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ABSTRACT

Algorithms for the identification of open and closed-loop
nonlinear systems composed of linear dynamic and static nonlinear
elements are developed. It is shown that correlation analysis
based upon compound pseudorandom inputs provides estimates of
the individual component subsystems. The selection of pseudo-

random inputs is discussed and simulated examples are included.



1, INTRODUCTION

Although a number of authors have considered the analysis and
synthesis of simple feedback connections of linear dynamic and

2 . e .
Ls ’3’4, the identification of such systems

static nonlinear elements
in terms of the component subsysteﬁs appears to have been largely
neglected., Characterization using the functional Volterra series
provides an elegant mathematical representation, but even if the
kernels can be identified, the physical interpretation of the final
model in terms of the elements of the original system is usually
difficult to achieve. Since identification is often motivated by
the need to gain further information about a process and to design
an efficient regulator, identification should wherever possible
preserve the structure of the system under investigation. For
systems which are composed of linear dynmamic and static nonlinear
elements this can often be achieved by comnsidering extensions of
established linear identification techniques.

The large class of systems which can be represented by
combinations of linear dynamic and static nonlinear elements have
been studied by numerous authors. A transform representation and
rules for the algebraic manipulation of systems in this class have
been developed by Georges. A structure theory for cascade systems
was developed by Smith and Rugh6, and Shanmugan and Lal?, and
Smet58 considered the analysis and synthesis of nonlinear systems
using canonic structures. Nonlinear feedback systems have been
studied by Barrett and Coalesl, and Zam854 and Narayanan9 analysed
the distortion in feedback amplifiers, Identification algori£hms

10,11,12,13,14,15,L6,17, feedforwardls,

have been developed for cascade
. .19 ’ p ; ;
multiplicative and unity feedback connections of linear dynamic

. . " 20
and static nonlinear elements



In the present study nonlinear feedback systems are analysed
and an identification algorithm based upon pseudorandom excitation,
which provides estimates of the individual component subsystems
from measurements of the input and noise corrupted output is developed.
Initially, the open-loop general model consisting of a linear system
in cascade with a nonlinear element followed by a second linear

; . 1
system 1s analysed. Previous results o1

based upon the theory
of separable processes have shown that this system can be identified
in terms of the component subsystems when the input has the

properties of a white Gaussian process. As an alternative to

this procedure an algorithm which is based upon a compound pseudo-

that a binary pseudorandom sequence is a separable process, it is

; ; ; 16
not separable under linear transformation and hence previous results
cannot be applied for these inputs. However by simultaneously
injecting the sum of two pseudorandom sequences the components of
the general model can be identified using the algorithm presented

'™ normally associated

in section 2. The problem of anomaliesz

with the multidimensional autocorrelation functions of such sequences

when applied to the identification of nonlinear systems are avoided.
By considering the structural form of the first two kernels

in the Volterra series expansion of a general class of nonlinear

feedback systems the results for the open-loop model are generalised

to the feedback case. Simulated examples are included to demonstrate

|
!
random input sequence is derived. Although it can readily be shown
s17
the validity of the algorithms.



2. THE OPEN~LOOP GENERAL MODEL

Before nonlinear feedback systems can be considered it is
necessary to develop an identification algorithm for the open-loop
general model illustrated in Fig.l. The system consists of a
linear system hl(t) in cascade with a zero memory nonlinear element
followed by a second linear system hz(t).  For generality it is
assumed that the measured output contains an unknown additive noise
component v(t) and that the nonlinear element can, in theory, be

represented by a polynomial of the form
2 k
y(t) = vja(t)+v,q (E)+...+y, 9 (6) (D

2 : 1 .
18 and Wiener 4 models are special cases

Note that the Hammersteinl
of the general model,

The identification problem can now be defined as identification
of the individual component hl(t), hz(t) and a suitable representation

of the static nonlinear element F[~] from measurements of the input

u(t) and noise corrupted output z(t).

