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AbstracE

Recent results on the asymptotic behaviour of the root-loci

of a linear time~invariant system S(A,B,C) are formulated

in geometric terms and equivalent results obtained in two

cases of practical interest in terms of the matrix coefficients

i . » L
in the expansion of (A-pBC) , #xl.



1. Introduction

A recent paper (Shahed and Kouvaritakis, 1976) presented a theoretical
analysis of the asymptotic behaviour of the eigenvalues of the linear,
time-invariant system S(A,B,C)

; - _m n
x = Ax(t)+Bu(t) . u(t) &« R , x(t)&=R
m .
y(t) = Cx(t) , y(t)&€ R e (1)
when subject to unity negative feedback with scalar gain p>0. The closed-
loop system takes the form

x(t) {A-pBCIx(t) +Br(t)

il

y () Cx(t) aa v L2)
Previous work (Shaked and Kouvaritakis, 1976) used determinantal manipulation
techniques to obtain explicit formula for the asymptotic directions and
pivots of the root-locus. This paper describes some solutions of this

problem by geometric analysis of the closed-loop eigenvalue equation

{S(p)In - A+pBClx(p)=0 , lx@)|| =1 , p=0 sl 3)

and the identification of the asymptotic directions and pivots in terms
of the structural properties of the matrix coefficients in the expansion

of (A-pBC)®, 221.

Zs Asymptotic Behaviour of Closed-loop Eigenvectors

Let {pj}j>1 be an unbounded sequence of positive real numbers and
{S(pj)}jal’ {x(pj)}j?l a corresponding sequence of closed-loop eigenvalues
and eigenvectors respectively. By extraction of a suitable subsequence,
it is possible to assume that

lim x(p.) = x_ 3 me|| =1 o Gok)
oo
If R(Q), N(Q) denote the range and null space of a matrix Q, then

Theorem 1

(a) If the sequence {|Sﬁﬁ)|}j>1 is unbounded, then gnGER(B).
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(b) If the sequence {S(pj)}j>l has a finite cluster point A, then
x & WB, where (Owens, 1975) WB is the maximal subspace of N(C)
satisfying the relation AWBC: WB+R(B).

Proof

To prove (a), divide equation (3) by s(p), from which
x_ = lim (s(p.))—lp.BCX(p.) < R(B).
o k| d J
To prove (b), equation (3) implies that (AlnwA)xm = lim ijCx(pj)lEER(B)
joe
ie X &€ WB.
Q.E.D.

3. Asymptotic Root-loci for Uniform-rank Multivariable Systems

To illustrate the general structure of the geometric relationships
defining the asymptotic form of the system root—locus, consider the case
of an open-loop system (equation (1)) satisfying the relations

cal™ls = o i<k

a1

Bl # 0 ... (5)
Equivalently, if G(s) = C(sIn~A)—1B is the open-loop system transfer

function matrix, then

Gm(k) L 1im sfc(s) = a7l ... (6)
S-rca
exists, 1s nonsingular and ]G(s)l to. On intuitive grounds, the above

relations imply that each loop has a dynamic behaviour analogous to a
classical rank k transfer function and, as such, G(s) will be termed a
uniform rank tranéfer function matrix and S(A,B,C) a uniform rank system.
The following theorem defines the asymptotic form of the root-locus
plot in terms of the expansion of the matrix (A-pBC)Q. For convenience,

define

s, Lzl e milg )

and note from condition (5) that



_3,‘
£ )
(A-pBC) ™ = A" - pFﬁ 5 L2 gk . (8)
and, from equation (7), by induction,
= {
Fo ) eeo (9)
j
; = AT, + BCA
Tj+1 FJ B
=T+ Alpc " izo0 . (10)

