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Abstract

The paper continues an approach to the teaching of optimal control
to engineering undergraduates and extends the linear cost results
to the case of minimum energy/minimum fuel type problems. The
treatment is rigorous but simple and gives direct insight into
essential optimization concepts and the difficulties arising in

numerical optimization methods.



1. Introduction

1
In a companion paper(L) an outline of an approach to the teaching of
optimal control theory in the presence of hard constraints to undergraduate
engineering students at the University of Sheffield was presented, and

introductory material presented on the optimization of linear systems with

performance criterion of the form (T fixed)
T = <ax(D)> + £ <B(E),x(0)> + glu(e) ,6) Mt

The advantages of initially considering this restricted class of optimization

problem were demonstrated to be as follows:-

(1) The approach combines rigorous but simple undergraduate engineering
mathematics with fundamental techniques used in the derivation of
numerical optimization algorithms to attain a conceptual level convincing
to the good students but attainable in problem solving by the weaker
students. This technique avoids the 'statement without proof' approach

A

of most introductory texts(« .

(2) The linear cost problem has a particularly simple structure(l)
which allows the student to practice the idea of Hamiltonian minimization
in the presence of a variety of control constraints before he moves in
to the more difficult problems requiring simultaneous Hamiltonian
minimization and satisfaction of the terminal state and costate boundary
conditions (e.g. minimum energy problems).

(3) The mathematical source and interpretation of the costate and Hamiltonian
are simple offshoots of the analysis and simple problems soon give the
student a feel for the dependence of the optimal controller on the
control constraints.

All these points prepare the student for a general statement of the Minimum

Principle at a postgraduate level and hopefully convince him that the more

indigestible parts do in fact have a firm mathematical foundation.
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This paper completes the discussion by extending the approach to the

solution of minimum energy optimization problems of the form

x(t) = A(t)x(t) + B(t)u(t) , x(0) = x_, x(T) = x (1)

where u(t) is restricted to lie in a given control restraint set Q. The

performance criterion (T fixed) is

Jw) = [ glu(o),e)de (2)

(1)

The approach is similar to that of the linear cost problem and emphasizes
the way that the costate and Hamiltonian conditiomns arise naturally from the
analysis. Subsequent problem solving leads naturally to an elementary
discussion of numerical optimization ideas and illustrate the following
points:-—
(1) Difficulties arising in the TPBVP due to the need to simultaneously
satisfy the terminal state boundary conditions and also minimize
the Hamiltonian.
(2) The possible non-existence of the optimal control due to the control
constraints.

(3) The need to apply common sense when applying all but the more

straightforward results of optimal control theory.

2 Minimum Energy/Minimum Fuel Optimization Problems

e ul(t), uo(t) are admissible controllers generating state trajectories

(1)

xl(t),xo(t) satisfying the state boundary conditions, then we can compare

the performances of the two controllers by considering
T
J(ul) - J(JO) = é {g(ulit),t) g(uo(t),t)}dt (3)

If p(t) is an arbitrary differentiable vector function then, from the state

equations,



gT <p(£),A(E) {x; (8) = x (O} + B(E){u)(t) = u ()} - {& (t) - % (e)}>de =0
(4)
(1)

Using the simple properties of the inner product and integration by parts

in the last term of equation (4) we obtain,

[ aT@©p@) + 5, x (6) - x (£)>de

T T il
v [ <BT(E)p(E), u (8) - u_(t)>dt - [<p(t),x1(t) - xo(t)>]o = 0 (5)
Adding the left-hand-side of this equation to the right-hand-side of equation
(3), and noting that the state boundary conditions imply that
T
[<p(£), x (&) - xo(t)>]O = 0 (6)

we obtain

T = I = 5 AT ©p®) ), 1 () - x (£)>de

+ gT {H(xo(t),p(t),ul(t),t) # H(xO(t),p(t),uO(t),t)}dt (7

where the Hamiltonian function is defined by

H(x,p,u,t) = glu,t) + <p,A(t)x + B(t)u> (8)