2.1 Identification using pseudorandom sequences ;

From Fig.1l the measured system output z(t) can be represented

by the functional serie516 ,

2(t) = v, [f hy (r )b, (1 )u(t-r

=00

_Tz)dT dt

1 L 2

* 1y {ij hI(Tl)hl(Tz)hz(T3)u(t"Tl“TB)U(t“Tz”T3)dT1d12dT3
+

* T f - f hl(Tl)-..hl(T

=00

Yh, (t, . Ju(t—1_ -1

k™ 2" k+l 1 k+1)

u(t-t, - Ydt. ...dT

K k1’ 4T ka1t VAE)

= wl(t)+w2(t)+...-fwk(t)""f(t) (2)



where the Volterra kernels gm(Tl...Tm) have the form

h. {t -o)do (3)
1'p

=8

(s ) = Vg [ By @)

p=1

and wi(t) represents the output of the isolated i'th order kernel.
When the input u(t) is a compound input defined as

u(t) = xl(t)+x2(t) (4)

where xl(t) and xz(t) are pseudorandom sequences, the output z(t) can

be expressed as

k w
z(t) = } {Yij wae | b (t) ... hl(Ti)hz(B){
T=1 —co
i
il (xl{tur.—e)+x (t=t.=6))dt.}d6}+u(t) (5)
=1 J 2 ] .

The first order correlation function for the compound input can then

be defined as

¢x 'z,(G) = (Z(t)—Z(t))(xl(t"U)Hxl(t—U)) = z‘(t)xl‘(t-O)

1
k ) i

= ; tyy Joouf hyGe)oih (e )R, (0) T (x (t=1.=0)

1=1 j=1

i _

+x2(t-Tj“8))de"jifxl(t~Tj—8)+x2(t—Tj—B))de}(Xl(t—o)-xl(t—q))de
*+(xy (£-0)=x, (£-0)) (v(£) v (L))

j
= ¢ V. I(O)+¢ ] '(0) 6

i=1 i %1 ey ©

where the superscript ' is used throughout to indicate a zero mean process.



If ¢x .Z'(G) is evaluated directly as defined above the terms

4 21,22,31

y (o) give rise to anomalies associated with multi-

k
Lo
i=2 i %

dimensional autocorrelations of the pseudorandom sequences Xl(t) and
xz(t). This problem can be overcome by isolating ¢X v, the first
W
: L L
order correlation function of the output of the first order kernel.

Consider a series of experiments with multilevel inputs o, u(t)
i

where oy # u2,¥'i # &, then the output correlation function ¢ , (@)
x. 'z

1 ~a,
can be expressed as 1
oo
(:DX 1ot (0) = Z Oli ¢X 'W.'(U) , 1= 1:2:::m (7)
1 a, =1 173

assuming that the input‘signal xl(t) and noise process v(t) are

statistically independent, xl'(t—ﬁ)v'(t) = 0¥ o, and where z, is
i

the response of the system to the input aiu(t). In matrix formulation
( ) ( cwmw ¢ @1 a1 )
¢x,'z' () oy 0 0 \[1 oy oy ¢X - , (o)
L oy 1 1
0 o, . 0 1 a,
o) (o) 0 o 1 a a n-l ) (o)
x, 'z ! n n n %, 'w_ !
L "o 1 'n
n
(8)

The first matrix on the rhs of eqn (8) is clearly nonsingular for all
o, # 0 and the second is the transpose of the Vandermonde matrix
which is nonsingular for o # o Thus for every value of o, eqn (8)
has a unique solution for ¢X1'W.'(O)’ T 2 L2 tis
Isolating ¢xl,wl,(0) usingjthe above procedure gives the result
: B ~ g
¢X1.W1,(o> o L{ hy (1)h,(8) (b (1 +6-0)x, ")dr, do

11
(9)