Theorem 2

With the above notation, and 5(A,B,C) of uniform rank, the closed—-loop
system S(A-pBC,B,C) has km unbounded poles of the form, 1<jsm, 1glsk
1

ujﬂ(p) = Pkn. + o0, + (p) (D

€.
1% J 14

where ”jz’ 1<2sk are the kth roots of lj where Aj is a non~-zero solution

of

{ijn + BCAk_l}xm =0 = || =1 cea (12)
Also,

lim Ejgkp) = 0

pFPOO
and if,

N(X.I +BCAk_1)f1 R(A.T +BCAK"1) = {0} s e (13)
i n in

then, the pivot uj is a solution of the relation

_ a1,
{kaiﬁ\ A}xﬁ’(;R(AjIanCA ) wan (LG

The remaining n-km poles tend to the zeros of 5(A,B,C).
Proof

Equation (3) implies that

W
ot

L. 2
{(s(p)) Lo (A-pBC) "lx(p) =0 % L s ¢4 (15)
or, by equation (8), for lsisk,

L .
{ (S(P)) In - p_IAQ' o+ r‘g]}x(p) = ....(16)
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In an analogous manner to section 2, suppose that the family {x(p)} has a

cluster point Xm(|[xm[| = 1) then
5(p) "
lim 2Py =T x_ : lstsk . (17)

Considering only unbounded eigenvalues, then (Theorem 1) x & R(B) so that

(equations (5),(7))

& )5?,
lim ﬁ_g__ =0 , <k 555 (183
preo
and ,
Fka = BCAk-le 7E 0 . (19)

(equation (17)) A. 4 1im pml(s{p))k exists, islnon—zero and is a solution of

pe =
. 5 > k k
the eigenvalue equation (12). Write s(p) = n. +. (p) where n. = X.
g q (12) p Y wJR p Ny :
and
1
: k
lim p w.ﬁ(p) = .o (20)
p =
It follows that
1 ) 1
k s(p)]k y k
lim p {——— - 3}lx(p) = -1lim p {A,+F£}X(p) ... (21)
pes P p e 1=

Writing (equation (10)) T, = AT +BCAk_1 and noting (equation (16)) that

k k-1
B k-1
lim pk AT _x(p) = -, K Ax s53 L22)
k-1 i -
prree )
then

1 K k-1 1
{1im p* (2B praa, K Ak = 1im pF O, +BCA Lix(p) L (23)
pebeo p jn] prse ]

Usinglequation (13) and noting that X&JQEPNAjIH+BCAk"1)’ s Fod Lowe That

lim p

k s(p)k
(___.__
pre B

- Aj) exists, so that (equation (20))



— 5 -
1 k=1
. k S(p)k ; Ik
lim p~ (—>— - }.) = lim k A u., (p)
pee 4 p#
k-1
B k
=k A ujg i a0 024)
for some finite scalar Fap* It is easily seen that ajg is independent of %
and writing ujg = uj, equation (23) implies that
. k-1
(ka.I -A)x & R(A.I +BC ) awr o)
i n o j n

as required.
Finally, it can be shown (Owens, 1975) that S(A,B,C) has n-km zeros,

each of which (Shaked and Kouvaritakis, 1976) attracts a pole at high gain.
Q.E.D.

The above theorem provides explicit geometrical conditions for the

construction of the asymptotes of the root locus plot. For purposes of

calculation, write x = Bz, then (equation (12)) as rank B = m (equation (5)),

Aj is the solution of the eigenvalue problem,

g ={L.I & CARMIB}Q.
jm j

]

L1+ My ) % & B .. (26)
J m °2 J ]

Condition (13) is equivalent to the requirement that G(k) has a complete set

(we]

of eigenvectors. To calculate the pivot, suppose that Uyssee,l, are

’ . ; . k=1 . .
linearly independent eigenvectors of BCA spanning the eigenspace

be the corresponding

1

. ; +
corresponding to the eigenvalue Aj, and let v S

. : . + ; : ;

dual eigenvectors satisfying Vj u, = Gj K then, 1f Mj 1s the 4xf matrix
3

with elements

(Mj) =k " v Au . 1<r, q<§@ 27
it follows that uj is a solution of the eigenvalue equation

{ajI2 - M}Bj = 0 Bj% 0 <+ = 128)
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In more general situations (Shaked and Kouvaritakis, 1976) S(A-pBC,B,C)
will have unbounded poles of various orders as p>+w, The main result of
this section (Theorem 3) provides a geometric characterization of the
asymptotes of the root-locus in certain situations of practical interest,
using relations analogous to those of Theorem 2.

