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ABSTRACT

An algorithm for the identification of non-linear systems
which can be described by a model consisting of a linear system
in cascade with a non-linear element followed by another linear
system in a unity negative feedback loop is presented. Cross-
correlation techniques are employed to identify the system in
terms of the individual linear and non-linear subsystems.
Parameterisation of both the linear and non-linear elements
is discussed and the results of a simulation study are included

to demonstrate the validity of the algorithm.



1. INTRODUCTION

Although a large class of non-linear systems can be characterized

323

by the functional Volterra series , identification techniques

based on this representation provide a black-box description which

gives very little insight regarding the structure of the process under
investigation. For systems which are composed of linear subsystems.

and memoryless non-linearities the Volterra kernels can often be
factored and related to the components of the original system. Ideally,
identification should be in terms of these individual elements of the
system such that the structure of the process is preserved and the

error which results when a system is characterized by a truncated
Volterra series is avoided.

Several author54’596’7:8:9,10,11

have studied the identification
of non-linear open-loop systems consisting of cascade connections of
linear dynamic and static non-linear elements but the identification

of such systems under unity feedback appears to have been largely
neglected. Characterization of non-linear feedback systems using
Wiener G-functionals can of course be readily achieved using the
technique of Lee and Schetzen12 but a truncation error will be incurred
and the structure of the original system is lost. In the present
study an identification algorithm which provides estimates of the
component subsystems for a class of non-linear feedback systems and
which preserves the structure of the original process is presented.

The class of systems considered includes systems which can be described
by a general model, consisting of a linear system in cascade with a
static non-linearity and a second linear element, under unity feedback.

10,13
7

The algorithm represents an extension of previous research hich



showed that when the input belongs to the class of separable processes
identification of the linear and non-linear elements in the general
model can be decoupled using correlation analysis,

A brief review of the theory of separable processes is presented
in the next section and the identification of open loop systems which
can be described by a general model is summarised in section 3,

In section 4 the Volterra series representation of non-linear unity
feedback systems is derived and the Volterra kernels are related to

the component subsystems of the original process. An algorithm for

the identification of the component subsystems is presented in section 5
using the results derived in previous sections. Special cases are
discussed and simulated examples are included to illustrate the

validity of the algorithm.

2. SEPARABLE RANDOM PROCESSES

The statistical properties of a stationary random process after

transmission through an instantaneous non-linear device has been
. 14
studied by several authors. Bussgang™ ' has shown that for two
Gaussian signals the cross-correlation function taken after one of
them has undergone non-linear amplitude distortion is proportional to
the cross-correlation function taken before the distortion. This
15 . 16

result was extended by Luce and later generalised by Nuttall to
include all inputs which belong to the separable class of random
processes,

Let p(o,B;T) be the joint probability demsity function for the

two stationary random processes a(t) and B(t), and define
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g(8,7) = [ ap(a,B;1)da (1)
If the g-function separates as
g(8,1) = g, (B g, (1) ¥ B,7 (2)

then ®(t) is separable with respect to B(t)lG. Contrary to Nuttall's
original definition, equation (2) includes both the a.c. and d.c.
components of the signallB; this definition simplifies the analysis
in later sections.

Fortunately, the separable class of random processes is fairly
wide and includes the Gaussian process, sine wave process, phase or
frequency modulated process, squéred Gaussian process ete.