If xl(t) and xz(t) are independent zero mean pseudorandom sequences,

® (\) = 0% A, x. = x. =0, with autocorrelation functions
X1X2 1 2
¢X_X.(A) = Biﬂi(l) > r =12
i71
1/At, A=0
where §.(x) = < (10)
> 0 A #0

Ati is the clock interval and féi(k)dh l.O,equation (9) reduces to

oo

b (@ = By, [ hi(o-8)h,(6)de (11)
11 —ca
If the system illustrated in Fig.l is to be identified in terms
of the component subsystems hl(t), hz(t) and F[v] a second relationship
similar to egn (11) must be derived16’17 such that hl(t) and hz(t)

can be isolated, This can be achieved by defining the second order

correlation function

(o] g 121(0)

%, (Z(t)~2(t))(xl(t—o)—xl(t~6})(xz(t—c)-xz(t-c))

1

k o co
izl Y; {w... [m hl(Tl)...hl(Ti)hz(e)

e
N = e

(Xl(t“Tj“6)+X2(t—Tj“e))de

|
= s

(xl(t—Tj—8)+x2(t—Tj—8))de}

(xl(twﬁ)wngt—c))(xz(t—a)—xz(t—v))de

+(xl(t"0)—xl(t~ﬁ))(xz(t-c)"xz(twc)(v(t)—v(t))

j’d
=) b v e a (@) 0y, (0) (12)
=1 1 X2 Wi Xl X2 v



Providing xl(t), xz(t) and v(t) are mutually independent

¢X - ,v,(o) = 0 V-0 and the estimate of eqn (12) will be unbiased.

172
However the presence of undesirable spikes in the high even order

(>2) autocorrelation functions2l®22»>31

of xl(t) and xz(t) precludes
the evaluation of eqn (12) directly and the procedure of eqn (8)

must be employed to isolate the second order correlation function

of the output of the second order kernel

= o

[0} 1X21W2|(U) = "‘(2 EO{J‘ hl(Tl)hl(TZ)hz(e){

(x, (t=1.-8)4+x_(t-1.-8))dr.
X 1 ] 2 ] ]

i=1

2 _
- jfl (xl(t—Tj*8)+x2(t—Tj—B))de}

(Xl(t"G)_xl (t-0) (XZ (t—o')-'x2 (t-0))de (13)

1f xl(t) and xz(t) are independent pseudorandom sequences eqn (13)

can be expressed as

¢x1.X2,W2,(c) = Yszfhz(T1)h1(Tz)hz<8){¢x1xl(T1+e'6)

¢ (1,+0-0) +¢_ (1,+6-a) ¢ (1.+6-0)
X2X2 2 lel 2 x2x2 1

2,700, , (,40-0) 4 (x 46-0)

1 272 202

- 2
—XZ (¢x X (TZ

= P 9
= *9“O)+¢X1XI(T1+6—U))+2X1 X, }dTIdT de

2

which reduces to

1, 1(0) =28 ByY, [ hlz(o—e)hz(e)de (14)

¢ 1

X, 'x

1 %2 %2
when Xl(t) and xz(t) are zero mean processes with the properties

defined in eqn (10).



The results of eqn's (11) and (14) can be readily decomposed
using a least squares algorifhm16 to provide estimates of the

individual linear subsystems ulhl(t) and uth(t) where ul and u2 are

constants. Thus computation of the first and second order

correlation functions ¢_ , ,(o) and ¢ , ,
X 'w x.'x, 'w
171 172 72
provides estimates of the linear subsystems which apart from a

1 (o) respectively

constant scale factor are quite independent of the non-linear
characteristic. The nonlinear element can then be identified by
minimising the sum of squaresof the error

N

J= ) (2(i)-2(i))? (15)
j=1
S P & i
where z(1) = My ) hz(j)F[q(i—j)J (16)
j=1
2 L8
a) =} hy(uli-j) (17)
j=1

