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Abstract

With the philosophy that many physical multivariable systems can,
for the purposes of control systems design be approximately represented
by much simpler models and that the theoretical analysis of such models
can provide valuable insight into the time and frequency domain
characteristics of the system, this paper extends previous work by
providing an analysis of a class of multivariable structures analogous
to the classical kth order lag. It is shown that the system can be
decoupled by state feedback using parameters defined by the inverse
transfer function matrix. In more general situations, it is shown
that an analysis of the asymptotic form of the system root-locus provides
valuable insight into the desirable controller structures, and the
analysis of the sensitivity of the root locus to controller parameters
provides analytic solutions to the feedback control problem in the

cases k = 1, k = 2.
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1. Introduction

(142)

Recent papers have introduced the concept of multivariable first
and second order type structures and derived closed-form solutions for
high performance proportional and proportional plus integral unity
negative feedback controllers. Motivation for the analysis lies
(i) in the analogy with classical theory where the analysis of
first and second order system models provides direct insight
into general design principles (eg the effect of compensation
elements on closed-loop performance) and suggests rule of
thumb approaches to the design and analysis of more complex
structures.
and (ii) in the observation that many physical systems can be approximated
by such low order models.

(1)

As presented , Previous results cannot be easily extended to the
analysis of more complex structures. This paper investigates the
feasibility and usefulness of using a multivariable equivalent to the
classical root-locus method as a tool for the general analysis of multi-
variable feedback problems. In section 2 the concept of multivariable
root-locus is described. A complete analysis is presented in section 3

of a new class of multivariable kth order-type systems analogous to the

classical kth order lag

-1 ' k k-1
g ") = a_s +als + .. +ak__ls+ak < a 0 oo (L)

As in the classical case, it is not possible, in general, to obtain
an explicit formula for the closed-loop poles as a function of controller
parameters. The results take the form of a derivation of the asymptotes
of the root-locus diagram, an investigation of the sensitivity of the
asymptotes to controller parameters and the derivation of necessary and

sufficient conditions for the closed-loop system to be stable at high gains.



Although the results do not, in themselves, represent complete solutions
to the design problem, it is shown in sections 4,5 that the analysis
suggests analytic solutions to certain design problems, enables the
systematic design of minor loop compensation elements and provides a
direct link between time domain and frequency domain behaviour. Examples
illustrating the application of the results are included in relevant

sections.

2. Multivariable Root-loci, Feedback Design and Controller Structure

Consider a unity negative feedback configuration for the control of
a system described by the mxm transfer function matrix (TFM) G(s) and
let K(s,p) be the mxm forward path controller TFM, where p is a scalar
parameter. The root-locus of the closed~loop system is defined to be
the locus in the complex plane cf the closed-loop poles in the region p>0.
Extending the classical approach, take

K(s,p) = 1:'I<11(:‘>)-5-K2 vs=lZ)

where Kl(s) is an mxm TFM and K2 is a constant mxm matrix. In the
classical case K2 = 0, but, in the multivariable case, it will be seen
that the choice of suitable non-zero K2 can lead to useful simplifications
of the root-locus plot with consequent benefits at the design stage.

In classical design theory, an analysis of the pole-zero configuration
of the open-loop system G(s) can be used to suggest a suitable compensator
Kl(s). In contrast, there is no known relation in the multivariable case
between the pole-zero configuration of G(s), Kl(s) and the transient
performance of the closed-loop system, so that the choice of a suitable
Kl(s) is a non-trivial task. A major objective of this paper is to
illustrate how theoretical analysis of multivariable root-loei can yield
valuable information on a suitable controller structure KI(S)' Such
results may suggest trial structures to initiate, guide and simplify the

; : ; ; 3-6
analysis of more complex systems using general design technlques( ).



Defining, for a TFM L(s),

(i)

= 1lim st(s) ... (3)

g0

L

(whenever the limit exists), then it is assumed that

&, #0 coe (4)

This is equivalent, intuitively, to the assumption that a stable,
minimum-phase controller introduces no overall extra phase lag into

the system. Finally, write

(o)

Kl(s) = KlDo

+ K3(s) va v £5)

where K3(s) is a strictly proper TFM possessing a minimal realization of

dimension q.

3. Root-loci for Multivariable kth—order Type Systems
(1,2)

Generalizing previous definitions , & multivariable first-order

type system is represented by the mxm TFM

_ !
G(s) = C(sIm A) "B wnie (B

where A,B,C are constant mxm matrices and |G(s)| £ 0. Such a TFM arises
in the analysis of systems whose input-output relations can be approximated(l)

by a completely controllable and observable state space model with m~inputs,

m-outputs and state dimension m. It follows that |B| # 0, |C| # O so

'
that Ggl) = CB is invertible and
& “iay = B-l(sIm—A)C_l
1).-1 ~1
= (G( )) s+G " (s)| _ e (7)
o S5=0

which is consistent with the classical definition of a first order lag
obtained from equation (1) with k = 1. The natural definition of a
multivariable kth order lag is obtained from equation (1) to be an mxm

TFM of the form



= 4 =,
-1 k-
G(s) = Aes +A15 + +Ak_1s+Ak
A | #0 ol (®)
. - s (1),-1 _ w2l ; :

For example, if k = 1, AO = (G_) and Al =G (s)ls=0. It is easily
shown in general that

Aoml - 6 e (9)