(L)

Using the arguments of the previous paper we choose the vector function

p(t) to eliminate the dependence of J(ul) - J(uo) on xl(t) i.e.
. T
p(t) = -A(e)p(t) (9)

which is the standard costate equation for this class of optimization problem.
The students were rather surprised that the boundary conditions on the costate
do not fall naturally out of the analysis. They were easily convinced by

the argument that to specify the costate boundary conditions when both initial

and final states are prespecified would over-specify the TPBVP.
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Using equation (9), equation (7) reduces to
J(ul) - J(uo) = éT {H(Xo(t),p(t),ul(t),t) = H(Xo(t),P(t),uo(t),t)}dt (10)

so that, if u is an optimal controller then, for any other admissible control
u1 we must have

J(ul) z J(uo) (11)
It now follows naturally that a sufficient condition for uo(t) to be an

optimal controller is that

H(x (£),p(),u (£),0) = min H(x (£),p(c),u,t) (12)
u

where the minimization is performed with respect to the control restraint
set Q. The proof that this is necessary is non-trivial and the students
had to accept this point.

The TPBVP to be solved for the optimal controller now becomes

k (6) = A(D)x_(£) + B(t)u (¢) x (0) = %, % (T) = x, (13)

B(E) = =Al(t)p(t) T T T— T (14)

H(x (£),p(t),u_(£),t) = min H(x (£),p(t),u,t) “ (15)
N _

It was helpful to the students at this point of the course to distribute a
step by step solution method. The wording of the sheet is summarized below
and illustrates how computer solution of the TPBVP arises naturally in the
discussion:—
STEP 1l: Solve the costate equations for a guess boundary condition p(o) = m.
STEP 2: For this guess costate solution, calculate the controller uﬂ(t) which
minimizes the Hamiltonian in 0 € t € T.
STEP 3: Using © as a parameter vector, adjust 7 until uﬂ(t) drives x(o) to
Xg in @ £ t<L T, In analytical studies this can sometimes be achieved

algebraically. In more complex problems (e.g. high state dimension

n»2) computer solution may be necessary using a search technique on m.



It is emphasized that, at this point in the course, the students are well
versed in the idea of minimizing the Hamiltonian and are hence in a good
position to tackle the problem of simultaneously satisfying the terminal state

boundary condition.

3 A Typical Worked Example

kl(t) = xz(t) xl(o) = 0, xl(l) = 1

kz(t) = u(t) xz(o) = xz(l) = 0 (16)

lu(e)| < M (17)

I = ' fue)]ae (18)
The costate equations are

p (&) = 0

py(t) = =p (t) (19)

Assume the boundary conditions pl(o) =T, pz(o) =, from which
pz(t) = @, - mt (20)

The Hamiltonian is

H o= p,(tdu(t) + py (B)x, () + |u(t)] (21)

Using graphical arguments the students readily appreciate that the controller
minimizing the Hamiltonian is

uo(t) = =M dez pz(t) (22)

where the function dez is given by

1 H x > 1
0 : |x| <1
dez x = (23)
-1 : % < =1
indeterminate if x = *1
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and hence as pz(t) is a linear function of time (equation 20), and if L #0
then uo(t) must take a form similar to one shown in figure 1. It is at this
stage in the analysis that the lecturer involved can demonstrate that common
sense plays an important role in the solutions of practical optimization

problems. Note that the boundary conditions on xz(t) demand that
fl u (£)de = 0 (24)
o o

so that, if u(t) is not identically zero (which is automatically satisfied if
we are to satisfy the state boundary conditions), then uo(t) must have both
positive and negative pulses on the interval 0 & t € 1 i.e. uo(t) must be of
the form indicated in (a) or (b) of Fig. 1.