If a polynomial representation is required the coefficients can be

estimated using a simple least SquareS.algorithm16,17'

Alternatively,
an algorithm by Peckham23 can be employed to fit a series of straight
line segmentsz4 or any other suitable function if this is appropriate.
Providing Xl(t) and X2(t) are pseudorandom sequences with
properties as defined in eqn (10), the results of eqn’'s (11) and (14)
are exact and the errors normally associated with the identification
of this class of systems using pseudorandom inputs and correlation
analysis are avoided. The only problem remaining is the selection
of the pseudorandom inputs to satisfy eqn (10).

Independent binary pseudorandom sequences with the same bit

interval can be generated either by multiplying by the rows of a



Hadamard matrix or correlating over the product of sequence lengths
but independent ternary sequences can only be generalised using the
latter approachzs. Since the results of eqn's (11) and (14) are
dependent upon xl(t) and XZ(t) having zero mean values an obvious

choice of input would be a compound ternary sequence with the propertie526

x.(t) =0
1
2(N+1)ai2
T )\ = O mod Nl
1
—2(N+1)ai2
bpx, M =0 TEN A = Nyl med By
L I 1
0 ¥ other A
2 1
2(Ni+1)ai ot |
By = e ; i=12 ” (18) ‘
‘ o ‘

where N = 3n?1 is the sequence length, a the amplitude and n the order.
Alternatively, a compound input composed of the sum of an

inverse repeat or antisymmetric pseudoréndom input xl(t) and a pseudo-

random binary sequence xz(t) could be employed. The inverse repeat

3

Sequen082 can be generated by multiplying the elements of the
pseudorandom binary sequence xz(t) alternatively by —1 and +1 and has

the properties

Xl(t) =0
2
a: A = 0 mod 2N.
1 1
2
-ai A= Nimod ZNi
¢x X ) = 2
i1 —-a. /N, A= 2,4,6... # O mod 2N.
10 i
a.z/N A =1,3,5... # N, mod 2N,
i i i
2
g. = a, At. (19)



_'10_

Although correlation over the period of the inverse repeat sequence
ensures that this is independent of the prbs the ripple in the

auto correlation function, egqn (19), will introduce a bias into

the results which will only become small as Ni becomes large.

It would however be far more convenient if pseudorandom binary
input526 could be employed in this applicationm. The only problem
associated with.this choice 1is the non-zero mean level of these
sequences, and an analysis of the errors incurred is necessary.

When the input u(t) is a compound pseudo random maximal
length binary sequence u(t) = xl(t)+x2(t), where xl(t) and X2(t)

are independent with properties

x,(t) = a./N:
i i'i

¢X.X. (A) -

2 (20)
i1 -a. [N, A # 0 mod N,
i i

a.z(N.+l)At.
i i i

i N.
i

, (o) defined in eqn (9) reduces to
.. b
1 1

¢X1.W1.<o) = By¥y { h, (6-8)h, (8)do

312
~y; —5 M *#D [[h, (z )b, (6)dT, do (21)
1
Providing the systems hl(t) and hz(t) are stable, bounded-inputs

bounded outputs, the last term on the rhs of eqn (21) is a constant

bias which can be readily removed to yield



- 11 -

¢x1-w1.(c) =By f hl(o-e)hz(e)de (22)

Evaluation of ¢ - y(0), defined in eqn (14), when the input

X
172 72
consists of the sum of two independent pseudo random maximal length

binary sequences yields

_ 2
¢X1.X2,w2,(a) = 28182y2fh1 (o—e)hz(e)d8+e(q) {24}

where

_ - = =2 =2 B
e(0) = -2v,(a x,B,+a,x B, +x "B, +x, 51>jjhl(T1)h1(c 8)h, (8)dt d6

+2y2£1§2(alg2+§1a2+§231+§l§2)fjjhl(Tl)hl(rz)hz(e)drldede
(24)
Providing the systems hl(t) and h2(t) are stable bounded-inputs
bounded-outputs the last term on the rhs of eqn (24) is a constant
dc bias which can readily be removed. The first term on the rhs of

eqn (24) represent a time varying bias in the estimate of eqn (23)

which tends to zero as Nl and N2 become large. Thus if the constant
bias is removed and N1 and N2 are 1argé eqn (23) reduces to
. 2
b 1yt 1(0) = 28,8y, [h " (0-8)h, () de (24)
1272
3 NONLINEAR FEEDBACK SYSTEMS