=1
A =6 ()], _ ... (10)
lc(s)| 2 0 oL (11)

Such a system arises in the analysis of a completely controllable and

observable system whose input-output dynamics can be approximated by m

coupled kth order ordinary differential equations of the form, |A0| # 0,

k k-1
d d d )
¢ = e R A — Y =
ﬁ AO dtk + A dtk_“l ¥ e B 13t 4 A_kiy(t! U(t) L. (12)

For example, consider the simple mechanical system of Fig.l, where m,,m

172

are masses, kl’kz are spring constants and ¢ is the dashpot damping
constant. It Yqs¥pslysu, are the mass and spring displacements from an

equilibrium condition, the linearized equations of motion take the form

¥y *elGyYy) + Ry =k

m2y2 + c(yz-yl) + k2y2 = kzuz 593 013D
so that k = 2,
8 . o
B . - ol
A= my |, A =l 1] , &, -= ool (14)
¢ N -1 1 0 1
2 k2 kz

and the system is a multivariable second order lag.

3.1. Decoupling and Asymptotic Root-loci

The control configuration for the system of equation (8) is indicated

in Fig.2 where K(s,p) is defined by equations (2),(4),(5) and the minor

loop compensation TFM takes the form

k
H(s) = Z H.s wivs C15)



representing inner loop state feedback. If complete state feedback is
used, an analytic solution of the control problem can be derived as

follows (Appendix 8.1).

Result 1 (Decoupling of kth order multivariable systems)
Choosing, 1<j<k,

Hj = Aodlag{dij}1$i$m = Aj vsn{16)

where dij’ lgism, lgjgk are real scalars, K2 = 0 and

s ekl

~

Kl(s) = Aodlag{kj(s)}1$j<m

where {kj(s)} are scalar transfer functions, then the closed-loop

1<jsm

system transfer function matrix takes the form

i pgj(sﬂg(S)

— 1 =
Hc(s) diag T oo ey ...(18)
J J 1<jsm
where, 1€jsm,
(s) = : (19)
gj sk+d sk—1+ +d s+d o
i1 -1k

Equation (18) indicates that the closed-loop system is non-interacting,
the forward path transmitances being characterized by the classical kth
order lags gj(s)% l<jsm, whose pole configuration can be specified by
suitable choice of parameters dij’ lgigm, 1<jgk. System compensation is
achieved by suitable choice of compensation networks kj(s), 1<j<m.

Although of theoretical interest, Result 1 requires direct measurement
of the complete system state vector. In practice, for k2, this may be
unacceptable or impossible. In such cases, a satisfactory design must be
attempted by use of the degrees of freedom available in K(s,p) together,

possibly, with limited minor loop compensation. The following result



-6 -

(proved in Appendix 8.2) characterizes the closed-loop pole configuration

in terms of fundamental structural properties of K(s,p) and H(s),

Result 2 (Asymptotic root—loci)

1 (o)

If A K,

has a complete set of eigenvectors, with eigenvalues
Aj’ l¢jsm, then the closed-loop system has km poles of the form, 1<jsm,

l<ogk,
1

%
sz(P) = B ﬂjz + aj + Ejl(P) -.-(20)
1

where njz, ls2<k, are the kth roots of —Aj, pk is the positive real kth

root of p,

lim Ejl(p) =0 v (21)
P—Ho

and aj, lsjsm, are the solutions of the equation

g (D (0) <& =l (0)
{k“jIm+A {A1+H1+K2c5kl 3es (K ) Ly }}x”eR(AjIm A Ko )
0 #x,€ N(Ajlm—Ao"leg)) -y
Also,
v k(D ()
k ¥ a, = ~tr{A " {A Al W8 K T A }} o5 (28

and the remaining q closed-loop poles tend to the 2eros(7) of Kl(s).

The evaluation of aj from equation (22) is discussed in Appendix 8.3.
By analogy with the classical terminology, equations (20),(21)

suggest that the loei

1
;jch) = pE”jzmj » p>0 , 1sgjsm, 1lsigk e v (249
play the role of asymptotes of the system root-locus. The sets {A, }1s3<m
and {aj}1<JSm are seen to be invariant under complex conjugation so the
asymptotes are symmetrical about the real axis in the complex plane. By

analogy with classical theory, an will be termed the direction of the



asymptote “jg(p) and aj its intercept. The following list compares and
contrasts Result 2 with the equivalent result for the classical kth order

lag:

==

(a) In both cases, the closed-loop poles tend to infinity as fast of p

(b) In both cases, dynamic compensation K3(s} has the effect of moving
intercepts.

(c) In the multivariable case, both Aj and aj may be complex whereas, in
the classical case, both X and o are real eg taking k = 1, a multi-
variable first order type system can oscillate.

(d) The asymptotes of multivariable root-loci can be manipulated by a
suitable form of controller, even if Kl(s) is a constant proportional

5 = B

asymptotes are defined uniquely by plant parameters.

controller (see section 3.3) and K In the classical case,

Observations (a), (b) strengthen the analogy between multivariable kth
order lags (eqn (8)) and the classical kth order lag (eqn ( 1)).
Observations (c¢), (d) indicate, however, that multivariable systems possess
more degrees of freedom in the sense that both the directions and inter-—
cepts of the root-locus can be manipulated by control action and hence
represent design parameters available to the analyst.

