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Active gels are a class of biologically-relevant material containing embedded agents that spontaneously generate forces acting
on a sparse filament network.In vitro experiments of protein filaments and molecular motors have revealed a range of non-
equilibrium pattern formation resulting from motor motionalong filament tracks, and there are a number of hydrodynamicmodels
purporting to describe such systems. Here we present results of extensive simulations designed to elucidate the microscopic basis
underpinningmacroscopic flow in active gels. Our numericalscheme includes thermal fluctuations in filament positions,excluded
volume interactions, and filament elasticity in the form of bending and stretching modes. Motors are represented individually
as bipolar springs governed by rate-based rules for attachment, detachment and unidirectional motion of motor heads along the
filament contour. We systematically vary motor density and speed, and uncover parameter regions corresponding to unusual
statics and dynamics which overlap but do not coincide. The anomalous statics arise at high motor densities and take the form
of end-bound localized filament bundles for rapid motors, and extended clusters exhibiting enhanced small-wavenumberdensity
fluctuations and power-law cluster-size distributions forslow, processive motors. Anomalous dynamics arise for slow, processive
motors over a range of motor densities, and are most evident as superdiffusive mass transport, which we argue is the consequence
of a form of effective self-propulsion resulting from the polar coupling between motors and filaments.

1 Introduction

Living matter fundamentally differs from dead (or passive)
media in that it is driven by spontaneously-activating inter-
nal processes, depleting some energy reservoir maintained
by the organism’s metabolism1–3. This should be contrasted
with passive materials which may be driven externally bye.g.
an imposed boundary, or simply agitated by thermal noise.
An immediate and crucial consequence with regards quanti-
tative modeling of living systems is that they do not obey the
principles of thermodynamic equilibrium4,5, necessitating the
development of novel analytical and theoretical principles if
such systems are to be understood on the same level as equi-
librium matter. Ideally, such a program should proceedvia in-
cremental improvements to theory in tandem with experimen-
tal verification and guidance, but the enormous complexity of
real organisms eliminates facile comparison with any suitably
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Forschungszentrum Jülich 52425, Germany
b Computational Biophysics, University of Twente, 7500 AE Enschede, The
Netherlands
c E-mail: d.head@fz-juelich.de
d E-mail: g.gompper@fz-juelich.de
e E-mail: w.j.briels@tnw.u-twente.nl

transparent theory. It is therefore often prudent to treatin vitro
systems of known composition and reduced complexity.

This approach has been applied with some success to the
cellular cytoskeleton, a dynamic scaffolding of protein fila-
ments and associated proteins that contributes to the mechan-
ical, structural and motility properties of eukaryotic cells1,6–9.
This can be classified as anactive gel, both because it contains
molecular motors that generateO (pN) forces on the filaments,
and because the filaments themselves can translate or ‘tread-
mill’ due to different growth rates at either end. It is possible
with reconstitutedin vitro active gels to inhibit treadmilling
and add permanent biotin-avidin crosslinks between filaments,
resulting in a static gel with both thermal and athermal sources
of noise, the latter deriving from the action of motor proteins
on the network5,10–12. These athermal noise sources have been
shown to violate the fluctuation-dissipation relation5,11, cate-
gorically placing active gels outside the realm of equilibrium
thermodynamics, and the athermal noise spectrum can be re-
lated to the properties of motor proteins13–15.

Without permanent crosslinks, the filament network can
plastically evolve and macroscopic flow may emerge, result-
ing in non-trivial pattern formation as observed inin vitro sys-
tems consisting of microtubules and various associated mo-
tors16–18, and actin-myosin complexes19. This richer problem
has inspired the development of analytical theories incorpo-
rating filament flow and active driving20–37. One approach

1–14 | 1



extends the hydrodynamic equations of liquid crystals in their
nematic phase38 to include active terms (with phenomenologi-
cal coefficients) obeying the required symmetries20–26. These
active nematodynamic equations admit stable solutions with
line defects in the director field, include cylindrical spirals
that rotate due to active processes20; these were likened to
the vortices seen in quasi-2D microtubule experiments16,17,
although no quantitative comparison has yet been made. An
alternative approach extends the Smoluchoswki equations for
rigid rods39 to include active driving27–33, and although these
active terms were derived from microscopic considerations,
some coarse-graining is still required, resulting in what can be
regarded as a mesoscale model.

What is lacking despite this plethora of modelling is a
clear picture of the microscopic mechanisms driving the self-
organization observed in experiments. Ideally the large-scale
equations could be found by coarse-graining a suitable micro-
scopic model, but this would inevitably involve approxima-
tions whose validity would need to be assessed. Furthermore,
the only coarse-graining attempted so far failed to generate all
of the terms expected on symmetry grounds, with implications
for the formation of vortices31. It is into this state of affairs
that simulations can play a key role, permitting as they do full
control and access of all microscopic details. Non-Brownian
simulations mimicking the microtubule experiments generate
asters and apparently vortices16,17,40,41, but did not include ex-
cluded volume interactions between filaments and thus lacked
nematic elasticity, making comparison to the nematodynamic
theories20–26 problematic. Further simplified models with-
out filament growth found no defects42. Point-like defects
were also claimed in two-dimensional simulations of inelastic
rods43–48, but these were somewhat coarse-grained and again
provided no microscopic picture for the role played by indi-
vidual motors.