Previous research13 has shown that Nuttall's results can be

extended to include separability under linear transformation. Thus

|
\
|
|
|
\
if a(t) is separable with respect to B(t), then a(t) is also separable
with respect to the output of any linear filter with B(t) as input.
By analysing the system illustrated in Fig.l, where F[-] is the
transfer characteristic of an instantaneous non-linear element,
Nuttall16 proved that the separability of xl(t) with respect to

XZ(t) is a necessary and sufficient condition for the invariance

property

F ~ el
¢y1y2(r) = CF¢XlX2(T)4+ F and T (3)

to hold where CF is a constant. When'xl(t) = xz(t) = x(t) which is
a separable process equation (3) relates the input-output cross-
correlation function to the input autocorrelation function

F s
@lez(r) = chchX(r)*vL F and t (4)



where CFX 1s given by

CFX = ETETGT- IxFIxﬂp(X)dx (5)
XX

. 2 . ; y
Provided x (t) is separable with respect to xl(t) = xz(t) = x(t) this

3
result can be extende&'to include the case when the top lead in Fig.l

contains a square law device,

¢, (1) =¢C (t)V F and 7 (6)

rrxd 2 2
X X

where

2
_“”ihfﬁY Ix F[x]p(x)dx (7

& =
5 9
X X

FFx

3. ANALYSIS OF THE GENERAL MODEL

Before non-linear feedback systems can be considered it is

10,13

necessary to establish an identification procedure for the open-

loop system illustrated in Fig.2. This system will be referred to
as the general model and consists of a linear system,hl(t) in cascade

with a zero-memory non-linear element

y(E) = v () +y,x () 4oy () (8)

and another linear system h2(t).

From the Convolution theorem

zz(t) = fhz(e)y(t—e)de (9)

and



y(t) F{ fhl(Tl)uz(t—Tl)dfl]

fQ(t,Tl)uz(t-Tl)dTl (10)

where Q(t,Tl) is a function of t and T, only and is defined13 as

1

Q(t,Tl) = Ylh1(11)+Y2h1(Tl)Ihl(Tz)uz(t—Tz)de

+ o Ykhl(Tl)I i s fhl(Tz) T hl(Tk)uz(t_Tz)

§ uz(t*Tk)dTZ . v di (11)

Combining equations (9) and (10) the output of the general model

can be expressed as

22(t) = ffh2(G)Q(t—G,T)uz(t—G—Tl)dBdTl (12)
and the output cross—-correlation function can be defined
¢Z 5 (e) = ffhz(e) Q(t—e,Tl)u(t—S—Tl)ul(t—s)drlde (13)
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The validity of the invariance property for the non-linear element
in Fig.2 can be established using the results of the previous section.
Thus providing ul(t) is separable with respect to uz(t), then ul(t) is

separable with respect to x(t)13 and from eqn (3)

¢ (o) =¢C

2,3 FG¢u X(o)*f F and o | (14)

1

An expression for ¢z y(c) can be obtained from equation (10)
1

¢ (o) = fQ(t,Tl)uz(t—Tl)ul(t—o)dT1 (15)

and by definition



¢ulx(o) = fhl(rl)uz(t—Tl)ul(t—c)dr

1 (16)

Combining the results of equations (14), (15) and (16), ¢z , (e) can
12
be expressed as

¢2122(E) = ¢u122(e) = CFfohz(e)hl(Tl)¢U1u2(s—9~Tl)dBdT1 (17

For the special case when ul(t) = u(t), uz(t) = u(t)+b, 22'(t) zz(t)—EETET,
where u(t) is the practical realization of a zero mean Gaussian white
process with a spectral density of 1 watt/cycle.{f¢uu(t)dt = 1} and b

is a non-zero mean level, equation (17) reduces to

. 1 (e) = CFGIIhZ(G)hl(Tl)¢uu(s—8—T1)d9dT

9 1

CFGIhl(Tl)hz(e-Tl)dTl (18)

The constant CF can be evaluated by expanding ¢u y(U) in equation
1

(14) using the non-linear characteristic equation (8) and equating

G

terms to give

2 2
CFG = Y1+2y2bfhl(6)d8+3y3fhl (B)dB+3Y3b ffhl(rl)hl(Tz)dTldT2+...

(19)
Providing the linear subsystem hl(t) is stable, bounded inputs bounded
outputs, CFG is a finite constant and equation (18) is valid.