Finally, in this section, apart from its obvious application in rough
sketching and manipulation of root-loci, analysis of system asymptotes can
yield valuable information on suitable controller structures. The

following result follows directly from Result 2,

Result 3 (Stability at high gain)
The closed-loop system is asymptotically stable at high gains p if,
and only if, kg2 and
(1) 1f k =1 Re Aj >0 , l<jgm
(ii) if k

2, Aj, lsjsm must be real, strictly positive and

Reuj<0, lgjsm

(1i1) the zeros<7) of Kl(s) lie in the open left-half complex plane.




This result could, in practice, be used to assess a given controller
structure (derived from physical considerations 0ot engineering
constraints) and suggest controller improvements. This is discussed
by example in section 4.

3.2. Root-loci and Transient Performance

The usefulness of multivariable root-loci as a design tool will depend
upon the availability of a working correspondence between the closed-loop
poles, the transient performance and, in particular, the interaction
behaviour of Lhe closed-loop system. Firstly note that, taking the case

of k = 1 and H(s) = 0, for simplicity, and using equation (9),

1im,p"l lim s{Im+G(s)K(s,p)}_IG(S)K(S,p)
pree S0

= cil)xiz) = o "9 ...(25)

0 ]

which represents the initial derivative of the closed-loop system to unit
: . . -1_(o0) . .
step demands in output i1ie the matrix AO K100 (and hence its elgenvalue
and eigenvector structure) provides a rough assessment of interaction
effects at high gain in the vicinity of t = O+, It seems that an
; g . ; = lny |,
approximately diagonal or diagonally dominant AO K100 18 a necessary

condition for small interaction effects.

In more general situations, let {uj}1<.

J<mbe the eigenvectors of
-~

-1 (O) . . + 5 . g
ctor ; ; a £ y = g
AO Klm with dua; eigenvectors {VJ }ISJSm satisfying VJ w 63k and,
for simplicity, take the case of k = 1 and proportional control. Note
that
m
- +
A 1K§z) = ) A,u,v. ... (26)
o j=1 e |
and define
- +
N = Z a.u.v, i C2 1)

}'IJJJ
then, at high gains p, the closed-loop TFM can be approximated as follows

(equations (8),(2)),



{Im+G(s)I((S,p)}—IG(S)K(s,p) = g ayalsp) Ris.1)
-1, o=l =l -1 -1
1+pA0 K, N+A_ K, +N] {pA0 R *A K2}
=1

=]
Ky N} pA K

[sI +A Ay
m Q
1

il

1

{sIm+pAO 1

m PA. a
= ]
jzl (s+p);-0.) “3%3 . (28)

Hence, for small interaction effects at all high gains, either uj = e,,

1¢jsm (where {e.}. . is the natural basis in R') when v. = e,, l<jsm, and
] 1€3ism i k|
1 PA. N
- ] 1 3 ____._.3___._._._
{Im+G(s)K(S,p)} G(s)K(s,p) = diag} (S+ij_aj) 3 1<5¢m R 7.

or the asymptotes of the system should coincide (ie lj = Ak and aj =

m
1sj, ksm) when, noting that y u.v.+ =1 ,
AR m
]
{ImfG(S)K(S,P)} G(s)K(s,p) = E:EX;:EI " < s ¢ £30)

The above analysis implies that the choice of controller structure
and manipulation of system asymptotes could play an important role in the
synthesis of high performance feedback systems. The asymptotic directions
are easily specified by suitable choice of eigenvalues of Ao_lKiz). The

manipulation of system intercepts is discussed in the next section.

3.3. Manipulation of Asymptotes and Sensitivity Problems

In this section, some techniques for the manipulation of system
intercepts are illustrated and a discussion of sensitivity is presented.
Examination of equation (22) indicates that minor-loop compensation
(represented by Hl) provide a degree of freedom for the manipulation of
system intercepts and, in the case of k = 1, the matrix K2 provides an
equivalent alternative. For simplicity, take the case of Kl(s) fixed,
=1.. (o)
1m

Kg(s) = 0, K, = 0 and assume that A” K

9 has distinct eigenvalues



t

Aj # Ak (j#k) . Using the notation of section 3.2, the intercepts of the
uncompensated system are the solutions, 1<j<m, of

-1 - -1 _(a)
§ -
{kajIm+AO Al}uj (= R\Aij AO KlOQ ) e {3T)

A

Let &l,..,am be the desired intercepts satisfying the constraint A. = Ag
J

implies &j = &2, then define

H o=kA § (0.0 )uv, (32)
= G0 YUY, .
1 02, 3 1 11
J

g ~]

= i 1.5 real) g . = s e i
Note that Hl Hl (ie Hl is real), AO H1u3 k(a} @J)uj, so that (equation
(31))

N =] _ =1 o = Co)
{kajImfAO {A1+H1}}uj = {kuj+A0 Al}ujéz R(Ajlm AO Klm ) ...(33)

and hence (Result 2), &j, l<jsm, are the desired intercepts.