Write, 231

) -
2
(A-pBC)~ = §  (-1)p'B, siaie O
; 4 sk
j=o
from which, by induction,
B, = A , B, = BC s 38
and, for 2:1,
Bo,i+1 - ABO,R
= +
B ge1 = ABj ) +BCB._ ; IRSE3)
Boa1,001 T BCBy 4 -+ 3D
so that (equations (9),(10),(30)), for 2=1,
L %
B = A 4 B =T s, B = (BC) ...(32)

0,9
In a similar manner to equation (5), let k be the uniquely defined
integer such that
J=1 .
cal”B =0 , i<k , CA B £ 0 ... (33)

then (equation (8))

, Bcat , Osi<k
BC(A-pBC) © = - ... (34)
BCA® " (A-pBC) , A =k
so that, kgl<2k-1,
BGrA-pBy Y = B Lpat B } oo (5

Defining



g . g
v SR, v QMMnf\MMMﬂ)*F\M%Mxmm,Qa .. (36)

? ‘ j=1 i=1
then, if JG(S)’ £ 0, there exists an integer k such that

Py

v, # {0} (<k) v, = {0} (1) . (37)

. . b :
for, if X(E;VE for all 221, then A"x < N(c¢) for all £30 ie (theorem 1)
>{G§h% and the proposition is proved by noting (Owens, 1975) that 'G(s)l 0
implies that WB N R(B) = {0}. It is easily shown that

k £k . ww 38D

Defining, k-1 s & € 2k-1,

A . A "
W, = R(BCAKIT ), X, 2\ wn(seak 1rj+

I} 2+1-k ) -+ (39)

the following theorem is proved below,

Theorem 3

With the above notation, |G(s)| # 0, and k<2k, then, if

=

v, n Wy = {0} " k-1 € £ £ k-1

W

{r. V.Fp ¥, = 10} , k-1 € ¢ ¢

2+1° 8 =1, oo (40)

the closed-loop system S(A-pBC,B,C) possesses unbounded poles of the form,

kstsk,
1

s(p) = pgn + £(p) 235 LA1D

where, if X is a non-zero solution of the relation
=1
{AI +BCA™ "}x €W =v s (42)
n & L=
0#x.€ Ye-1
then n is an &th root of A, p! is the positive real %th root of p and
1
; 15
1im p f(p) =0 )

p—:-oo
Moreover, if, for ksigk,

-1 fe=1.~1.

{{’1_+BCA }w, . = {o} o (44)

}XQ_1+WQ_1} 8 Vg_l N {AIH+BCA
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then f(p) takes the form
f(p) = o + e(p) «s s CA5)
where lim e(p) = 0, and the 'pivot' a is a constant, finite solution of the
p-—)—&:l
relation
-1
{EqIn—A}xméé {AIn+BCA }XR—l ¥ Uz_l T
Proof
Equation (3) implies that
L 2
()T - (A-pBC) "}Ix(p) =0 , x| =1, ¢ 31 2 s (A7)

Using equations (8),(29),(32), this takes the form

< . -1 4 0 4 £k
{p "(s(P)™=p A +TQ}X(p) = [ § g o CHED
LoD, x(p) 5 ok
j=2 J,2

Taking the case of & = k, it follows that p_ls(p) is bounded (p*=) from

which 1lim pul(s(p))k exists for every closed-loop pole. If 1im p_l(s(p))k = X # .0,

p—)—m p—)-m
then, if 1lim %(p) = x (‘|x ‘[= 1), I'.x =0, j<k, so that x =V and
o co j e o k=1
P%m
01 +8cA" Nk =0 ew (49)
n oo k-1 e
proving (42) in the case of & = k. Using induction, suppose that

lim p_l(s(p))r = 0, ks<r<fsgk, and xg)EEVk_l, so that (equation (40)),
¥ ’