Following the derivation of the first order cross-correlation

function, an expression for the second order correlation function

o 2
¢ o (e) = Uy (t—g)zz(t) (20)
Uy 2,
can be obtained using the invariance property of equation (6), providing
ulz(t) is separable with respect to uz(t). For the special case when

ul(t) = u(t), uz(t) = u(t)+b where u(t) is the practical realization



: : ; . 13
of a zero mean white Gaussian process, it can readily be shown that

¢ , (e) reduces to

Uz,
2
— ' -
¢ 5 '(e) ZCFFG fhz(e)hl (e-08)ds (21)
u z
2
The constant C%FG can be evaluated by expanding equation (6) to give
' =
CFFG 'Y2+3Y2b fhl('r)d‘r+... (22)

Inspection of equations (18) and (21) shows that correlation

analysis effectively decouples the identification10’13

of the open-

loop general model into two distinct steps; identification of the
linear subsystems and characterization of the non-linear element.

A least squares algorithm which decomposes equations (18) and (21)

to provide unbiased estimates of the pulse transfer functions associated
with the individual linear subsystem impulse response has been derived

. . . . 10 ’

in a previous publication™ . Once the linear systems have been

identified estimates of the coefficients in the polynomial representation

of the non-linearity can be readily computed,

4, ANALYSIS OF NON-LINEAR FEEDBACK SYSTEMS

The identification procedure developed in the previous section
can be applied to unity feedback non-linear systems if the form of the
Volterra kernels can be related to the compohent subsystems of the

- 17,18
original process .

This can be achieved by applying the operator

55 19 20 . .
calculus developed by Brilliant and George . Consider the unity
feedback non-linear system illustrated in Fig.3 and the equivalent
open loop system G where A is a non-linear system with a known

. : ; ; 19
functional expansion. Using the notation of George

6 = A% (1-6) (23)



= B =

Defining K = I-G (24)
such that 51 = Eﬁ—l

Eﬁ = —§2 for £>2 (25)

equation (23) can be expressed as

E=A*K (26)

Since G, A and K are the sums of homogeneous functional operators,

equation (26) can be rewritten as

I G =C] A)* (] KD
S = e =
. |
- A o (K, .K ...K ) (27)
g=1p=1 ¢ B TH T,

where the summation EQ is taken over all the integers il,i ...in such

2
P ; 5 21
that 1 +i, +...1 = £ and 1<i <28,
172 n - q-

Equating operators of equal order

EQ A o (X K ...K. ) (28)

Sdu, ... [fdu
ZQ )
éh(ul,...un)Eil(tl—ul,tz—ul,...t,l—ul)

¢ B Comag E

A, E_un) (29)

Equation (28) can be simplified to give the Volterra kernels of the



equivalent open—loop system as

3
-1
G, = [yél] * {HZZ Xqén o (K, ... K. )} (30)

for £>2, and

]

1
—
H
%
=
—

I
-t
*
[ =
=

(31)

for & = 1.

From equations (24) and (30) the second and third order kernels

are evaluated as

1

(D]
]

[L+a] ~ * 4, * [1-6,] (32)

[p]
]

=1
6y = [TxaA] 7 {a; * [1-6,]-24, o ((I-G)).G,)} (33)

When the non-linear system A has the structure of the general

model as illustrated in Fig.4 where B(t) and C(t) are stable bounded-

inputs bounded outputs, then

1l

n
én yng_o (B for n < k (34)

=0 forn > k (35)

JP

and

s
- -1
§ = [Tveel = [} Tgr €0 &™) o

1

(Eil e Ein)] for g > 2 (36)

=,
) = [L#y,C*B] ~ * (y,C*B) (37)

20 ; . " ;
George has shown that the input-output relation is unique for

this class of feedback system.
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5. IDENTIFICATION OF THE LINEAR ELEMENTS