Although previous resuitszo have shown that the general model
under unity feedback can be identified by applying the theory of
separable processes based upon white Gaussian excitation, these results
cannot be applied for pseudorandom inputs. However, the algo;ithm
derived in the previous section for the open-loop general model can

be applied to a general class of nonlinear feedback systems composed



B . e
...12...
of linear dynamic and static nonlinear elements in both the forward
and feedback paths if the information in the first two terms of
the Volterra series expansion can be decomposed to provide estimates
of the component subsystems. The class of feedback systems which
can be identified using this appréach can be defined by -analysing
the Volterra series éxpansion for such systems.
3.1 Volterra Series Expansions for a Class of Nonlinear Feedback
Systems
Consider the gene: ..l nonlinear feedback system and the equivalent
open-loop system G illustrated in Fig.2, where A and B are nonlinear
systems with known functional expansions. Applying the operator
calculus developed by Btilliant29 and George5 gives
G=A*(L-B*0)
= A %K (25)
where I is the identity operator. Since K, B and G are the sums :
of homogeneous functional operators, K, g_defined in eqn (25) can ;
be expressed as
o o ®
Z L I- (.Z Ei) * (_Z Ej)
=1 i=1 j=1
=1I- § E Y. B 0o(G, .G G. ) (26)
g=1 n=1 ¢ T Th n :
|
LG = (I Ap % (] KD
g=1 i=1 j=1
o !
_221 nzl lfa © & El2 Eln) Rk

where the summation ZQ is taken over all the integers % ,i2...in such

that i,+i.+:..1 =g and 1 < 1 < g.
172 n - q
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Equating operators of equal order

and

-B. % G L =1
—=1 (28)
)
- B o (G, .G G, ) & 22
n£1 zQ—n =1 1 " =
-1
[[[wa, *5] %a, o=
3
-1
[1+A. * B ] " % {-A. o [ J J B o (G, ...G, )]
N 1 | 1 el B’ 1 “
)
+ A o (K. ...K. )} & >2 (29)
n=2 ZQ n s _1n -

Combining eqn's (28) and {(29), the first two Volterra kernels of the

equivalent

(]
1

[®]
It

When

open loop system, Fig.2, can be expressed as

[1+a, * B

* A (30)

* {-A % By o (6, ), o ((I-B*G) 7))
(31)

A and B both have the structure of a general model as

illustrated in Fig.3, where C(t), H(t), P(t) and V(t) are stable,

bounded-input bounded-output, linear subsystems then

where =

eqn’'s (30)

L
A yggo(g) (32)

B
-

il

Ay Vo (gg) (33)

0¥2>k and Al = O¥e>i. Substituting these results in

and (31) vields
[Ty h mrexwse] ~hey v (34)
- -1
XOAYR K = *(Cx
[ L4y A HACHYRP] “H{~y H*CH) ¥

0 (B%)0(G, ) +v,H0 C)o((T-2,y*B) ")) (35)



s i

The complexity of the Volterra kernels associated with the
nonlinear feedback system illustrated in Fig.3 often dictates that
such systems must be characterized by a finite Volterra series.

This approach inevitably introduces a truncation error and destroys
the structure of the process under-investigation. However, reduced
forms of the system illustrated in Fig.3 can often be identified in
terms of the component subsystems in a manner which preserves the
system structure. Classes of nonlinear feedback systems which can
be identified using this approach are considered in the following

sections.