Here we present the results of extensive simulations of a
two-dimensional model for active gels, with the goal of com-
plementing existing analytical and experimental approaches
by providing a microscopic underpinning for any observed
non-trivial macroscopic pattern formation. Our chosen numer-
ical scheme includes: (i) Mobile motors as the originator ofall
non-equilibrium effects; (ii) Excluded volume interactions be-
tween filaments, so nematic elasticity is present; (iii) Thermal
diffusion of filaments, which will be relevant to actin if not
microtubule systems; (iv) Mechanical elasticity of filaments,
which can store and release elastic energy in the form of bend-
ing and stretching modes. Filaments are polar, that is they
have well-defined[+] and[−]-ends, and motors move strictly
towards[+]-ends, breaking microscopic reversibility. Some
snapshots are given in Fig. 1. The structures evident in these
snapshots, and associated dynamic anomalies, are fully char-
acterized below. Given the large aspect ratio of single fila-
ments, finite-size effects are pronounced and we have taken

great efforts to control variation with system size for all of the
quantities considered.

One of our central findings is that the action of the motors
can drive the formation of non-trivial structure formationin
one region of parameter space, and anomalous dynamics in a
different, albeit overlapping parameter regime. Motor-driven
structure formation is most evident for high motor densities,
where the nematic ordering breaks down and filament clus-
ters form. The nature of these clusters depends on the motor
speed. For motors sufficiently fast to dominate over thermal
diffusion, localized clusters form in which the filaments are
bound at their[+]-ends, as evident in Fig. 1(b). This can be
viewed as non-equilibrium polar ordering on scales compara-
ble to the filament lengthL, that becomes isotropic on much
larger lengths. The dynamics of such states is anomalous in
that the mean-squared displacement of filament centers ex-
hibits asuperdiffusiveregime in which it scales faster than lin-
early in time, but this effect becomes less pronounced as the
motor speed increases, a non-intuituve finding that we explain
below in terms of a vanishing population of mobile motors.

Maintaining a high motor density but decreasing the motor
speed so that motor motion and thermal effects compete, we
find a region of parameter space that exhibits both anomalous
diffusion and non-trivial structure formation; see Fig. 1(d).
Extended, polarised clusters form that can span the system
size, generating large voids between the high-density clusters
that is evident as an increase, possibly a divergence, of the
static structure factorS(q) as the wavenumberq → 0. Su-
perdiffusive mass transport is most pronounced in this param-
eter regime. Nonetheless the polarity of filaments separated by
distances comparable to a filament length or more are uncor-
related, in contrast to the prevalent assumption of continuum
modelling that the polarity field is slowly-varying over such
lengths.

We also identify a third region of parameter space in which
the system is structurally similar to the equilibrium limitwith
no motors, exhibiting nematic ordering similar to Fig. 1(e),
but nonetheless displays anomalous, superdiffusive transport.
This regime corresponds to the same motor speeds that gener-
ate the extended clusters described above, but a lower density
of motors. The key observation underlying this quandary is
that although thenematicordering of the filaments appears
normal, thepolarity of nearby filaments are nonetheless cor-
related over distances corresponding to a number of filament
diameters. Since the coupling between motors and filaments
is polar, such correlations can result in a persistent direction of
motor forces acting between filaments, generating net transla-
tional motion that can be viewed as a form of emergent self-
propulsion. This intuitive idea is supported by showing fil-
ament velocity and polarity are most strongly correlated for
parameters for which anomalous transport reaches its maxi-
mum.
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This paper is arranged as follows. In Sec. 2 we describe
in detail the numerical model, before turning into Sec. 3 to
briefly describe the behavior of passive systems in which mo-
tors do not move. This provides a comparison for the results
of active systems presented in the succeeding section, where
we separately focus on static quantities in Sec. 4.1 and then
the dynamics in Sec. 4.2. Despite performing a systematic
investigation of parameter space, and including the physical
mechanisms thought to be necessary for the emergence of the
structures seen in the microtubule experiments16,17, we never
observe vortices. Possible causes are discussed in Sec. 5.

2 Model

We are interested in determining the universal features of
motor-driven filament systems, independent of the atomic de-
tails of either the filaments or the motors (or motor clusters).
To this end, we describe both filament segments and motors in
a simplified manner requiring only a few degrees of freedom,
and focus on the collective effects of many motors and fila-
ments. See Fig. 2 for a schematic representation of essential
aspects of the model, which we now describe in detail.

Filaments are described as polar semi-flexible polymers of
monomers with lattice spacingb. Rigidity and contour length
are maintained by elastic energies penalizing local fluctuations
in both monomer separation and bending. For the former, two
monomers instantaneously separated by a distancer incurs a
cost δEstretch= πa2E(r − b)2/2b, whereE is the material’s
Young’s modulus anda the radius of the cross-section (as-
sumed circular)50. In addition, the energy for bending by a
local angleφ is given byδEbend= κφ2/2b with κ the bend-
ing modulus, which for a rod with a circular cross-section of
radiusa is given byκ = πEa4/450. Once thermal fluctua-
tions from the solvent are included (see below), and assum-
ing sufficient resistance to stretching to inhibit contour length
fluctuations, this gives a persistence lengthℓp ≈ κ/2kBT in 2
dimensions. For our parameters,ℓp/L ≈ 10/3 in terms of the
filament lengthL, so our filaments are semiflexible.

Excluded volume is incorporated as a repulsive potential be-
tween non-bonded monomers. We use the repulsive part of the
Lennard-Jones potential with rangeσ and energyε, truncated
and shifted to ensure continuity of the first derivative at the
maximum range 21/6σ, i.e. Vev(r) = 4ε(σ/r)6

[

(σ/r)6−1
]

+
ε, with r the distance between monomer centers. To avoid a
proliferation of parameters we simply setσ = b, while ε =
5kBT is set sufficiently high to ensure excluded volume dom-
inates over thermal fluctuations for overlapping monomers.