The Volterra series expansion of the general model under unity
feedback, equations (36) and (37), can be represented as shown in
Fig.5. Although the series is an infinite operator series the known
structural form of the first two kernels can be exploited to develop
an identification algorithm which identifies the system in terms of
the individual subsystems, C(t), B(t) and F['], and thus avoids the
truncation error associated with a finite Volterra series representation.
If the Volterra expansion in Fig.5 is truncated to 'n' terms the
output zz(t) can be expressed as

n
z,(t) = ) w.(t) (38)
2 a2y j

where wj(t) is the contribution of the j'th kernel to the output

wj(t) = deldez Vi dejGj(Tl,...Tk)uz(t—rl)...uz(t-Tk) (39)

Define the output cross-correlation function

(40)

it~
-e..
-
Q
-

B, » (o) = ul(t—o)zz(t) =

12 117

Inspection of equations (38), (39) and (40) shows that for a given

functional form of u2(t) the form of the term ¢u - (o) is fixed but
1]
its amplitude is proportional to the j'th power of uz(t). Thus for

a series of experiments with inputs aiuz(t) where oy # o, for all

i # & the output correlation function ¢z " is given by

1 a.
i

0 (41)

T &

n .
(o) = X a.1¢ (o) 5 Tordi = 1.2...0
L o = = -

1 1J

where z is the response of the feedback system to the input aiuz(t).
o .
T
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Equation (41) can be expressed as2

( A ( 1 ( n-1y ¢ h

) 2 (o) oy 0 ... 011 Oy e e 0y ¢uw (o)
u oy 1

0 o 1l a .
- | . 2 , & . : (42)

¢uz g a [|1 o a S ¢ (o)
N J \ n k n n J \ uw
a n

where the diagonal matrix on the rhs is non-singular providing ai # 0¥ 1,
and the second matrix is the transpose of the Vandermonde matrix23
which is non-singular for o, # o Thus for any value of o, equation
(42) has a unique solution for ¢uw.(0) for j = 1,2...n.

Consider the situation when ul(t) = u(t), uz(t) = ai(u(t)+b),
where u(t) is the practical realization of a zero mean white Gaussian

process and b is a non-zero mean level. From equations (12), (40)

and (42)

-~ (o) = U(t-d)wl(t)

JG, (D) {u(t-1)+blu(t-0) dt
% 1

Gl(c) (43)

Thus b (o) is directly proportional to Gl(o) the first order
11
Volterra kernel given by equation (37). Since the identification will

normally be performed with the aid of a digital computer equation (37)

can be expressed as

Ng (2 ) ¥,0( HB(Z )

Z{Gl(o)} = (44)

-1 -1 -1
Dgl(z ) 1+ch(z )B(z )

Using a least squares routine to estimate the parameters in
Ngl(znl) and Dgl(z_l) equation (44) can be rearranged to provide

estimates of the numerator and denominator
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o Ng, (2 )
YlC(Z )B(z 7) = = =7 . (45)
Dgl(z )-Ngl(z )

" Dgl(znl)
g = = — (46)
Dgl(z )-Ngl(z )

1+Y1C(z_1)B(z-

By filtering the output data v j =1,2...n, with the estimate
- - J
{1+Y1C(Z 1)B(z 1)} the kernels in equation (36) can be simplified

£
- n
B = nZZ ZQYH(Q o(g_))o(gil.giz . gin) for 2 > 2 (47)

and

- *
-glr Y1 ERE (48)

where the subscript r is used to signify the reduced kernels. The
second order cross-correlation functions ¢ 9 (6), j = 1,2...n, can
u Wi
then be evaluated using the procedure of equation (42), where w;j(t) =
(Ei~w_.4e),
er( ) er( )
Inspection of Fig.5 shows that the reduced second order Volterra

kernel has the structure of the general m,odello’13

where F{:} = Yz(-)
Defining El = E?El = E*Egjglj, and using the results for the general

model equation (21), the second order cross-correlation function of

the output of the second kernel is

2
= ' —
¢u2w' (0) = 2Cp . JC(O)H, " (0-8)de (49)
T2
' =
where CFFG Yoo

If equation (49) is evaluated in discrete time estimates of the

parameters in the pulse transfer function

2



- 13 =y
-1 =1
z{¢ (o)} = 2y,C(z HL(z ) (50)
2. ; 2
uw
2
can be obtained using least squares. An estimate of the pulse transfer

functions of the component linear subsystems UlB(z_l) and UZC(z_l) can
be obtained by decomposing the results of equations (45) and (50) using
a multistage least squares algorithm derived previouslylo, where p. and

1

pz are constants.