If minor loop compensation is not acceptable, then a similar result

can be obtained by forward path dynamic compensation KB(S). Take ng)
to be fixed, KZ =0, H] = 0, arnd Aj # Ak (j#k) and let Kl(s) be the dyadic
rn>) :

m (s+a.) ~1 (o)

- R *
Kl(s) AO jz (s+bj) ujvj AO K100 ol 34)

gso that K.(s) =A Z —J——i-u.v.+A —IK(O) s 5w 35)
3 o da s+b . j ] o 1w
. m
kY 24 7 (abouv, A Tk ... (36)
Feo o el 1 3" 1 73 o Joo

Hence, lg£j<m, applying Result 2, equation (31) and noting that

(1) . (o), -1 ;
= & = = ~ !'-“‘
KBN (Kloo ) Aouj Ao(dj bj)uj, lgjgm,
[{ko ba,~b, 1T+ ~Lra & &9y 714 330,
31 37 m o 1 3= ™ dw o’ ]
= [ka,T %A '8 Ju. € ROLI ~A "11-{(@)) .. (37)
1 m o L3 ] m o 1o

so that, the intercepts of the compensated system are aj+k"1(aj—bj), 1<j<m.



._..ll -

The use of forward path and minor loop compensation in the manipulation
of asymptotes is well known in classical theory. The following result
illustrates an unusual characteristic of multi-input, multi-output systems
in that, if proportional control is used, the system intercepts can be

manipulated by suitable choice of eigenvectors of Ao_lng).

Result 4 (see Appendix 8.4)
Lf KZ’ Hl’ are fixed, KB(S) = 0 and Aj # lk (j#k) then, for any set

of numbers {&.}1<j<mr(invariant under complex conjugation) satisfying
& W

lékl}} ... (38)

=
il o~—1g «

6. = ~tr{A “T{A +H +K
i 0 P |

and the requirement ki = XR implies &j = ég, then there exists a real

~

constant matrix Kl(s) = Kl such that the system intercepts are &1,...,um.

Care must be taken in the application of Result 4 in the manipulation
of intercepts if any of the eigenvalues Aj, l€jsm, are distinect but close
together. In such cases, in the practical range of gains, the root-locus
may possess apparent intercepts very different to those predicted by
Result 2 and hence, the asymptotic analysis provides little information
on closed-loop pole positions. To illustrate this problem, consider the

multivariable first-order type system

¢ lg) = sI, + diag (2,1} b
Take KZ = 0, Hl = 0 and
K (s) = [1 j ... (40)
1
e 1
g =L, (a) ; ; - T .
so that AO Klw has eigenvalues Ay = l+e and Az = l#g, By direct
calculation, the closed-loop poles are
3 , 77 ;
u(p) = - §~+ pt Y+ e P v s s (41)
ie if & = 0, the intercepts are o, = =] a, = -2, whereas, if e # 0, the



- 12 =

. 3 ;
intercepts are a; = o, = 5. If £ is small and non-zero, the root-locus

in the range of practical gains will behave as if the asymptotes are -p-1,
-p—2 and the drift towards the actual asymptotes will be slow. Note

however, that, by suitable choice of K., the sensitivity problem can be

2’

removed in this case eg choosing

0 O
K, = . (42)
- 0 1
the intercepts are oy = o, = -2, independent of the value of g.
4,  Multivariable First-order Lags

Consider the application of the results of the previous section in
the case of k = 1.

4.1. Decoupling of First Order Systems

Consider the unstable multivariable first order system,

G(s) = ——j——— 3 ve.(43)
(s7=1) | 2 2s-1
4 -2 1] 1 -2
G "(s) =s % ... (44)
1 0 0 1
so that (equation (8))
-2 1 L -]
A = » Al = ...(45)
© 1 0 o 1

Applying Result 1 with k = 1, then H(s) = H, (a constant matrix).

i
Choosing dil =1, i = 1,2 then (equation (16))
-3 3} -3] )
H(s) =H, =A-A = = [1 -1] ey (A )
I =i 1

Choosing (equation (17)) Kl(s) te be the proportional controller

kl 0

|0 k

sws (4T)

=2 1
Els,p) = pKl(S) = P
1 O

d

2

then, by direct calculation, the closed-loop TFM takes the form
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pk pk
o L i 2
Hc(s) = dlagg s+1*pk1 s E:T:EE; s KB

ie the closed-loop system is noninteracting and the desired transient

characteristics can easily be obtained by suitable choice of gains k. ,k

172

and p.

4,2, Controller Assessment

The results of Section 3 can be used to evaluate trial controllers
obtained from ﬁhysical reasoning or limited by practical engineering
considerations and can suggest suitable controller structures by
simplification of relations (20),(22) using the degrees of freedom

available in KI(S) and K For example, consider the case of proportional

5"
plus integral control (H(s) = 0)

K(l)
(o) 30
K(s,p) = p{Klm ¥ }+ K, ... (49)
: s 4y . N (o) _
On intuitive grounds . the controller of the form K2 =0, K1m = Ao’
Kgi) = cAl, (see equation (7)) has been proposed. It follows directly

from Result 2 that AoulKiz) = Im so that Kj = 1, 1<j<m and the intercepts

are the solutions of the eigenvalue equation

(oL +h A (=) Jx_ =0, x, #0 .. (50)

o0

are the eigenvalues of AO_lA . The

2 e B 1
ie aj (1 c)pj, where {pj; 1

lgj<m
closed-loop system.is therefore stable at high gains if, and only if, the

(7)

Zeros of K1<S) lie in the open left-half complex plane ie the roots of

the polynomial
1

"

K(O)+SH1K£1)} = |A sI +A A cl Y (.5 ¥
1eo 3e0 o mo o 1

; ; . . =1 =Lk
have strictly negative real parts. Noting (equation (7)) that AO A1 = -CAC ~,

this is satisfied for all open-loop stable systems if ¢>0.