Thermal fluctuations arise due to the interaction between
the filaments and the solvent. Assuming the usual low-
Reynolds number limit for biophysical systems, we adopt a
Brownian dynamics algorithm that describes forces due to sol-
vent fluctuations in the non-inertial limit51. To better model

(a) (b)

(c) (d)

(e) (f)

Fig. 1 (Color) Snapshots for systems with varying motor density
and speeds. The left-hand column (a), (c) and (e) corresponds to a
low motor density, and the right-hand column (b), (d) and (f)to high
motor density. Similarly, the top row (a), (b) corresponds to fast
motors, the middle row (c), (d) to slow, processive motors, and the
bottom row (e), (f) to static motors. Filaments are shaded light
(dark) towards their[+] ([−]) ends, respectively, and the blue-green
hue is arbitrary. Motors are shown as red lines. The system size was
4L×4L in all cases. Larger snapshots and movies are available from
Ref.49. In terms of the model parameters (see Sec. 2),kA/kD = 20
for (a), (c), (e) and 40 for (b), (d), (f);kMτb = 75 for (a), (b), 0.75
for (c), (d) and 0 for (e), (f).
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the anisotropic friction coefficients for elongated particles39,
we first project forces parallel and perpendicular to the local
filament axis, and then apply the usual displacement incre-
ments with solvent friction coefficientsγ‖ andγ⊥ = 2γ‖, re-
spectively. Note that solvent forces and drag obey the usual
fluctuation-dissipation relationvia the temperaturekBT, so the
solvent is in equilibrium; all non-equilibrium effects derive
from the motion of motors, which we now describe.

Motors (or motor clusters) are modeled as two-headed
harmonic springs that are simultaneously attached to two
monomers; motors with one or no attached heads are not
explicitly represented. The spring extension is defined in
terms of the separation between the monomer centers relative
to its natural length, here taken to be the excluded volume
range 21/6σ, and the spring stiffness is fixed atkBT/b2. At-
tachment, detachment and motor motion are defined by the
following rate-based rules. (i) Motors attach at a ratekA be-
tween any two monomers on different filaments whose centers
are within a specified distance, which for simplicity we take
to be the spring’s natural length 21/6σ. (ii) Both motor heads
simultaneously detach at a ratekD that does not depend on
the positions of heads along the filaments, nor on the spring
tension, except in that severely stretched motors with elastic
energies exceeding≈ 7.5kBT detach immediately. Increased
detachment rates at filament ends, thought to be important for
the formation of vortices (but not asters)17, could easily be in-
cluded at a later stage. (iii) Each motor head moves in a Monte
Carlo-like manner: The change in motor spring energy∆E for
a head to movem≥ 1 monomers towards the attached fila-
ment’s [+]–end is calculated, and this trial move is accepted
with probabilitykMe−∆E/kBT per unit time if∆E > 0, or kM

if ∆E < 0. Eachm is drawn uniformly from the fixed range
[1,mmax], and the acceptance probability is suitably normal-
ized to ensure invariance with respect tommax. Motors already
in tension are less likely to move due to the increase in strain
energy, giving an effective stall force of the order ofkBT/b.
Motors already at[+]-ends simply do not move, but may de-
tach at the usual rate. Motors do not move if to do so would
exceed the maximum spring energy described in (ii).

All filaments haveM = 30 monomers and hence are of
lengthL = 30b, giving an aspect ratioL/b = 30. Typically
we use a 4L×4L box, but to check for convergence with sys-
tem size for any given quantity, we also simulated 6L× 6L
and 8L× 8L boxes for a representative sample of parameter
space, corresponding to 2 vertical and 2 horizontal lines inthe
parameter space discussed below. The area fraction of fila-
ments was fixed atφ ≈ 21% throughout, which was checked
to give a nematic order parameter close to unity in the absence
of motors. At t = 0 filaments are placed in a smectic con-
figuration to ensure no significant initial overlap, with each
filament’s polarity independently chosen to be±p̂ with equal
probability. Steady state is identified as when the two–time

Fig. 2 (Color online) Schematic of model parameters. Filament
polarity is defined by[+] and[−]-ends as denoted in the figure.
Motors are 2-headed springs defined by attach, detach and motion
rateskA , kD andkM , respectively, where the movement rate is
attenuated by an exponential factor depending on the increase in
spring energy∆E for the proposed move (∆E = 0 if this change is
negative). See text for details.

mean squared displacement of filament centres–of–massx(t),
〈∆r2(tw, tw + t)〉= 〈|x(tw + t)− x(tw)|2〉, ceases to depend on
tw and only varies with the lag timet, i.e. becomes〈∆r2(t)〉.

The results from the simulations will be described in terms
of the two dimensionless parameterskA/kD andkMτb, where
τb = Lbγ/4kBT is the time for an isolated filament’s centre–
of–mass to translationally diffuse over one monomer diam-
eter. ThuskA/kD gives a rough measure of motor den-
sity, andkMτb measures the competing effects of motor mo-
tion to thermal diffusion over lengths of the monomer spac-
ing b. We fix the value ofkD to be small relative toτ−1

b ,
i.e. kDτb = 7.5× 10−3 ≪ 1, and considerkM varying from
kM ≪ kD to kM ≫ kD, where the former case corresponds to
non-processive motors that detach before significant motion,
and the latter to processive motors which may move many
monomers before detaching.

3 Passive systems:kM ≡ 0

We first summarize the behavior of passive systems with
kM = 0, before turning to active systems withkM > 0. With-
out motor motion, filament polarity is irrelevant and the time-
averaged effect of motor attachment and detachment is to
generate an effective attraction between filaments. As the
ratio kA/kD between attachment and detachment rates in-
creases, the magnitude of motor-mediated attraction increases
and induce a heterogeneous density distribution as evidentin
Fig. 1(f). IncreasingkA/kD even further gives a percolating
network that nonetheless does not fully phase separate over
our simulation time.

