequently combined based on a predictive performance measure.
This new approach is successfully demonstrated on a standard benchmark time

series problem.



1 Introduction

Kernel methods, including support vector machines, Gaussian processes, reg-
ularisation networks etc, have now found widespread acceptance as a tool for
function approximation and pattern recognition. Significant factors in their
success include a strong theoretical basis in terms of statistical learning theory,
reproducing kernel Hilbert spaces (RKHS) and Bayesian statistics and also the
inherent simplicity of the resulting models. More recently various approaches
have been proposed to extend the class of kernel methods to the solution of
sequential (online) learning problems (Csaté and Opper 2002; Schélkopf and
Smola 2002; Dodd, Kadirkamanathan, and Harrison 2003; Drezet 2001). His-
torically, similar methods include the method of potential functions (Aizerman,
Braverman, and Rozonoer 1964) and the resource allocating network and its
variants (Platt 1991; Kadirkamanathan and Niranjan 1993; Li, Sundararajan,
and Saratchandran 2000).

The authors have developed a strong theoretical framework for sequential
learning within RKHS (Dodd, Kadirkamanathan, and Harrison 2003). The basic
model update is based on a stochastic gradient descent algorithm in the RKHS.
However, this results in a model for which the number of terms (kernels) grows
as new data points arrive. Therefore, various methods have been proposed to
limit this growth in the model, called sparsity control (Dodd, Kadirkamanathan,
and Harrison 2003; Drezet 2001). This typically takes the form of only including
kernels which contribute “enough” to the model and removing any kernels for
which removal will not significantly degrade it. Experience shows that this
provides a practical method for keeping the model size at a manageable level.

A significant limitation in the application of these methods to sequential
problems is how to deal with the hyperparameters. Such parameters control as-
pects of the solution such as its overall complexity and must be carefully tuned
to ensure good generalisation. In this paper we introduce a novel approach by
adopting a multiple model framework motivated by (Dodd and Harris 1999). In
our approach we train an ensemble of models each with different combinations
of hyperparameters. A measure of the predictive accuracy of these models in
the recent past is then used to weight the model outputs at the current time
instant to form a combined estimate. Those models for which the hyperparam-
eters correspond well to the current conditions will be weighted correspondingly
greater.

In the next section we describe our approach to sequential learning in kernel
methods which is based on stochastic gradient descent type methods. A sig-
nificant feature of this approach is the approach to ensuring that the models
do not grow “too big”. The multiple model framework is then introduced in
Section 3. Finally, we demonstrate the application of the method to a standard
benchmark time series problem.



2 Sequential Kernel Models

We are interested in the problem of approximating some unknown input-output
mapping given only observation pairs, {z;,y;}, where z; € RF | y; € R. A kernel
model for such an approximation can be written in the general form

flz) =) aik(vi,x) (1)
i=1

where p is the number of terms, z is a generic input point, a; are a set of (un-
known) parameters and the k(v;,-) are a set of kernel (basis) functions centred
on the points v; in the input space. The kernel functions are assumed to be
positive definite for which the f(-) in (1) then belongs to a reproducing kernel
Hilbert space (RKHS) with reproducing kernel k(-,-). This general form in-
cludes various classes of standard models including radial basis function neural
networks, regularisation networks, support vector machines, Gaussian processes,
and Volterra series.

More specifically we are interested in the case where the unknown input-
output mapping corresponds to a NARMAX model and more particularly in
this paper we address the case of nonlinear autoregressive models. The data are
then time ordered and i represents time t; with z; = [y;—1,. .. ,yi_LH]T a vector
of lagged outputs. We call L the embedding dimension. In real applications we
are then faced with the problem that the data arrive sequentially and we must
therefore construct a model iteratively as each data point arrives.

A general sequential approach to learning kernel models is based on the
method of stochastic gradient descent (Dodd, Kadirkamanathan, and Harrison
2003). Starting with an empty model we add a new kernel every time a new
data point arrives such that »; = ;. The parameter corresponding to the
new kernel is then set based on the method of stochastic gradient descent, i.e.
«; = ne; where e; is the prediction of the current model at the new data point,
e; = fi—1(z;) —y; and 7 is a learning parameter. Therefore, if the model at time
i — 1 has p terms the new model is given by

r p+1
filz) = Z a;k(vi, ) + negk(zy, ) = Z a;k(v;, z). (2)

We assume the new model has p+ 1 terms and not i as we will subsequently
introduce a sparsity control mechanism whereby the number of terms will not
necessarily equal the time index. A significant problem with this (simple) ap-
proach is that the number of terms grows with the number of data points.
Various approaches have been proposed to restrict this growth (Dodd, Kadirka-
manathan, and Harrison 2003; Drezet 2001). These differ primarily in how
terms are selected for removal. We describe a particular approach here which
leads to the kernel LMS (KLMS) algorithm. We refer to removing terms as
set reduction (SR). Any SR technique requires the removal of terms from the
model, and thus has the potential to degrade the quality of the model. We seek
to minimise this degradation.