3.2 Identification of Nonlinear Feedback Systems

3.2.1 Unity feedback systems

Consider the unity feedback general model illustrated in Fig.4.
Notice that in general the system output will be corrupted by noise
and hence the feedback signal cannot be computed and the problem
cannot be reduced to one of open-loop identification.

From eqn's (34) and (35) the first two Volterra kernels for

this system can be derived by setting

i L =1
B =
—A 0 Lo 2
to yield
=]
Gy = [I#y HAC] %y H*C (36)
T =1 2 2
Gy = [LryH*C] " [y, Ho (€M) o ((1-6) )] (37)

The outputs wl(t) and wz(t) of the Volterra kernelsg1 and 92

can be isolated using the results of eqn (8). Inspection of eqn's

(9) and (11) shows that if the input u(t) consists of the sum of
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two independent zero mean pseudorandom sequences with the properties
defined in eqn (10), then

¢X1.W1.(U) = 8,6, (0) (38)

where Bl is a known constant, defined in eqn (10). Taking the
Z-transform of eqn (38), a pulse transfer function model can be

fitted to 1/61¢X1,W1,(U) to yield

; s ) ylﬂcz“l)c(z_l)
20 2= 8, @} = g = - — (39)
1 5 D, (z7) l#yH(z )C(z )

and estimates of the numerator and denominator can be obtained from

N (z )
<1 -1 &1
YlH(z ez “y = » . — (40)
D (z H)-N_(z 7)
1 1
5 (z_l)
-1, ., -1 &1
1+Y1H(z JC(z ™) = = - — =7 (41)
D (z =N (z )
g1 1

The output data Zu (t), j = 1,2...n can now be filtered using
i, -
the estimate {1+Y1H(z 1)C(z 1)L such that the kernel relating the

filtered outputs v (t), v (t) to the input reduce to

1 2
- M\, *
G, = v H*C | (42)
2 2
G, = [v,Ho(CT)o((1-6,))] (43)
=2 2 — =1
The second order correlation function ¢X by b ,{0) can then be
172 i)

evaluated using the procedure of eqn's (8), (12j and (14) to yield
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2
d_ v .{o) = 28.8,Y, | H(B)T “(c-0)de (44)

where T, =C * [I-G,].

Taking the Z-transform of eqn (44) a pulse transfer function

model can be fitted to ¢X "% ' y(0) to yield

S r2

i A -1
Z{¢x gty (00} = 28182Y2H(z YTz ) (45)
1 2 r2

The results of eqn's (40) and (45) can be decomposed using a
multistage least squares algorithm16 to provide estimates of the
pulse transfer functiOﬂs ulc(z—lj, qu(z_l) of the individual linear
subsystems in Fig.4 where My and W, are constants. A polynomiallz,
a series of straight line segrnents24 or any other suitable function

can then be fitted to the nonlinear element F[-] by minimising the

sum of squares of the error

v M v B
J= 7 @{i)=G) (46)
i=1
-~ m ~ -
where z(j) = My Z {H(i)F[q(j_i)J} (47)
i=1
using an algorithm by PeckhamZB. When there is no instantaneous

transmission through the forward path and the input commences at
time t = 0, q(j-i) can be computed directly, otherwise the closed-
loop response must be computed iteratively from the open—loop
; ; ; . 4
input-output relation using an algorithm by Zames

Because the unity feedback Wiener and Hammerstein models are
subclasses of the unity feedback general model the identification

procedure is applicable to systems with these structures.
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3.2.2 Precascaded feedback systems

Consider the precascaded feedback system illustrated in Fig.5.
From eqn’'s (34) and (35) the first two kernels for this system can
be derived as

G, = V.*P = {[;fxlgl '1*31}*3 (48)

9}
Il

<l

&
1l

(v, 0 2, (@, b (49)