To identify the length scales associated with the den-
sity fluctuations, we calculate the static structure factor
S(q) of filament centers, defined as the angular average
of S(q) = N−1〈|n(q)|2〉 over q̂ = q/q with q = |q|. Here,
n(q) = ∑N

α=1e−iq·xα
is the Fourier-transformed distribution of

the filament center-of-massesxα, α = 1. . .N. Results for
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Fig. 3 (Color online) Static structure factorS(q) for kM = 0 and the
kA/kD given in the key on log-log axes. The horizontal and vertical
dotted lines correspond toS(q) = 1 andq= 2π/L, respectively, with
L the filament length. Error bars give the spread between
independent runs. In all cases the system size was 6L×6L.

1 ≤ kA/kD ≤ 80 are shown in Fig. 3. For lowkA/kD, S(q)
exhibits a small peak around the wavenumber corresponding
to the filament lengthL, suggesting a slight degree of smectic
ordering with filaments aligned end-to-end, before decaying
quadratically for smallerq. IncreasingkA/kD to around 40,
corresponding toO (10) motors per filament, dramatically en-
hances the height of this peak. Snapshots such as Fig. 1(f)
reveal local filament bundles that align end-to-end, explaining
this peak. ForkA/kD in the range 60—80, theS(q) collapse
onto a single curve withS(q)≈ 1−3 asq→ 0 and snapshots
reveal similar pictures of percolating networks. It is clear that
the system does not phase separate forkA/kD ≥ 60 on our
simulation times, but instead undergoes kinetic arrest into a
long-lived metastable gel. We therefore restrict attention to
kA/kD ≤ 40 for the active systems in Sec. 4.

One of our key findings for active systems is the existence
of enhanced diffusion, so for comparison we present in Fig. 4
the mean-squared displacements for passive systems. Given
the lack of motor-mediated driving, the sole effect of motors
is to bind filaments and thus reduce self-diffusion, and this
trend is immediately apparent from the figure. For low mo-
tor densities the mass transport is roughly diffusive, witha
diffusion constant that decreases with increasingkA/kD and
the binding between filaments increases. At high attach rates
the mass transport is substantially reduced, and never becomes
fully diffusive over our data window, instead giving weak sub-
diffusion 〈∆r2〉 ∼ tα with α ≈ 0.9 at the maximum time lags
available. We nonetheless expect normal diffusion withα = 1
to be recovered at late times.

102 103

t/�b
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10-1

100

�
�
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�

/
L
2

kA/kD=1

kA/kD=5

kA/kD=20

kA/kD=40

kA/kD=60

kA/kD=80

Fig. 4 (Color online) Mean squared displacement〈∆r2〉 for kM = 0
andkA/kD given in the key for the same systems as Fig. 3. The thick
dashed line has slope 1 corresponding to normal diffusive scaling
〈∆r2〉 ∝ t, and the solid horizontal line corresponds to displacements
equal to the filament length.

4 Active systems:kM > 0

The movement of motor heads along the polar filaments gen-
erates equal-and-opposite forces that drive relative motion be-
tween filaments or filament clusters. Non-trivial flows and
pattern formation may thus become stable. In this section
we describe the structure and dynamics of active systems in
terms of the 2 dimensionless parameterskA/kD, which broadly
corresponds to the density of motors, and the bare motor
speedkMτb.

4.1 Statics

Snapshots for systems with mobile motors reveal similar fila-
ment ordering as for static motors whenkA/kD remains below
some crossover value. This crossover value depends on pa-
rameters such as filament length and motor spring stiffness,
and for the systems considered here occurs aroundkA/kD ≈
15. WhenkA/kD exceeds this value, the increased motor den-
sity induces filaments clustering and non-trivial structure for-
mation, the nature of which depends on the speed of the mo-
tors. ForkM ≪ kD, motors detach at a faster rate than moving
and become non-processive. Filaments form apolar bundles
similar to the passive casekM ≡ 0. Conversely, forkMτb ≫ 1
motor motion dominates over thermal diffusion and we ob-
serve filament clusters bound at their[+]-ends as in Fig. 1(b).
For the intermediate regimekDτb ≪ kMτb ≪ 1, motors are
processive but compete with diffusion in structure formation.
This results in the extended clusters evident in Fig. 1(d).

Underlying the observed clustering is a monotonic increase
of the density of attached motors as the ratiokA/kD is in-
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Fig. 5 (Color online) Number of motors per filamentnM/N versus
kA/kD for the dimensionless motor rateskMτb given in the key. The
thick black line segment has slope 1. For all lines, symbols are
larger than the error bars.

creased. As plotted in Fig. 5, the number of motors per
filament is roughly proportional tokA/kD, with a prefactor
that decreases with motor speedkM . This linear dependency
on kA/kD can be understood as the steady state solution of
the simple rate equation∂tnmot ∝ kA −nmotkD governing the
numbernmot of attached motors between two monomers held
within the proscribed attachment range. Deviations from strict
linearity are evident at highkA/kD > O (10) when motors in-
duce clustering and the global attachment rate becomes cou-
pled to structure formation. The decrease in motor density for
highkM is likely due to the greater fraction of motors stretched
close to the detachment limit mentioned in Sec. 2, but this ef-
fect is reduced for higherkA/kD when the densities become
similar for all motor speeds.

4.1.1 Cluster size distributions:To quantify the cluster-
ing apparent in snapshots, we first consider the distribution
P(nc) of clusters consisting ofnc filaments, averaged over
time and independent runs, where two filaments are consid-
ered to belong to the same cluster if there is at least one mo-
tor simultaneously attached to both. The mean cluster size
〈nc〉 = ∑nc ncP(nc) is plotted in Fig. 6, and reveals a mono-
tonic increase withkA/kD following a roughly exponential re-
lationship. It alsodecreaseswith increasing motor speedkM ,
in part because the density of motors decreases (see Fig. 5),
and also because they drive the formation oflocalisedfila-
ment clusters bound at their ends. Increasing the system size
increases cluster sizes for highkA/kD, but the effect is small
on logarithmic scales.