In section 3.2, intuitive conditions for a high performance, low-

interaction feedback system were derived. In particular, it was shown that



_14_

a low interaction feedback system can be expected if all system asymptotes

are identical. For example, using the controller of equation (49), and
choosing Kiz) = AO then (Result 2) the asymptotic directions are all equal

to -1, lgjgm, implying stability at high gain. The intercepts (eqn (22))

are the solution of the eigenvalue problem,

-1 R g . g B 5
{ujIm+A0 (A1+K2 K3m (K100 ) AO)}XDo =0 , X #0 p——
Choosing Kz, Kgi) to be solutions of the equation (o a real scalar)
=1 (1F.
AO (A1+K2 K3m ) = alm ...(53)
then the system asymptotes are ﬁj(p) = =p—a, l<j<m, implying small inter-

action effects at high gain. Equation (53) has an infinite number of

(D

solutions eg choosing o = 0 and K300

= cAi,then, solving for KZ’ the

controller K(s,p) becomes (equations (2),(5))

K(s,p) = {p + c + == JA - A 2+ 2 (54

(1)

Such a controller has been suggested previously and is capable of
producing a high performance feedback system with fast response speed,

zero steady state error and arbitrarily small interaction effects.

4.3. Example of Regulator Design with Controller Constraints

Consider the unstable first order type multivariable system of
equations (43)—-(45), and suppose that, due to engineering constraints, a
diagonal proportional contreller is required of the form H(s) = 0, and
K(s,p) = p diag{xl,xz} where p 1s the gain parameter of sections 2,3 and
Xy,%, are scalar gain factors. Choosing X, = 1, the regulator design can

be regarded as two steps,

(a) An investigation of the effect of the relative gain factor X, on

the structure of the root—locus plot and the choice of X to ensure

stability at high gain.
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(b) Root-locus analysis of the resulting system and the choice of a
suitable gain p.

(o)

[es]

Applying Result 2 with K1

are

A= 1+ Vlox, ...(55)

so the closed-loop system is asymptotically stable at high gains if, and
only 1f, x1<0. Moreover, the relative gain parameter X, can be used to
choose the degree of oscillation desired in the closed-loop system eg.

choosing x = -2, the asymptotic directions take the form -1+1. The

intercept (Result 2) oy is the solution of the equation,

o 1] [ 1 1
{UIIZ + } = B ... (56)
1 0 1+1 i~=31
for some complex scalar B8 ie. a, = -i/2 and, in a similar manner, a, = &1.
The asymptotes are hence
ul(p) = —p(1l+i) - i/2
f,(p) = -p(1-i) + i/2 s K57
which are sketched in Fig.3, together with the actual root-locus plot. Lz

is seen that the root-locus plots approach the asymptotes rapidly, and a
stable design can be achieved by suitable choice of 2

In summary, the use and manipulation of root-loci asymptotes has
led to a systematic regulator design procedure. The asymptotes are seen
to be a good representation of the system poles and the design procedure
can be decomposed into the choice of relative gain to ensure stability at

high gain and the subsequent choice of overall controller gain p.

5in Multivariable Second-order Lags

Consider the application of the results of section 3 in the case of
k =2, In section 5.1, the Result 1 is applied to the second order

multivariable lag of equations (12)-(14). In section 5.2, it is shown

= diag{xl,l}, the eigenvalues of Aonldiag{xl,l}
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that the sensitivity problem discussed in section 3.3 leads directly to
an analytic solution to the feedback design problem. Finally, in section
5.3, the results of 5.2 are illustrated by an example.

5.1. Decoupling of Second-order Systems

Consider the multivariable second order type system defined by

equations (12)-(14) withm, =1, m, =2, k., =k, = 1, c=1, Applying

1 2 1 2
Result 1 with k = 2, then H(s) = Hls+H2, where
[t ooffa, o [1 -1
Hl = - ... (58)
o 2flo 4] |1 1
1 o]|d 0 1 o
Hz = 12 = ..-(59)
o 2ffo  d,| o 1
Choosing d11 = d21 = 3, d12 = d22 = 2, then
2 1 1 0
H(s) = s + ... (60)
1 5 0 3
so, if
1 0 kl(s) 0
K(s,p) = p ... (61)
0 2{| o0 k, (s)

then, by direct calculation, the closed-loop TFM has the form,

k. (s) k,(s)
H_(s) = diag L , £

5 } s5w{62)
g +35+2+k1(s) s +3s+2+k2(s)

which is a non-interacting system.

5.2. Analytic Solution to the Control Problem

An analytic solution to the second order design problem can be
obtained by the use of non-zero K2 and an analysis of the sensitivity of
the asymptotes (section 3.3). Taking, for simplicity, H(s) = 0, then

(eqns (9),(5),(2)),

(2 (o) _ , ~1.(0)
o0 leo

. - . 2N =
lim p . lim s {Im+G(s)K(s,p)} 1G(S)K(s,p) = § o Ma

p-%oo S0

s CH3)
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so the initial acceleration of the closed-loop system in response to step

demands is represented by AO-IKEE). Intuitively, if a low interaction
(o)
Jeo

will differ only slightly from the unit matrix ie its eigenvalues will be

system and similar response speeds are required from each channel, AO—IK

almost equal. As illustrated in section 3.3, the intercepts of the root-
(o)
10

in the sense that the practical range of gains will produce a root-locus

. — . ; -1
locus will be sensitive functions of the eigenvector structure of AO K

diagram with apparent asymptotes ii+aj (Result 2) where

1)

-1 il (0).~-1 _
{Zujlmon {A1+Hl K3m (KlCD ) AO}}Xm =0 |, X #0 -

Taking KB(S) = 0, the apparent intercepts are the eigenvalues of —%Ao_l{A1+Hl}
ie this matrix plays an important role in root-locus structure and hence

it could be expected that an analysis of its eigenvalue/eigenvector

structure may lead to a considerable simplification of the design process.