T ..
lim E (—1)JpJ_IB. rX(p) =0 . ksr<® ... (50)
pae =2 1

Using equation (31),(32),(35), equation (50) becomes

=1 i 3 q =1 o
lim {A Z (—I)JpJ B. x(p) = BC Z (—I)JpJB. _.x(p)}
st Jyr=1 #E J4r~1
pre= j=2 j=1
. k-1
= lim pBCA r _kx(p) =0 . ksr<g ... (51)
p== t

In a similar manner, it can be shown that



lim {p_l(s(p))21n+F2}X(P) & Lim pBCAk_ng_kX(p) éiwz_

préea prre i

...(52)

§ . . -1 4 .. ;
Equation (40) implies that p (s(p)) can only have a finite cluster point A.

= — 1 = =
If X 0, then ngw(: ﬂﬁ—l or (equation (40)) x e N(FR){\ VR-I VR and
lim pBCAk—lP _kx(p) = 0. Alternatively, if A # 0, it is a solution of the
pre -
relation
T=] k-1
x = E = aniig

(M +BCA™ “}x_ = BCAT T,z €W, (53)

for some vector z GERH, proving equation (42). Note that, if

lim p_l(s(p))E = 0, lsigk, then, from the definition of k, gm(F R(B) ie
p-—)-oo

(theorem 1) s(p) has a finite limit.

Finally, if pul(s(p))£-+l # 0 (po=) and ¢ = k, equation (40) follows

directly from theorem 2. Alternatively, if 2>k, rewrite equation (48) in
the form,
1
2 ~1 2
p {p (s(p))"=r}x(p)
. g
Fa il 3 S
= p% {={AT_+T J+p 1a¥ 4 VoI, k()
n g2 . .]:/Q'
j=2
1
= =1 . ; -1 ..
- -1
= pR {={AT_+T }+p bty ) p? T (-1)9B. -BC ) (-1)7pIs. Fx(p)
n g . Tl st 35 8-,
j=2 i=1
. (54)
From (48) replacing &, by &~1,
-1
% Bl g ‘ L
lim p~ A { E J (—1)JB. i Ix(p) = n Ax ...(55)
W2 3 5d=1 -1 B
p 1=2
so that, using equation (10), equation (54) takes the form
1 -1
: L = g 2
Lim {p~ {p “(s(p)) ~A}In-n Alx_
p+oo
1 =S
= -lim p~ {AI_+BCA" +BC § (-1)JpIs, }x(p)
n p ]
pe 3=l
1
e 2-1 k-1
= -lim p~ {AL +BCA -pBCA™ T }x(p) . (56)
B e n =l
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Write x(p) = xl(p)+x2(p), Xl(p)EE Xﬁ-l’ xz(p)éi Xﬁ—l’ then the relations
(equations (51)-(53))
. k-1
lim p BCA™ T _kx(p) =0 . k = r<yg
pre #
lim p BcAX Ip x(p) = BcaK Ir (finite) e (57)
2=k 2=k
p—}m
L
imply that 1im p'Q xz(p) =0 ie
p—)-cx)
1 -1
. L ! L
Iim {p” {p “(s(p)) =A}I_-n Alx
pree "
1
= ~1im p* {{rI_+BcA" 1}z (p)-pBCANTIr  x(p)} ...(58)
n 1 -k
‘p—}m
1
- : . . 2 « & =T ; .
Condition (44) implies that 1im p~ {(s(p)) p -A} exists or (equation (41),(43))
p»m
1 1 2-1 -1
e L =1 - I . 2 A L
Iim p~ {p "(p" n+f(p)) =A} = lim &n f(p) = n o ... (59)
pre pEe
for one finite constant «o. Substituting into (58) yields the relation
{aI_-A}x & {a1_+BcA* 11x + W . (60)
n o n -1 -1 o

which prove the result. qQ.E.D.
It is easily shown that theorem 3 reduces to theorem 2 if S(A,B,C) is

of uniform rank.