Considering only the mean cluster size〈nc〉 obscures the
fact that the shape of the full distributionP(nc) qualitatively

0 5 10 15 20 25 30 35 40
kA/kD

100

101

102
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n
c	
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b=7.5�10
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kM
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kM
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kM
b=75

Fig. 6 (Color online) Mean number of filaments in a cluster〈nc〉
versuskA/kD for the motor speeds given in the key. The system size
was fixed at 4L×4L and error bars are smaller than the symbols.

changes as the parameter space is traversed, see Fig. 7. For
most of the parameter space considered,P(nc) is well approx-
imated by a simple exponential decay, and does not vary with
system size. However, for highkA/kD andkMτb

<
∼ 1, the dis-

tribution P(nc) deviates from an exponential, in two ways.
Firstly, a second peak corresponding to system-spanning clus-
ters withnc ≈ N emerges forkMτb

<
∼ 1. Secondly, and only

for slow, processive motors withkDτb
<
∼ kMτb

<
∼ 1, the small-nc

decay becomes power law rather than exponential. Although
noisy, this algebraic decay can be approximately fitted by an
exponent -2, as shown in Fig. 7. We note that the region of pa-
rameter space for whichP(nc) exhibits power-law decay co-
incides with those parameters that exhibit anomalous small-
wavenumber density fluctuations, as described in Sec. 4.1.2.

The magnitude of the second peak decays monotonically
with increasing system size, suggesting it will vanish in the
limit of large system size. This is apparent in plots of the inte-
grated area of the second peak,P(nc ≥ N/2) = ∑N

nc=N/2 P(nc),
which can be understood as the probability to find a cluster
that is comparable in extent to the system size. The lower
cut-off N/2 is arbitrary, but as long as it falls into the middle
region whereP(nc) ≈ 0, as here, its precise choice does not
measurably alter the result. As shown in the inset to Fig. 7,
this quantity decays roughly asN−1. P(nc ≥ N/2) also mono-
tonically decreases with increasingkMτb as show in the figure,
before vanishing entirely whenkMτb > O (1).

4.1.2 Small-wave number density fluctuations: Al-
though useful for considering connectivity, the cluster distri-
bution P(nc) gives no information regarding spatial distribu-
tion of clusters, and in particular exhibits no signature corre-
sponding to the large void formation evident in snapshot of
Fig. 1(d) for highkA/kD andkDτb

<
∼ kMτb

<
∼ 1. To consider
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Fig. 7 (Color online) Log-log plot of the distributionP(nc) of
cluster sizesnc for kA/kD = 40,kMτb = 0.075 and the system sizes
given in the key. The thick, dashed diagonal line has a slope of −2,
and the vertical lines correspond tonc = N with N = 175, 400 and
711 the total number of filaments in the system.(Inset) P(nc ≥ N/2)
versusN on log-log axes for (from top to bottom)kMτb = 0,
7.5×10−3, 7.5×10−2 and 7.5×10−1. P(nc ≥ N/2) ≡ 0 for higher
kMτb. The thick black line segment has a slope of−1.

the distribution of mass centers it is useful to look at the static
structure factorS(q) as defined in Sec. 3. Fig. 8 shows the vari-
ation ofS(q) with kMτb for fixed kA/kD = 40. Focussing on
the S(q → 0) behavior reveals a non-monotonic dependence
on motor speed: for fast motorskMτb > O (1), or slow, non-
processive motorskM < kD, S(q) decays to some small value
asq → 0. For intermediatekM , S(q) increases, possibly di-
vergently, with decreasingq, which coincides with the void
formation evident in snapshots.

The limited number of data points and poor statistics for
smallq makes it difficult to characterize the behavior ofS(q)
in this limit. Nonetheless some semi-quantitative observa-
tions can be made by fitting eachS(q) to the formA+Bqc+

Ce−(q/[2π/L]−1)2/D2
over the rangeq≤ 2qL, which provides a

stable fit for all parameters considered. Although the fitted
exponentc is somewhat susceptible to finite size effects, we
consistently observe values close toc= 2 for low motor den-
sitieskA/kD ≈ 1, or very slow or fast motors,kM ≪ kD and
kMτb ≫ 1 respectively. For highkA/kD and intermediatekMτb,
c decreases and becomes negative. Although themagnitudeof
the fitted exponent depends strongly on system size, thesign
does not, suggesting some form of small-wavenumber struc-
ture will persist for large system size.

A divergentS(q) was predicted from hydrodynamic equa-
tions of active nematic systems with an exponentc = −252,
and was interpreted as emergent directed motion deriving
from the coupling of elastic modes with the breaking of time-

0.2 0.5 1 2 3
q / [2�/L]

0.25
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1

2
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(q
)
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kM�b=7.5�10�3

kM�b=7.5�10�2

kM�b=7.5�10�1

kM�b=7.5

Fig. 8 (Color online) Static structure factorS(q) for kA/kD = 40
and the motor speeds given in the key, for system sizes 8L×8L. For
clarity only error bars forkMτb = 0.075 are shown; others are
comparable. The horizontal and vertical dotted lines corresponds to
S(q) = 1 andq= 2π/L respectively.

reversal invariance in driven states3. We shall later argue for
a form of emergent directed motion in our system when dis-
cussing the dynamics in Sec. 4.2, which derives however from
the polar coupling between motors and filaments. It is possi-
ble that emergent directed motion drives the small wavenum-
ber density fluctuations in both systems. As described in
Sec. 4.2.1, the parameter values for which exponentsc < 0
arise coincide with those for which superdiffusive mass trans-
port is most pronounced. It is interesting to note that a causal
link between superdiffusion and small wavenumber fluctua-
tions has been hypothesized from systems lacking orienta-
tional degrees of freedom53, in broad agreement with our find-
ings.