The following result is proved in Appendix 8.5.

Result 5
-1 4 "
If Ao (A1+Hl) has a complete set of eigenvectors {qglsjsm with
i . + i i
eigenvalues {Yj}lsjsm and dual row eigenvectors {Vj }1$jsm satisfying
+ . ’
vj u = ajk’ 1¢j, kgm, then choosing
L +
B, + Ry = B ‘z wiugv, - A, s (65
j=1
o +
= A . (s g -
Kl(s) 5 _Zl kJ(b)UJVJ (66)
J
where {mj}lsjsm 1s a set of scalars and {kj(s)}lngm is a set of tramsfer

functions satisfying the constraint that uj = GR implies mj = ag and

kj(s) = kﬁ(E), then
K(s,p) = K(s,p) .. (67)

so that K(s,p) is a physically realizable TFM. Moreover, the closed-loop
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poles are the zeros of the rational polynomial

(32+yjs+mj+pkj(s)) wew(68)

I =a

j=1

and the closed-loop TFM takes the form

m k.(s
pj)

v, o+ E(s,p) wenf B 9)

e, J -]
=1 (s +y.S+w.+pk.(s))
J J 3 P 3

where the contribution of E(s,p) to the closed-loop step responses tends to

Zero as pe,

In practical terms, equation (68) states that the root-locus diagram
of the closed—-loop system can be investigated by an analysis of the root-
loci plots of the m single~input, single-output systems
k.(s)
g.(s) = “E“"J__ , 1<j<m .. (70)
] 8 +y.stw.
J J
ie the stability analysis of the system is reduced to the stability analysis
of m non-interacting single-input, single=-output systems, to which well-
known classical compensation techniques can be applied. Equation (69)

provides direct insight into the resultant closed-loop response so, if

high gains are applied, a good working model of the closed-loop system is

m pgj(S) "
HC(S) = .Zl m U.jvj ..-(71)
= J
ie, for small closed-loop interaction effects,
either (a) choose Hl so that uj = ej , lgj<m
or (b) choose H1 and {kj(s)}lstm,So that the closed-loop step

responses of the systems pgj(s)/(l+pgj(s)), 1<j<m, are

similar.
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Condition (a) can be attained by choosing

Hl = AO diag {Yj}lstm - Al waw (12

Condition (b) can be attained by suitable choice of compensation networks
{kj(s)}lsjsm to make the dominant poles of the systems pgj(s)/(1+pgj(s))

approximately equal. This technique is illustrated in the next section

using an example.

5.3. Illustrative Example

Consider the multivariable second order lag,

G'l(s) = AOSZ +Ajs + A,
1 0], 7 4 1 7
& s” + s + e 13Y
0 1 4 7 0 4

and the design of a forward path compensator K(s,p) to produce a high

performance, low interaction feedback system. Assume that minor loop
compensation is not acceptable so that H(s) = 0.
Applying Result 5, the eigenvectors of Ao—1A1 are u, = {1 I}T and

u, = {-1 l}T corresponding to the eigenvalues Yy = Ll Yy 3 respectively

and dual eigenvectors v T = {1 1}/2. v2+ = {-1 1}/2. Choosing w, = 1,

i 1
wy = 2, then (equation (70))
kl(s) k2(S)
gl(S) Sk " gz(s) = ce (74)
g +11s+1 s +38+2

The subsystem gl(s) is stable and highly overdamped so that proportional

control action kl(s) = k, is quite adequate, and, using classical analysis,

1
the value kl = 59.5 is assumed. With proportional control the subsystem
gz(s) is much less responsive than gl(s), so, using the results of section
5.2, the design requirement of low interaction demands that phase advance

be introduced into (s) to increase its response speed. Choosing
32 P P

k,(s) = k2(3+2)/(s+10), then the intercepts of the root loci of gl(s) and
L
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gz(s) are identical, and choosing k2 = 50.5, the dominart cloced-loop

poeles in both subsystems cre identical, implying similar step responses.

The resulting controller is defined by (Result 5),
3 1

_ E —E‘ 1 2 1 1 "5
KZ = 1 5 - = = . (75)
) 5 0 4_ =], =3
K()“595.1[0505]+505~(—E-’+2) _l[-c=50=] (76)
1 s == . 1 - - 0 (E}+]_O} ‘e . e e
and equation (2) with p = 1. The closed-loop responses to unit step

demand in output are illustrated in Fig.4, vhere it is seen that the system
responds rapidly to step demands with acceptable steady state error and
small interaction. Residual steads state error can be removed hy the

inclusion of intejral action in k, (3) and k.(s).
L Z

6. summary and “onclusions

(1,2)

The paver ha; extended previous work by presenting & definition
and complete anal - sis of a new class of multivariable systems analogous to
the classical kth order lag. The iechniques used are decoupling using
minor loop (state! feedback and a multivarisble generalization of the
classical root-locus method. It has been shown that the closed-loop system
can bi decoupled 'Result 1) by the use of a minor loop compensator H(s)
(Fig.!) whose strdcture is well-defined in terms cf parameters of the
inverse TFM G_I(sﬁ, In such a cas2 the control analysis reduces to the
analysis of m non-interacting ringle-input, single-output systems. In

more genera! situations, if complet: state feedback is not acceptable,

analysis of the asymptotic behaviour of the system root-locus provides a

valuable techniquas for:
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(1) ascertaining (Result 3) necessary and sufficient conditions

on controller structure to ensure closed-loop stability at high
gain. In particular, it is seen that stability at high gain
is only possible if k<2 and that the conditions for the cases
k =1, k = 2 indicate that design difficulties increase as k
increases.