Write a trial controller in the form

kM : il t1
u(t) = 0 : tl €t < t2 (25)
-kM . L. € gl

where k = *1. Then the boundarv conditions in xz(t) imply that

gl u(t)dt = kMt} - kM(L - tz) = 0 (26)
i.e. b, v e, =1 (27)
so that the control pulses are symmetrically placed about t = }. The

corresponding XZ(t) trajectory is

kMt 3 Oststl
xz(t) = kMtl : t1 & t g l—tl (28)
kMtlwkM(t"tl+1) 3 l—t1 £ tgl

From the state boundary condition on x_ (t)

x, (1) = gl x,(D)dt = 15> 0 (29)



i.e. k = 1 and, from equations (28), (29),

2 =
Mt1 + Mtl(l 2t1) 1 (30)
| 2 1.
<. M(tl £+ E) = 0 (31)
£ o= §l =] (32)
ar 1 32 M

Combining equations (25) and (32) with k = 1 we see that the optimal controller
has been found without an explicit solution of the costate equations. This
example illustrates to the students how the minimum principle can indicate
the form of the optimal controller, leaving the actual calculation of the
control to a parameter search on 'switching times'.

As a final point, equation 32 indicates that the 'switch time' t. is well

1

defined in 0 € t £ 3 for all M 3 4, but that t, becomes complex if M < 4.

1
The students readily appreciate that this situation corresponds to the case
when no optimal controller exists due to the fact that no admissible controller
u(t) can transfer the initial state to the final state in the prescribed time.
The observation is a useful introduction to the idea that control constraints

do affect the attainable performance and impose a minimum time for the

accomplishment of a given task.

4, A Typical Problem Sheet Example

The example of section 3 is rather complex for examination purposes and
is restricted to the lectures themselves or tutorials. For the purpose of
problem sheets, the following type of example has been found to illustrate

fundamental principles without requiring too long a time for completion.

k(t) = =-x(t) + u(t) x(0) = 0, x(1) =1 (33)

lu(e)| & M (34)

J(u) = él lu(e) |dt (35)
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The costate equation is

p(t) = p(t) (36)
Assuming an initial condition p(o) = -7 it follows that p(t) = —ﬂet. The
Hamiltonian is

H = |u(®)] +p®)u(t) - p(t)x(t) (37)

with minimizing controller, if k = %1,

uo(t) = =M dez p(t)
0 0 gt < £
= (38)
kM tlstsl
From physical considerations we require k = +1. The problem can now proceed
using tl is a parameter to satisfy the terminal state boundary condition.
5 Conclusions

Together with a companion paper, this paper has outlined an approach to
the teaching of optimal control in the presence of hard constraints to
undergraduate engineering students, The course is designed to avoid the
'statement without proof' techniques of typical undergraduate texts(z) by
providing a rigorous treatment of a restricted but useful class of probléms
using only typical undergraduate engineering mathematics. The advantage of
this formulation is a convincing introduction to general principles for the
better student at a level attainable in problem solving by the weaker students,
In addition, the approach gives a simple insight into the mathematical source
and meaning of such concepts as costate, Hamiltonian, existence etc, The
author believes that the techniques and concepts used and discussed in the
course lay a firm foundation for postgraduate studies of the 'general'

Minimum Principle and the discussion of gradient-type numerical optimization

methods,
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After an initial period coming to grips with the new concepts and matrix
manipulations, the students received the course enthusiastically (one student
undertaking a project to implement a gradient algorithm for the solution of a
nuclear reactor optimization problem). The linear cost problem(l} gave them
practice in the idea of Hamiltonian minimization for a variety of control
constraints and although worked examples similar to that of section 3
initially created difficulties, practice with problem sheet examples similar
to that of section 4 soon eased the situation. Together with several problem—
sheets, handouts were prepared summarizing the essential elements of each
technique for problem—solving. In this way the main conclusions of the
analysis could be separated and comparisons readily made between the various

types of problem.
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