4.1.3 Nematic and polar ordering: We now move be-
yond density fluctuations and consider the orientational de-
grees of freedom. Let̂pα denote the unit polarity vector from
the [−]-end to the[+]-end for each of the N filamentsα =
1. . .N. From this can be defined the traceless nematic order
tensorQα

i j = p̂α
i p̂α

j −
1
2δi j . The two-dimensional nematic order

parameterS2D is then defined by(S2D)
2 = 2

∥

∥〈Qi j 〉
∥

∥

2
, where

〈Qi j 〉 = N−1 ∑α Qα
i j and ‖. . .‖2 denotes the Euclidean norm

∥

∥Ai j
∥

∥ = ∑i, j A
2
i j . S2D varies from 0 to 1, with 1 for perfect

nematic ordering and 0 when there is no net preferred orienta-
tion, such as for an isotropic state, astersetc. A contour plot of
S2D for kA/kD andkMτb is given in Fig. 9, and confirms what
is visible from snapshots in Fig. 1, namely that nematic order-
ing breaks down forkA/kD

>
∼ 15 and processive motors with

kM ≫ kD. This data is for the smallest system size, for which
we have most data points; the effects of system size have been
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checked and confirms the crossover to lowS2D is robust. The
value ofS2D may be approaching zero for points in the upper
right of this plot, but the poor statistics and limited number of
points rules out extrapolation to the infinite system-size limit.

The nematic order parameterS2D tell us nothing about cor-
relations in thepolarity of filaments. To consider correla-
tions in filament polarity, we must go beyond this nematic de-
scription and consider order parameters that respect reverses
in polarity p̂ →−p̂. Firstly we note that the mean polarity
〈p̂〉= N−1 ∑α p̂α vanishes for the entire parameter space con-
sidered here. This is in agreement with the theoretical predic-
tion that states with non-zero mean filament polarity are only
stable if the motors are polar,i.e. have attachment rates that
depends on the relative filament polarity32, unlike the apolar
motors considered here for which the attachment rate depends
only on separation.

It is natural to consider spatial correlations in polarity along
directions parallel to the filament axis separately to thosein
perpendicular directions. We therefore define the perpendicu-
lar polarity correlation functionC⊥

pp(r) as

C⊥
pp(r) =

∑α,β p̂α · p̂βδ(r −|xα − xβ|)sin2 θ
∑α,β δ(r −|xα − xβ|)sin2 θ

(1)

whereθ is the angle between̂pα andxβ−xα (p̂β could equally
have been chosen due to the symmetry of Eq. (1)). The corre-

sponding parallel functionC‖
pp(r) is defined analogously, with

the sin2 θ weighting factors replaced by cos2 θ. Both pro-
jections exhibit approximate exponential decay withr, with
longer-range correlations for higher motor densitieskA/kD, as
demonstrated in Fig. 10. These correlations become shorter
range askM → 0, confirming the smooth approach to the pas-
sive limit kM = 0 when all polarity correlations trivially van-
ish. It should be noted that significant polarity correlations are
not mutually exclusive with nematic ordering. With regards
to finite-size effects, the data shows no apparent trend with
system size for all of the parameter space except for the high
kA/kD andkDτb

<
∼ kMτb

<
∼ 1 when extended polar clusters arise,

for which the range of polarity correlations was still increas-
ing for the largest system sizes simulated. Finally, we never
observe significant correlations on lengths larger than thefila-
ment lengthL, which will be discussed in Sec. 5 in relation to
hydrodynamic modelling.

4.2 Dynamics

Motor motion represents an energy flux driving relative fila-
ment motion in violation of the principles of thermodynamic
equilibrium, and might therefore be expected to result in
anomalous transport properties. Data confirming this expec-
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Fig. 9 (Color online) Nematic ordering parameterS2D for kA/kD
andkMτb for fixed system size 4L×4L. In this figure, and in Fig. 12
below, the white discs denote actual data points; linear interpolation
within the enclosing triangle is used between points. The thick
horizontal dashed white line corresponds tokM = kD.
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Fig. 10 (Color online) The transverse polarity correlation function
C⊥

pp(r) for kMτb = 0.075, system size 4L×4L and the attachment
rates given in the key. For clarity only errors bars forkA/kD = 40
are shown; the others are comparable or smaller. The thick dashed
line is proportional toe−r/[L/2].
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Fig. 11 (Color online) Emergence of directional motion on the
one-filament level under the action of motors, denoted by theshort
horizontal lines. (a) Net zero displacement for parallel filaments.
(b) Net displacement towards the[−]–end for both filaments in an
anti–parallel pairing.

tation is provided in this section. The key observation under-
lying these findings is that the coupling between motors and
filaments is polar, in that motor heads move strictly towards
filament[+]-ends. Filaments are thus expected to move in the
direction of their[−]-ends in response to the motor forces, as
seen by considering connected parallel and anti-parallel fila-
ment pairs as in Fig. 11. This effect also emerges from one-
dimensional continuum modeling54,55. Thus filaments may
move persistently in a direction that is coupled with their po-
larity. This scenario is reminiscent of self-propelled parti-
cles that are known to typically exhibit enhanced mass diffu-
sion, such as an anomalous scaling with time of displacements
transverse to particle motion56–58 or a longitudinal diffusion
constant increased by the activity59. In this light, anomalous
transport should also be expected here.