(ii) assessing (section 4.2 and 4.3) controllers deduced from physical
reasoning eo¢ engineering constraints.

(iii) provides valuable insight (section 3.2) into closed-loop

behaviour, and
(iv) suggests (sections 4.2, 5.2) systematic analytic design
techniques for the cases of k = 1,2,

Result 2 indicates that the root-locus structure of a multivariable kth
order lag is a direct generalization of that for the corresponding classical
system (eqn (1)). Asymptotes can be manipulated systematically by
suitable forward path compensation networks or minor loop compensation
and, in contrast to the classical case, system intercepts can be manipulated
by choice of controller structure even if proportional control is used.

Care must be taken if this is used as a design tool as (section 3.3), in
well defined circumstances, the asymptotes are sensitive functions of
controller parameters.

Finally, in conjunction with previous results(l’z), it is noted that
the classical concept of a kth order lag can be extended to the multivariable
case, indicating that the basic difference between classical and multi-
variable systems lies in complexity of detail rather than overall structure.
Using the observation that many physical systems can, for the purpose of
control systems design, be approximated by much simpler reduced order
models, the analysis of more complex structures using root-locus concepts
may provide valuable insight into general design problems and make available
a 'case-book' of controller structures to initiate and simplify the analysis

of more complex structures using general design techniques.
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8. Appendices

8.1. Proof of Result 1

The closed-loop transfer function matrix follows directly from Fig.2.

H_(s) {1m+{1m+e(s)H(s)}“1G(S)K(s,p)}"1{1m+c(s)H(s)}‘1G(S)K(s,p)

{Im+G(s){H(s)+K(S,p)}}-lG(S)K(S,P)

fE M o) SR o m) K Fe i) L O

Substituting from equation (8),(15),(16),(17),(2),(19)

k .

. k=3 . -1 ’
EAO + jzl Aodlag{dij}lsiSms +p dlag{kj(s)}lstm} pAOdlag{kj(s)}ls.

H (s)
e

Js

. ,pg.(s)kj(s)
dlagci-1+1:>gj(s)k:.l(s) E 1<j<m

P 7.

as required.

8.2. Proof of Result 2

The ratio of the closed-loop characteristic polynomial to the open-
loop characteristic polynomial is given by

|T_+G(s){H(s)+K(s,p) }| = [G(s)]- G_l(S)+H(S)+K(S,p)| ... (79)

so that the unbounded closed-loop poles are the solution of the eigenvalue

problem
-1y j K<t j (0)
P {.EO (s(e)) A _; + _EO (s () TH,_+p{R 7 +K, () 14K, bx(p) = 0
. ] ... (80)
where x(p) has Euclidean norm ||x(p)” =1, p>0. Letting p»e, then the

relation [AO| £ 0 implieé that the Fanq“3 (s(p))k/p has a cluster point

s, satisfying

(s A+ % =0 . x|l =1 ... (81)
© O o oo [
so that -s is an eigenvalue A. of A _IK(O) and x_ & N(A.I -A _1K(O)). Let
© i o leo L] jm o 1o
1
s =p  ny, *+ v, () ... (82)
iL it

where

sm



= BA =
L
k

lim p V. (p) vz {83)

it N

and x(p) = Xm+z(p) where z(p)=+0 as po. Using equation (81), equation (80)

becomes
: i kel i (0)
{jZO(S(p)) Ak_j_psmAO+jZD(S(p)) Hk_j+PK3(S(p))+K2}X(p) = -p(s A _+K ") z(p)
.. (84)
Using equation (83),
™~ 0 H r{k_-l
{(s(p)) -ps_6,, }
: L =
lim AL ; v k-1 ... (85)
pree I~k J
P ko, 1 =t =
NE E
where a. = 1lim ¢. (p) (if it exists), and (equation (82)),
NES J4
p*—)‘m
1
: 1 1
Lim pMR, (s () w(p) = = ki, ... (86)
pee Mg

i}
st
: Tk
Dividing equation (84) by p , then (equation (85),(86)), letting p=x,

k-1 il =k K1) (o)
fhnyy o A sy (A +H))+RY8, 40y Ry bx, € R(s A +K ) ...(87)

k
or, as n., = —A., 8 = —A.,
’ ik 3" = J

{kajiszAo_l{Al+Hl+K25k1—Aj"1K§i)}}x;jeigxhjlm—Ao"lKE:)) ... (88)

Note that o._ is finite, for, if it were infinite then x & R(A.I -A _IK(O))
e © ]jm o 1o

contradicting the assumption that (i) ;WGE N(lem—Ao'lKiz)) and (ii) Ao_lKig))
has a complete set of eigenvectors. Equation (22) follows directly from

(88) by substituting for Aj_lxm from (81), and obviously ajR = aj is

independent of 2. Equation (22) follows directly from the analysis of

Appendix 8.3.
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Finally, noting that
|T,¥6(s) (H(s) 4K (s,0) | » [G()K (s) | (pe) e 80

(7)

then » the closed-loop system has a set of finite limit poles equal to

the zeros of G(S)Kl(s). From equation (4), the controller KI(S) has g
zeros(7). As (equations (8).(12)) G(s) has state dimension km and
(Result 2) km poles are unbounded as pre, it follows directly that G(s)
has no zeros and hence the remaining q closed-loop poles tend to the zeros

of Kl(s). This completes the proof.