Thus by computing the first order correlation function for the
fifst Volterra kernel and the second order correlation function for
the second Volterra kernel and exploiting the structural features of
these estimates the individual linear subsystems in Fig.4 can be
estimated to within constant scale factors. Notice that if the output
of the feedback system Fig.4 is corrupted by an additive noise process
u(t), providing this is statistically independent of u(t), then
E[u(t—o)n(t)] = E[uz(t—c)n(t)J = 0% o and the results of equations

(41), (43), (49) are unaffected and the estimates remain unbiased.

6. IDENTIFICATION OF THE NON-LINEAR ELEMENT

Once the linear subsystems have been identified estimates of the
coefficients Yj = (uljuz)ulyj j =1,2...k associated with the polynomial
representation of the non-linear element, equation (8), can be
computed sequentially.

From equation (45) HiMy =Yg and hence yl' = 1.0. The second

order Volterra kernel can be synthesised using the estimates of the

linear subsystems
s Cao=1 o 2:2 &2
Gy = [T#v,C*B] (00, "B . [(1-6))7] (51)

where G, = 72' G



- ff: o

Yo~ Yo By My

and ) () = v," G,°[u,(D)] (52)

By definition

¢ (o)

- Y2' QQSLuZ(t) u(t-0) ]
2

I}

Y2l ¢ S(c) (53)

uz§2

where ¢uw (o) has been estimated using equation (42). Introducing an
2
estimation error e(o) and considering N points of the sampled cross-

correlation functions in equation (53)

B, () = 1p" By () + E (54)

and a least squares estimate of Yz' can be computed as

% T -1 T
Y2 - {E- s ;] s} .3 s Quw (33
uz§2 uz§2 uz§2 2

Following the same procedure for the third Volterra kernel, this

can be synthesised as

S S S
2y =Sy * Ly £56)
where
s T T 323 2.3
Gyp = [I+v;C*B] " (@0 "B o[(1-6)7] (57)
6.5 = [1+y,C*B] L * [-2(u,0)o0(u,2BM)o(y, "G, % (I-C.))] (58)
Z3p T LTS 22Oy 2 2 5 =
G.. =v." G.° (59)
231 7 Y3 231
1
and Y5 = Y3y H
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Combining equations (56), (57) and (58) the output of the third

Volterra kernel can be expressed as

A = ' S S .

w3(t) Yq §31[u2(t)] H G32[u2(t)] (60)
By definition

s
u uzG31 e

¢ WB(U) = Y3’¢ (o) + ¢ (@ (61)
32

where ¢uw (0) is known from equation (42) and hence the least squares
3
estimate of y3' is given by

. T ] T - _
usalgy  uzba, ey uzbgy

1

k

manner and the identification is complete.

The coefficients Yé""Y can be readily evaluated in a similar

7. SPECIAL CASES

7.1 The Unity Feedback Wiener Model

; 9 . . ; ;
The Wiener model” consists of a linear system 1n cascade with a
continuous non-linear element. When the Wiener model is placed in

a unity feedback loop, €C =1 in equations (36) and (37) which reduce

to
W =1 : n
G = E*HE] % [Z ZQYH(E do(K, ...K, )] for £>2 (63)
n=2 1 . ™n
-1
and 6" = [1+vB]"" * yB (64)

Utilising the results of equations (43) and (64)

b, (@ = 6,"(@) = [ty B] 7" %y p (65)
1



o

from which the linear dynamics Y1§_can be estimated. The coefficients
in the polynomial representation of the non-linear element can be

readily evaluated by substituting C =1 in the results of Section 6.