To confirm the correlations between filament motion and
polarity, the filament velocity must be defined, for which it
is necessary to average over a finite time interval since there
is no instantaneous velocity in Brownian dynamics. We de-
fine the velocity of filamentα at time t to bevα = [xα(t +
∆t)− xα(t)]/∆t where∆t ≈ 65τb, corresponding to trajecto-
ries spanning a few monomer diameters. Correlations between
polarity and velocity are then easily quantified as〈v · p̂〉/v
with v=

√

〈v ·v〉 the mean filament speed. This is plotted
in Fig. 12, and shows higher correlations for largekA/kD

andkMτb ∼ 10−2− 10−1, which we will show below is also
roughly where the degree of anomalous mass transport is high-
est. Note also that the correlations are negative, confirming
filaments move in the direction of their[−]-ends.
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Fig. 12 (Color online) Correlation between individual filament
velocity and its polarity,〈v · p̂〉/v, versuskA/kD andkMτb. As this
quantity is relatively insensitive to system size, the largest available
system was selected for each point.

4.2.1 Super-diffusive mass transport:Mass transport is
conveniently quantified by the mean squared displacements
of filament centers,〈∆r2(t)〉, where for simplicity we average
over filament polarity. For the available time window, which
typically corresponds to displacements from a fraction ofb
to a few L, a slow, diffusive or sub-diffusive region is ob-
served at small times, sometimes followed by a crossover to
super-diffusive scaling at later times in which〈∆r2(t)〉 ∼ tα

with α > 1. See Fig. 13 for some examples. The variation of
these curves with system size is weak or non-existent. As with
the passive case in Sec. 3, we presume an eventual crossover
to normal diffusion withα = 1 for lag times exceeding our
achievable time window.

To quantify the extent of deviation from normal diffusion
as a function of the microscopic parameters, it is convenient
to condense the variation of logarithmic slopeα over the data
window into a single scalar. To do this, we first smooth the
data by fitting each curve to the sum of two power laws,
〈∆r2〉 = C1tc1 +C2tc2, which gives a reasonable fit in all
cases. We then take the logarithmic slope of this fit at the
point when〈∆r2〉 = L2. The result is given in Fig. 14, and
shows a decrease in anomalous diffusion away from the peak
value at highkA/kD and motor speeds roughly in the range
kDτb

<
∼ kMτb

<
∼ 1. Choosing a different point along the curve to

extract the slope results in different values but similar trends.

A striking feature of Fig. 14 is the non-monotonicity of the
degree of anomalous diffusion with motor speedkM , which
approaches normal diffusion forkMτb ≫ 1. The reason is not
hard to find. As evident in Fig. 1(b), when motor motion dom-
inates over thermal diffusion, they rapidly reach the filament’s
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Fig. 13 (Color online) Mean squared displacements divided by
time,〈∆r2〉/t, so that normal diffusive scaling〈∆r2〉 ∝ t shows up as
a horizontal line. HerekMτb = 0.075, the system size was 8L×8L
and thekA/kD are given in the legend. The thick dashed lines are
fits toC1tc1 +C2tc2 for each set of data points. The black horizontal
line is to guide the eye, whereas the diagonal black line corresponds
(on these axes) to〈∆r2〉= L2 and confirms trajectories exceed the
filament length for these data sets.

[+]-end where they then stall. Indeed, the fraction of motors
with at least one head attached to a[+]-end never drops be-
low 80% forkMτb ≥ 1. Since such heads can no longer move,
they do not drive filament separation and the net motor activity
decreases, restoring normal diffusion.

4.2.2 Velocity correlations:Using the same definition of
filament velocityvα as above, it is possible to calculate spatial

correlations in velocities projected parallelC‖
vv(r) and perpen-

dicularC⊥
vv(r) to the filament axis. Here,C‖,⊥

vv (r) are defined
analogously to the polarity correlations in Eq. (1), exceptwith
the p̂α replaced byvα/v with v the mean filament speed as
before. Examples are given in Fig. 15, demonstrating a grow-
ing range of correlated motion as the motor density increases.
This trend was observed throughout the parameter space con-
sidered.

Also shown Fig. 15 is an example of the variation with sys-
tem size for the highestkA/kD, which demonstrates conver-
gence for the two largest system sizes considered. The decay
is exponential, approximately of the form e−r/[L/6] and thus
becomes negligibly small on lengths on the order of the fil-
ament lengthL. We never observe correlations decaying on
lengths larger thanL, and conclude velocities on lengths much
larger than the filament length are uncorrelated, a point that is
discussed in Sec. 5.
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Fig. 14 (Color online) Scaling of the mean squared displacement
with time t, i.e. α = ∂ ln〈∆r2(t)〉/∂ ln t, at the point when
〈∆r2〉= L2, versuskMτb for thekA/kD given in the key. For clarity
only error bars forkA/kD = 20 are shown; others are comparable
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Fig. 16 (Color online) Example of asters at low density with area
fractionφ ≈ 5.3%. The system parameters werekA/kD = 250,
kMτb = 75. Motors are short straight lines concentrated at filament
[+]-ends.

5 Discussion

It is apparent from the results described above that for the con-
sidered density ofφ ≈ 21%, structures similar to the asters
and vortices in the microtubule experiments16,17 are never re-
produced. The absence of asters may be a simple matter of
density. The end-bound clusters formed by rapid motors in
Fig. 1(b) are not able to form circular structures due to steric
hinderance with nearby clusters. Lowering the filament den-
sity removes this effect, permitting full asters consisting of a
single layer of filaments to form, as demonstrated in Fig. 16.
However, vortices did not arise at lower densities, even when
increased motor detachment rates at[+]-ends was included.
We note that a continuum model37 that extended an earlier
version35 to include, amongst other features, a form of steric
hinderance between filaments, favored asters over vorticesrel-
ative to the earlier work, suggesting excluded volume may also
be a factor. Here, we expand upon the relationship between
our numerical findings and the related theory and experiments
that has already been touched upon, with an emphasis on pos-
sible reasons for the non-observation of vortices.