8.3. Calculation of the Intercepts

For simplicity, consider the case of j =1, and let Al be an eigenvalue
Ao—lez) of multiplicity £. L2t Upe..u, be linearly independent eigen-
vectors of Ao_lKiz) spanning the eigenspace corresponding to the eigenvalue

+ + . ; . ;
Al, and Vl -eeV, the corresponding dual row elgenvectors satisfying

+ : s i . 5
vj w = S.k, 17, kst Then equation (22) is equivalent to the relations,

lsjse,

v, {ka,I +A {A VH, 4K S
1'm

L
(1) (0) i
1%2% By ¥ 81 Z

B.u. =0 ...(90)
1

for some set of complex scalars Bi’ lgigm., If M is the 2x% matrix with

elements
TP T (l) (0)

Mij k v, A {A +H1+K26k1 (K ) Ao}uj ... (9D
and letting B = (81,82,...,BQ)T, then equation (90) can be written in the
form

{HIIQ - Mg =0 ... (92)

so that the intercepts are the eigenvalues of the Lxi matrix M,

Equivalently, if V is the matrix of eigenvectors of Ao—lKiz) whose first

£ columns are equal to u,,...,u then M is the #x% matrix generated by

1
the first % rows and first £ columns of —kulv_lA - {A +H1+K § (1) (0))

Q"
(K

A 1v.
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Finally note that equation (23) follows directly by allowing j to vary in
the range, l<jsm, and noting that the trace relation is invariant under
similarity transformation.

8.4. Proof of Result 4

1

For notational convenience let N = -k AOHI{A1+H1} and, using the

analysis of Appendix 8.3, note that the result is proved if there exists
a nonsingularity transformation V such that the diagonal elements of

V-lNV are 4.,4

1° 2,...,dm. We prove the result by induction. Suppose

that there exists a transformation Vj such that the first j diagonal

elements of V._lNV_ are @_,...,4.. Consider the 2x2 matrix P,
J J 1 J 4+
generated by the'J+53+3.r0ws and columns of VjﬁlNVj. It is easily seen

1

that there exists a nonsingular matrix WE+ so that

1
-1 a b
W, P. W. = , b #0 ve - £93)
J+l T3+l g+l _—
If uj+1 1s real, let
I, 0 0
J
Vj+1 = Vj 0 w}.ﬂ Rj+1 0 .. (94)
o il
i 0
where Rj+1 = - ..(95)
j+1 1
- b -
s ; ; : il "
then, 1t is easily shown that the (j+1,j+l) element of Vj+1NVj+1 1s aj+1.
If aj+1 1s complex and uj+2 = aj+1, then, by sequential application of
the above procedure, it is possible to assume that a+d = 2Re&j+1. In this
case, let
1 1
R. = .. .(96)
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where Imx # O, then, by suitable choice of x, it is easily verified, that

i ; ; . = 4
the (j+1,j+1) and (j+2,j+2) elements of Vj+1NVj+1 are &j+1,&j+1 respectively.

The result follows by letting j run in the range lsjsm, and defining,

B . -1
K1 = Vm diag {Aj}lsjsm Vm s (9 7)

8.5. Proof of Result 5

The closed~loop TFM Hc(s) takes the form, after some elementary
manipulation,

H (s) = 16 ey #H(e) +R (e s p) T K, 13 ...(98)

which, using eguations (2),(8),(65),(66), takes the form

_ 2 2 +,-1 v +
H (s) = {A_s +(A1+H1)S+Aojzl(mf?kj(S»ujvj } pAszl kj(s)ujvj +K2}
m 4-1 D M
Zl(m;?kj(s))ujvj } {ijij(S)ujvj A

I | -1
= {sg +Ao (A1+H1)s+.

J

Kz}

... (99)

m

Writing AO 1(A1+H1) = z y.ujv,+, then, using the orthonormality of the
i=1

eigenvectors {uj} and the dual set {vj},

m pk. (s) m =
HC(S) = Z 5 ] v, 4 X 5 1 u.v. A 1K
i=1 (s +Yjs+mj+pkj(s)) 33 j=1 (s +yjs+wj+pkj(s))

1] o 2

wew (100)
Identifying the second term with E(s,p) of equation (69), classical
considerations indicate that the contribution of E(s,p) to the closed-loop
sStep responses decrease to zero as p++w, if the closed-loop system is
stable. Note also that, by examination of the denominator terms of Hc(s)

the closed-loop poles of the system are the zeros of

m
T (s24y,s+w, +pk, (s)) ...(101)
j=1 J ] ]

Finally, the result follows by noting that K2 = EZ and Kl(s) = Kl(g) 50

that K(s,p) = K(g,p)‘
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