We seek to remove those kernel functions that can be reasonably well rep-
resented as combinations of the kernel functions to be retained; we call this
“gparsity control”. Such techniques require the modification of the retained
parameters because simply discarding a kernel will result in some (generally)
undesirable degradation to the overall model. In this case, we may be able to
distribute the contribution of the removed kernel amongst the retained kernel
functions by adjustment of the retained parameters.

Defining the kernel (Gram) matrix, K : K;; = k(z;,z;) and assuming we
have p kernel functions in the current model then we can partition the kernel

matrix as follows
i = [ Eprp-1 | Kp1a (3)
K p—1 | kp,p
where the last row and column correspond to the kernel to be removed. Note
that we can always treat the kernel to be removed as the last row and column
by a simple re-ordering of the kernel matrix.
After removal of the pth kernel function, we can choose a new set of p— 1
multipliers {f;} such that the reduced model

f'() = Bik(vi, z) 4)
i=1

ig, in some sense, the best possible approximation to the original model.
Ideally, the discrepancy §(z) = 0V © where

P p—1
6(.) = Z aik(v;, ) — Zﬁik(w, 3. (5)

However, in general, this will not be possible and we will have to settle
for approximate agreement between the old and new models at a finite set of
locations in input space. The vectors {v;} are an obvious choice for this set of
locations. We can write the discrepancy between the old and new models at the
p kernel centres as

— dp-1 | _ Kp—1p-1
g = { 3 ] e et — [ el
- [ { I{p~1,;ufl I{p—l,l ]a _I{p——l,p—lﬁ ]
[ I(llpfl kp,p ] a — 1{1,1’)71;6

where 6,1 € RF1,6, € Rand o = [og ... ap]” and B = [B; .. _—

A reduction technique must define not only the new multipliers {} in terms
of the original model (a projection), but also a deterioration metric, enaqe, for
the reduction, which measures how damaging to the quality of the model the
reduction is. One adaptive strategy is to fix a maximum permissible deteriora-
tion, emaz, and remove a vector whenever this maximum is not exceeded; the
model grows and shrinks as necessary. Another strategy, which may be more
applicable when implementing the algorithm on hardware with hard resource



limits, is to fix an upper limit for p, pyq., and whenever p reaches this limit,
to remove the kernel function that results in the minimum deterioration. We
apply the former strategy.

The KLMS technique (Drezet 2001) obtains the § which results in §,_; =0,
i.e. the reduced kernel model has the same output as the original model at the
vectors that are retained, and is erroneous only at the removed vector. This
projection is given by

B

Il

B gl Boapa Kpaa e

= [1 Kb, iy |6 (6)

For this choice, we can write the remaining element of the discrepancy as

op = [Kl,p—l kp,zv]a
~Kipa[ I K4 1 Kp11]a

p—1,p—

= (kP,P - I{I,})—lf{;jl,pmlf{p—l,l) Qp

=  KpQp.

where £, is the deterioration metric.

Using the same projection, but the modified deterioration metric I{.pCL’%, gives
the technique described in (Dodd, Kadirkamanathan, and Harrison 2003), which
we call Modified KLMS (MKLMS). This technique has a strong theoretical
justification in terms of finding the unique orthogonal projection of the current
model onto the space of models constructed by the removal of the kernel vector.

In summary then, the sequential learning task is to update the model for
each new data point using (2). Subsequently, each of the kernels is assessed for
removal and if the minimum discrepency over all kernels satisfies hz']’j"i” < B
then remove that kernel corresponding to fcg”” and use projection (6).