Following the procedure of the previous section, it can readily
be shown that computation of the first order correlation funection

e Wi 1 (o) for the system illustrated in Fig.5, yields
1 1

by 1y 1 (@) = B iy v, (o-8)P(6)ds (50)
1

X
i
Similarly, computation of the second order correlation function yields

X

~ 2
. z.wz.(o) = 28,8,%, [ G, (0-8)v, (0)do (51)

Pulse transfer function models can be fitted to the Z-transforms of

eqn's (50) and (51) and estimates of u_V (zml) and ulP(z_l) can be

21
; i : ' ; 1
obtained using a multistage least squares algorithm 6, where ] and
M, are cons tants. The identified system must be synthesised as

illustrated in Fig.6 because a unique estimate of Al(z_l) can only

be obtained when ll = 0. A suitable function can be fitted to the

nonlinear element by minimising the sum of squaresl6’24, eqn (46),
and the identification is complete.

Providing any noise v(t) corrupting the system output is
independent of the input, estimates of ¢X Ko () and ¢, ,. ,(0)

i 1 "2 "2
for the feedback systems will be unbiased. The selection of

pseudorandom inputs and the error analysis for binary sequences

is exactly the same as the open—-loop case.
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b4, SIMULATION RESULTS

The identification algorithms presented above have been used
to identify both open and closed loop nonlinear systems. A compound
input u(t) = xl(t)+X2(t) was used in all the simulations where xl(t)
and xz(t) were defined as eitherr
(1) pseudorandom binéry sequences of order seven and six
respectively. The two sequences are independent when
correlation is performed over N1N2 = (27—1)(26—1) = 8001
points.
(ii) ternary sequences of order four and five respectively.
The sequences are independent when the correlation is

performed over (34—1)(35—1)/2 = 9680 points.

Initially an open-loop general model consisting of a linear system

~1
e L . “.9-_2_5___1 (52)
L = Q.77

in cascade with the nonlinear element
2 3
F[+] = 1.0(*) + 0.8(*)° + 0.6(+) (53)
followed by a second linear system

-1
Bz Ly = 0,82 (54)

2 1-1.482 140.5482 2

was simulated using both the compound pseudorandom binary and ternary
sequences. The system response was recorded for three amplitude

levels of input aiu(t), i=1,2,3 where o. =

; ai_1~0.1, o, = 1.0.

1
A comparison of the estimated and theoretical weighting sequences

hl(t) and h2(t) are illustrated in Fig.7 (a) and (b) respectively

for prbs inputs. The bias due to the nonzero mean level of the



= F =

compound prbs input is extremely small and has little effect upon
the accuracy of the estimated parameters summarised in Table 1.
A unity feedback system with a forward path consisting of a

linear system

-1
gl = JOeBR (55)

1-0.882"1

in cascade with the non-linear element

Fle] = (=) + 0.4()% + 0.2(+)° , (56)

followed by a second linear system
-1 0.3z}

Hy(z ) = -~ (57)
1-0. /2

2

was simulated by recording the response to four input levels

aiu(t), a, = 1.0, a, = -0.96, a, = 0.92, o

2 3 = —-0.88, of the compound

1 4

ternary sequence defined in (ii) above. A comparison of the
estimated and theoretical weighting sequences of the linear sub-
systems are illustrated in Fig.8 and the estimated parameters are
sumnarised in Table 2.

The precascaded feedback system, illustrated in Fig.5, consisting

of a linear system

=
ol = SR (58)

1-0.8z "
in cascade with a closed-loop system composed of a linear subsystem

-1
A (z l\ _ 0.1z (59)

1L 56 ali, T

in the forward path and a nonlinear element



_20_

-] = 1.0(:)% + 0.5()° (60)

E

in the feedback path, was simulated for an eight level compound
ternary input. The estimated parameters are summarised in Table 3
and a comparison of the estimated and theoretical weighting sequences

for the linear subsystems is illustrated in Fig.9.