5.1 Comparison to experiments

In their in vitro actin-myosin experiments, Backoucheet al.
claimed that active structure formation was only possible with
the addition of a small concentration of the passive crosslinker

fascin19. A small fraction of passive crosslinks between adja-
cent filaments has also been predicted to significantly increase
their rate of alignment by mobile motors48. Since no passive
crosslinkers were included in our simulation, this might bea
factor in the qualitatively different structures found here. Fur-
thermore, fascin is a bundling protein that promotes the forma-
tion of polar actin bundles64,65, thus its dominant role may in
fact be to permit non-zero mean polarity. If so, it may play the
role of the polar motor clusters that preferentially bind topar-
allel (as opposed to anti-parallel) filaments, which were shown
theoretically to stabilize homogenous polarized states and pro-
duce a correspondingly richer stability diagram32. However,
there is no reason to suppose that polarity-dependent binding
of active or passive components played a role in the micro-
tubule experiments, and was not included in the associated
simulations16,17, suggesting this is not a reason for the non-
emergence of vortices in our work.

Apart from molecular motors, a second form of non-
equilibrium activity in biofilament gels is the spontaneous
translation of filament center-of-massvia unequal monomer
addition rates at opposite ends, known as treadmilling and
prevalentin vivo9. If present, this would place the system into
the class of self-propelled particles, for which a richer variety
of structure and dynamics is expected3,56–59,66,67. However,
treadmilling was thought not to play a role in the actin-myosin
experiments19, and was inhibited to some extent by taxol in
the microtubule experiments (although microtubule growth
waspresent)16,17. Until the role of treadmilling or filament
growth is categorically denied experimentally this remains a
possible missing factor, but without further experimentalguid-
ance we can merely speculate on its possible role. Including
such features numerically should be straightforward, and in-
deed has already been performed for simulations of branching
networks68–70.

Finally, the role of dimensionality should not be over-
looked. Our simulations are strictly two-dimensional, whereas
the actin-mysoin experiments were three-dimensional19 and
the microtubule experiments were performed in a thin 5µm
chamber that enforces almost-parallel filament orientation
while facilitating overlap, which can be regarded as a
quasi-2D system16,17 (the associated simulations were two-
dimensional but without excluded volume, thus also permit-
ting free overlap). The interaction terms in the hydrodynamic
and mesoscale models were based on a three-dimensional ker-
nel38,39. Thus the excluded volume interactions included in
our simulations may be far more strict than the experiments or
models, possibly having an inhibitory effect on structure for-
mation. To numerically probe higher dimensionality is com-
putationally expensive but should be possible with a restricted
sampling of parameter space.
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5.2 Comparison to hydrodynamic models

An assumption common to many of the analytical models is
that the velocity and polarity fields are hydrodynamic, in the
sense that they have long-wavelength components extending
across lengths much larger than the filament lengthL. In con-
trast, as described in Secs. 4.1 and 4.2 above, we never ob-
serve polarity or velocity correlations that decay on lengths
larger thanL. It is possible that long-wavelength correlations
emerge at much higher filament densities, but we were not
able to check this so far due to computational limitations. Al-
ternatively, our numerical scheme may be oversimplified, in
that momentum is not conserved by the solvent-filament in-
teractions. Since the standard argument for the emergence of
a hydrodynamic velocity field requires momentum conserva-
tion71, this may explain its absence, but correcting for this
omission numerically is difficult and will requiread hocmod-
ification of the driving terms such as in Ref.72, or the incorpo-
ration of full hydrodynamic interactions73.

A slowly varying polarity field is assumed in all theoretical
models and coarse-graining schemes20–37. The short-ranged
decay of the polarity correlations in our simulations therefore
makes the comparison of the results difficult. This may be
partly a question of time scale. For the density considered
here, the rotational diffusion time for filaments to significantly
change orientation can be large. This is particularly true when
the nematic order parameterS2D is close to unity, when the
orientation autocorrelation function decays by as little as 5%
over a production run. This may inhibit the formation of large,
polarity-correlated regions. Nonetheless even in this region of
parameter space, motor-driventranslationalseparation of fil-
aments according to their polarity does occur. Furthermore
when S2D ≪ 1, filament rotation is substantially enhanced.
The lack of long-wavelength polarity correlations is therefore
somewhat of a mystery.

The nematodynamic theories take as an input parameter
the active stress generated on filaments, whose sign deter-
mines if this stress is contractile or extensile20,23. Our micro-
scopic approach does not impose the sign of the force dipoles
generated by motors, so instead it must be measured. The
mean dipole moment acting between filament pairs is defined
asκ = 1

N(αβ)
∑(αβ)F

αβ · (xβ − xα), where the sum is over all

N(αβ) filaments pairs(α,β) connected by at least one mo-

tor, andFαβ is the total force onα due to motors connect-
ing α andβ. Thusκ > 0 corresponds to contractile dipoles,
andκ < 0 to extensile ones. Preliminary results are given in
Fig. 17, demonstrating uniformly contractile stressκ > 0 with
a magnitude that reaches a maximum for intermediate motor
speedskDτb < kMτb < 1. An alternative measure in which
bothFαβ andxβ − xα are first projected along the filaments’
axes before summing, as defined in the figure caption, fol-
lows the same trend. Thus our motor rules lead to contractile
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Fig. 17 (Color online) Variation of the dipole moment withkM for
kA/kD = 40 and system size 4L×4L in steady state. The upper line
gives the mean dipole momentκ = 1

N(αβ)
∑(αβ)Fαβ · (xβ −xα) as

defined in the text, and the lower line gives the projected equivalent

κproj = 1
2N(αβ)

∑(αβ)

{

(Fαβ · p̂α)(∆xαβ · p̂α)+(Fβα · p̂β)(∆xβα · p̂β)
}

with p̂α, p̂β the polarity unit vectors for filamentsα andβ resp.

active stresses, theoretically predicted to give the richest be-
haviour20,23. There is also a slight but measurable reduction
of ≈ 0.4% in the mean filament contour length whenκ is at its
highest, confirming contractility.
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