3 Multiple Model Algorithm

Thus far we have not discussed the particular form of the kernel, k(-,-) other
than it must be positive definite. Various kernels are typically used; one of the
most common being the Gaussian kernel

ko) =ep (121, 7)

2g2

A common feature of kernels is the presence of hyperparameters, in this case o.
These control the qualitative features of the approximation, e.g. larger o gives
smoother approximations. In our sequential approach we have also introduced
additional hyperparameters which in this paper we have restricted to e,,,, used
in controlling sparsity. These hyperparameters must either be chosen a priori
or some non-trivial approach used to estimate them. The former is problematic
as it can be difficult to choose an appropriate value and the latter often leads



to computationally expensive solutions which are not amenable to online meth-
ods and do not guarantee globally optimal solutions in any case. Instead we
propose a multiple model approach whereby each model in an ensemble takes
different hyperparameter values. The model outputs are then combined to form
predictions.

Given M models, each corresponding to a different set of hyperparameters,
then the sequential learning procedure described in the previous section can be
applied to estimate the parameters of each model. Given the a priori selected
hyperparameters each set of model parameters will then be optimal under the
assumptions given in the previous section.

We denote the jth model in the ensemble at time instant i by f;; and the
corresponding estimate of the (i+p)th sample using this model by ¢/ - Such an
estimate will use the regressor of lagged outputs g}fﬂ,q, - ,QfH, y;’, i ,yfﬁ_pul{
where the terms, g, are ,themselves, estimates resulting in an iterated prediction.

We then write the prediction at time ¢ + p of the multiple model given
observations up to time, %, as

M
?}i+p|i = ij,'iﬁg+p (8)
J=1

where the {w;;} is a set of M, to be determined, weighting parameters, one for
each model.

The weighting parameters are calculated using a moving average squared
error (MASE) defined, for each model, by

R
3 2
Mji — § (37;?_“_1\.5_; - yi—!+1) Y j€ [1,]\/[] (9)
=0

where R is an a priori chosen prediction horizon.

The MASE for model j, n;;, is a historical measure of the one step ahead
prediction performance of the model over the previous R samples. A low value
for 7;; indicates that model ¢ made accurate one step ahead predictions at the
last R time instants. The value of R dictates how localised this measure is.
For R = 0 then the MASE only assesses the model accuracy on the current
sample. This is unlikely to give satisfactory results as there is no averaging
of the model performance over a number of samples. We should therefore set
R > 0, however what particular value to choose is still an open question. This,
together with the number of models, M, remain the only parameters which
cannot be incorporated into the multiple model framework. We therefore refer
to R and M as metaparameters. Some discussion on this point is given for the
example in Section 4.2.

The reciprocal MASE is then given by

1
Yi=— ¥ j€L,M] (10)

ivi



and, finally, the weighting for the jth model is calculated using

Vi :
wii = =—— Y je[l,M]. (11)
B
By defining the model weightings as such ensures that, as we would expect, the

constraint E;‘il w;; = 1 for all 7 is satisfied.

This algorithm then provides a method for combining, sequentially, the out-
puts of the individual models in the ensemble. Those models which have per-
formed best over the receding horizon, R, will be given more weighting accord-
ingly. This ensures that the output of the combination is biased to those models
which are (locally in time) best. Given the measure, MASE, used in weight-
ing the models then, given the recent prediction horizon used, the combination
should perform at least as well as the best single model in most cases. How-
ever, depending on the value of R this may not always be the case. Further
investigation is ongoing into this point.

4 Example: Laser Data

4.1 Data Description

As an example of real chaotic (nonlinear) data we examine a standard data
set which formed part of the Santa Fe time series competition as data set
A (Weigend and Gershenfeld 1994) and which has previously been used to as-
sess kernel methods for system identification in the batch case (Dodd and Harris
2002). The data are recordings of the output intensity as recorded from a Far-
Infrared-Laser in a chaotic state. The data is very clean with a signal-to-noise
ratio of approximately 300 and corresponds to a stationary, low-dimensional
chaotic behaviour (Hiibner, Weiss, Abraham, and Tang 1993). Whilst the data
set is very predictable on the shortest time scales (relatively simple oscillations)
the global events are harder to predict. In fact, (Palu§ 1993) describes the
chaoticity of the laser data as somewhere between the strongly chaotic Lorenz
systems and the weakly chaotic Rdssler system.

In (Palus 1993) the correlation dimension of the laser data was estimated to
be about 2.05, and if we take the next highest integer then this corresponds to
an embedding dimension of three. This is in accordance with (Weigend 1994)
who estimated the dimension as three using an entropy (information) based
criterion. The dimension of the underlying manifold has been estimated to
be close to two (Palu§ 1993). In contrast (Casdagli and Weigend 1993) found
that an embedding dimension of approximately eight gives the most accurate
forecasts. More generally the best results in the competition used embedding
dimensions of 25, 32, 50 and 200 (Casdagli and Weigend 1993). For the purposes
of our experiments we chose embedding dimensions of 6, 12 and 18.