5. Illustrative Example

Consider the non-uniform-rank system defined by the matrices

01 0 0 0 )
1 0 -1
A=10 1 1 B=1[1 0 C =
1 0 1
0 0 1 0 1

I
[

from which, |G(s)| £ 0, k



s 1 1 —_
(b 0 0 "0 0 0
I' =0 , F.=8C=|1 0 =] 5 (BC% = [=-1 0 -1
o i}
{1 0o 1 L1 0 1
00 0 1 0 -1]
BCA = |0 1 -1 5 FZ =12 1 =1 ...(62)
01 1 T 1 3
so that
0 0 [0
Vo =span{|1 , o] }, vV, =span{ |1}/T v, = {0} w55 LR 3] |
|
0 1 0 ;
ie k = 2 = 2k, Also,
0 0] -1
P — S —1 3 =
wo = {0} . Wl = span{|-1|} , XK, =R X span{ 1| , | 0|}...(64)
1 0 1

= " &= 0N = N =
so that W V=W 0V, ={0}, IV W, = {0}, T,v, AW = {0},

To calculate the first order asymptote, solve the equation

0 0O 0
{J\I3 + (1 0 -=1] } xm(E_Wo y X Q:VO ... (65)
1 0 1
. T . : : . ;
ie X = -1 and x_ = {0,-1,1} & R(B). The corresponding pivot is the solution
of the relation
0 1 0] [0 -1 0 o0
oI =0 1 1f}H-1] = |1 -1 -1]2z , ze&®? ... (66)
0O 0 1 1 1 0 0

ie o = 0, and the asymptote takes the form -p; and passes through the

origin of the complex plane. Considering now the second order type asymptote,
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0 0 0]
DI;+ o 1 1)) x ew x &V, ... (67)
{o 11
ie A = =2 and x = {0, 1,O}T. The corresponding pivot is the solution of
the relation
0 1 0] o] [-2 o o]fo -1] 0
=
{ZuI3 =10 1 1(H1]| = g =L =1L 0 + 23 =,
.22
0 0 1 0 0 1 =1{|0 1 ] 1
G 2 0 z1
= |-1 =1 =1 Z, ...(68)

i
I
—
[ae}

™N

1
ie @ = 1 and the second order asymptote takes the form ip2¢¥2 + 1.

6. Conclusions

The geometric characterization of the asymptotes of multivariable
root-loci of a linear system has been discussed for two cases of practical
interest. The work augments the analysis of Shahed and Kouvaritakis (1976)
and illustrates the fact that (i) two integer parameters k,ﬁ, derived from
geometric considerations, play a fundamental role in the description of
the root-locus, and (ii) both the asymptotic directions and pivots are

described by inclusion relationships in the state space of the form

{Eln + Flx & Q s zCP ... (69)

where F is a nxn matrix and P,Q are well-defined subspaces of the state

space. A glance at theorems 2,3 will indicate that the matrices A,

BCAJ-I, Fj, k<j<k play a fundamental role in the root-locus theory. Writing,
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rcal !

rj = [B,AB,...,Aj"IB] cad 2 ... (70)

CA

it is seen that the controllability and observability matrices play an
important role in determining the structure of the root-locus. Further
work could relate the structure of the root-loci to parameters defining
controllability and observability, provide valuable insight into difficulties
occurring in pole allocation and suggest new algorithms for the calculation

of the system asymptotes.

References

Shahed, U., Kouvaritakis, B., 1976, Int. Jrnl. Control, Vol.23, No.l,
Jan., pp.297-340.
Owens, D.H., 1975, October, Research Report No.35, Department of Control

Engineering, University of Sheffield, UK.

_‘tl/W ‘}J,i ‘ I j;j\} i ?\’ . r;:, ;\ii\,-‘