Dy CONCLUSTIONS

Identification algorithms for open and closed-loop nonlinear
systems based upon pseudorandom input sequenées have been derived.
Anomalies associated with multidimensional autocorrelation functions
of pseudorandom sequences which normally introduce significant
errors in the identification of nonlinear systems using correlation
analysis are avoided by defining a compound input. Providing the
pseudorandom sequences which define the compound input are
independent, zero mean and have autocorrelation functions of
the form ¢x.x.(l) = %ﬁgl), i = 1,2, unbiased estimates of the

ii

component subsystems can be obtained by computing the first and
second order correlation functionms. .Although the non-zero mean
level of pseudorandom binary sequences introduces a small bias in
the results, this tends to zero as the sequence lengths are increased
and will be negligible in most applications as indicated by the
simulation results. Error free estimates can be obtained by using
a compound ternary input or other combinations of pseudorandom
sequences with the properties defined above.

Although the output of the first two kernels in the Volterra
series expansion must be isolated by a multilevel pseudorandom

input, characterisation using a finite Volterra series is avoided
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and truncation errors are not incurred. Isolation of kermel
outputs is often necessary in nonlinear system identification
although several authors avoid this problem by considering the
identification of systems which are defined by a single kernel.
This constraint can be avoided by_using the technique of Lee and
Schetzenao, but this is based upon white Gaussian inputs and
involves the computation of multidimensional correlation functions
which necessitate excessive computations for even simple systems.
Although the present algorithms are based upon the calculation of
first and second order correlation functions, both these functions
are unit dimensional and estimates of the component subsystems

for a class of open and-closed—loop nonlinear systems can be

obtained using simple extensions of established linear techniques.
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FIGURE CAPTIONS

FIG 1. The open—loop general model

FIG 2. Nonlinear feedback system

FIG 3. The feedback general model

FIG 4. The unity feedback general model

FIG 5. Precascaded nonlinear feedback system

FIG 6. Identified model of the precascaded feedback system

0 0 0o Theoretical response hl(k)
— — Estimated values il(k)
x X ¥ Theoretical response hz(k)
— - —Estimated values ﬁz(k)
FIG 7. A comparison of impulse responses for the open-loop

general model

o o o Theoretical responbe hl(k)
— — Estimated values ﬂl(k)
x x x Theoretical response hz(k) -
— - —FEstimated values ﬁz(k)
FIG 8. A comparison of impulse responses for the unity feedback

general model

o o o Theoretical response P(k)
-— — Estimated values %(k)
X X x Theoretical response Al(k)
— - —Fstimated values Al(k)
FIG 9. A comparison of impulse responses for the precascaded

nonlinear feedback system
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Fig. 3.

The Feedback General Model

v(t)
s +
S S— hl(t) | F[o] h2(t) ——
u(t) q(t) y(t) z(t)
Fig. 1. The Open-loop Genéral Model
u(t) + e(t) z(t)
A £emn
= u(t) z(t)
r——
B
Fig. 2. Nonlinear Feedback System
v(t) :
|
i
u(t) + e(t) F[O] = z(t)
Qg) ¢ - E ()j i |
_i\ j=le " + i
*
E[o] =
I e § J\j(-)j i T
=1



v(t)
u(t) me (9 K . A5 ER 15
- q(t) j=14 4
Fig. 4. The unity feedback general model
v(t)
u(t) + _ e(t) y
el P st 2 e
_;% ~A—1 + z(t)
‘F
i :
E[-]= % AL ()Y
j=11
Fig. 5. Precascaded nonlinear feedback system
v(t)
u(t) & , -1 z(t)
e ulg. w@_—"_ﬁ‘ [I-”\]_élj Uzé‘i : .
Y
i
L X, ()]
j=2 4
Fig. 6. Identified model of the precascaded feedback

system
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