The original dataset supplied for training in the competition consisted of
1000 points. In addition to this an additional 9000 points was then made avail-
able to provide unseen data for testing purposes. We used the composition of



the original data set together with the first 1,000 points of the continuation,
Figure 1. This ensured the data contained a variety of dynamic behaviours for
training. For the purposes of assessing the prediction performance we have high-
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Figure 1: Laser time series data set, (a) all 2000 samples with a mode change
delineated and highlighted in (b) corresponding to samples 951-1200.

lighted some distinct sections of the data. We determine that a mode change
commences approximately at the last strong peak before a collapse and sub-
sequently lasts for 100 samples. Within our data set we have highlighted four
major mode changes, at [181, 280], [601, 700], [1061, 1160], [1511, 1610]. In
addition there exist two minor mode changes at around 520 and 1850 samples,
which are ignored. A further mode change at around 1950 is ignored, since we
measure the MSE only over the sample range 51-1950. We also define regions



of the data where the series is particularly well-behaved (read, ‘particularly pe-
riodic’); these are given by [301, 500], [701, 900], [1151, 1351], [1601, 1800] and
are called ‘stable regions’. It is expected that prediction accuracy will be good
in these stable regions and less good during mode changes.

4.2 Sequential Prediction

The results described in this section were arrived at using the KLMS algorithm
for model reduction with the following hyperparameter values

o € {10,20,40,70,100}, emax € {0.1,0.5,0.9}

resulting in a total of 15 models.

Various results were generated for different prediction horizons, I, as used
for the model weighting. It was found that for B < 7 then certain single models
outperformed the multiple model under some conditions. Eventually a value of
R = 15 was selected which provided a reasonable set of illustrative results.

The prediction performance was measured as the MSE over an iterated pre-
diction horizon of 20 steps ahead (p = 20), normalised by the MSE of the zero
model. Four different sets of results were obtained over (i) mode change re-
gions, (ii) the non-mode-change regions, (iii) the stable regions, and (iv) the
entire data set. In each case, samples 1 — 50 and 1951 — 2000 were excluded to
avoid difficulties with end effects.

Experiments were performed over a variety of data pre-processing approaches
and embedding dimensions. In addition to the raw data, pre-processing to give
zero mean and zero median was applied. In principle these various models could
be incorporated into the multiple model paradigm. In practise it was found
that the raw data performed best and the case of an embedding dimension of
six demonstrated much clearer performance of the combination model over the
individual models. The results presented therefore correspond to this case only.

Figure 2 shows the normalised (with respect to the zero model) MSE per-
formance of the multiple model and single models together with persistence
(prediction is taken as the current value) and zero models for comparison. The
results show the iterated prediction NMSE for prediction horizons of 1-20 steps
ahead. The results for the 15 single models are shown as grey regions between
the best and worst performing models at each prediction horizon.

5 Concluding Remarks

The principal conclusions we can draw from these results are:

e except during mode changes, every one of the single models outperforms
the zero model;

e the combination always outperforms every one of the single models;

e the combination always outperforms the persistence model; and
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Figure 2: Multi-step-ahead NMSE measured over (a) mode changes, (b) outside
mode changes, (c) stable regions, and (d) whole data set.

e the performance is least good for mode changes and improves substantially
in the non-mode-change regions, being best in the “stable regions”.

These conclusions are as expected and demonstrate that the multiple model
framework does indeed provide a practical solution to the problem of hyper-
parameter estimation. Although the approach to combining the models has
not been optimised we see that the combination always performs better than
the best single model. This is to be expected given that, at worst, we would
expect the combination to consist of only the best single model. However, in
practise we see that this model can always be improved in our example using
an appropriate weighted combination with other models.

We therefore believe that we have presented a useful approach to removing
the need for a priori selection or estimation the hyperparameters. More gen-
erally this approach needs to be extended to take account of all the possible
hyperparameters. This presents a significant computational challenge which we
are seeking to address. In addition our approach obviously needs to be tested on
a variety of other example problems. Finally, the asymptotic performance of the
ensemble as the number of models increases, and the comparative performance
to the best single model are also being investigated. In the current approach
we have assumed the models are conditionally independent. By taking account
of the correlations between the model outputs within, for example, a Kalman



filter or recursive least squares based combination approach, we helieve that the
results can be further improved.
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