7.2 The Unity Feedback Hammerstein Model

; 8 . ;
The Hammerstein model sl consists of a zero-memory non-linear
element followed by linear dynamics. When the Hammerstein model is
placed under unity feedback, setting B =1 in equations (36) and (37),

the kernels in the Volterra expansion reduce to

%
H =5
G =[] " * [] JgCo ® ...K )] for 222 (66)
n=2 1 n
g 1™l sy c 67)
and -El = [IﬁYl_J Yl— ( );
From equations (43) and (67)
H H =1
b, (9 = G(0) = [L+y,C] "%y C (68)

1

hence the linear dynamics chl can be identified and the results of

Section 6 can be employed to estimate the non-linear characteristic.

8. SIMULATION RESULTS

The identification procedure outlined above was used to identify
a general, Wiener and a Hammerstein model under unity feedback. All
the models were simulated on an ICL 1906S digital computer and in each
case 10,000 data points were generated by recording the response to a
Gaussian input sequence.

A general model consisting of a linear system

-1
B(z 1) = LZ_Z_M_T (69)

1-0.88z
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in cascade with a non-linear element
2 3
y(t) = x(t) + 0.4x"(t) + 0.2x (t) (70)

and another linear system

=]
C(z 1) _ 0.3z — (71)
1-0.7z
in a unity negative feedback loop was simulated. The system response

was recorded for eight amplitude levels of input, uiuz(t), i=1,2...8
where uz(t) is a white Gaussian process N{0.4,0.8} and aj = aj_1—0.04,
a; = 1.0. A comparison of the estimated impulse responses and the
theoretical weighting sequences of the linear subsystems are illustrated

in Fig.6 and the estimated parameters are summarised in Table 1.

A Wiener model under unity feedback consisting of a linear system

-1
B(z_l) _ 0.1z (72)

1-1.622 1+0. 752

in cascade with the non-linear element
2 3
y(t) = x(t) + 0.7x (t) + 0.8x (t) (73)

was simulated by recording the system response to a six level input,
aiuz(t), i=1,2...6 where o and uz(t) are defined as above. The
theoretical weighting sequence and the estimated impulse response of
the linear subsystem are compared in Fig.7.

A Hammerstein model consisting of the’non-linear element
2 3
y(t) = x(t) + 0.4x% (£) + 0.2x (1) (74)

in cascade with the linear subsystem

=
Bz = D — (75)
=162 T, b7




under unity negative feedback was simulated for a six level input
aiuz(t) where uz(t) is a white Gaussian process N{0.2,0.4}. A comparison
of the estimated and theoretical linear subsystem impulse responses are
illustrated in Fig.8.

Inspection of the estimated system parameters, summarised in
Table 1 for all the models, clearly demonstrates the effectiveness of .

the algorithm.

9. CONCLUSIONS

An algorithm for the identification of non-linear unity negative
feedback systems in terms of the individual component subsystems has
been presented. When the input is separable and comprises the
summation of a multilevel white Gaussian process and a non—zero mean
the identification of the linear and non-linear elements can be
decoupled using correlation analysis. Estimates of the linear sub-
system pulse transfer functions can then be obtained using a multistage
least squares algorithm and the coefficients in the polynomial
representation of the non-linear element can be readily computed.

Although the algorithm utilizes the structural properties of the
first two kernels in the Volterra series expansion for this class of
system, characterization in terms of these kernels is avoided and
truncation errors are not incurred. Identification in terms of the
individual elements of the original systeﬁ.pe%mits the componentsto
be synthesised in a manner which preserves the system structure and
provides valuable information for control. This approach overcomes
many of the disadvantages associated with black-box identification

techniques and provides a very concise description of the process.
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