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Abstract

Multivariable variable structure systems in the sliding mode are
studied using a geometric approach. The properties of system order
reduction and disturbance rejection are proved using projector theory.
New design methods for the choice of switching hyperplanes are derived

for the closed-loop eigenvalue/eigenvector assignment problem.



1. Introduction

Variable structure systems (VSS) are a special class of nonlinear
sysﬁems characterized by a discontinuous control action which changes
structure upon reaching a set of swifching hyperplanes s(x) = 0, A
fundamental property of VSS is the sliding motion of the state point
on the intersection of the switching hyperplanes. During the sliding
mode the system has invariance properties, yielding motion which is
independent of certain system parameters and disturbances, and the system
behaves like a linear system.

Order reduction is a fundamental property of VSS in the sliding
mode. This is due to the motion of the state which is constrained to
lie on the intersection of the m switching hyperplanes, During the
sliding mode the order of the system is reduced because the motion of
the state is governed by n-m "slow'" modes. The remaining m modes are
the "fast" modes (see Young et al., 1977).

A new method of analysing VSS in the sliding mode is developed
in this paper. The study has been motivated by the observation that a
basic operator associated with the dynamics qualifies as a projector.
Projector theory provides a neat method for the analysis and design of
VSS. Using projector theory certain VSS features are explained and
others are expanded. A simple explanation of order reduction is given
together with a re—examination of the invariance prinicple of DraZenovié
(1969). 1t is shown that DraZenovi€'s invariance conditions are a special
case although the two resulting conditions are the same when CB is
nonsingular, The physical interpretation of invariance is also given.
The invariance of the system zeros in the sliding mode is investigated.
It is found that certain interrelations exist between the n-m closed-loop
elgenvectors Wi(associated with the n-m assigned eigenvalues) and the
matrices of the system S(A, B, C). These relationships are exploited

further when formulating new methods for constructing the matrix C



specifying the switching hyperplanes and hence specifying the n-m
closed-loop eigenvalues.

Design methods are proposed for the design of the switching
hyperplanes., The methods given have the ability to assign the matrix
CB arbitrarily, This may be useful as a design option since it has
already been established that a diagonally dominant CB matrix ensures
the convergence of the fast motion to the switching hyperplanes (Utkin,
1978b) . Another advantage is the ability to exercise partial control
over the closed-loop eigenvectors associated with the n-m assigned
eigenvalues, The freedom in selecting these eigenvectors increases
with the number of inputs, or equivalently, with increasing range
space of B.

2, Variable structure systems in the sliding mode

Throughout we consider the time-invariant system S(A, B, C)

X

Ax + Bu b}
s = (x (2.2)
n m m .
where x e R, ue R, s ¢ R, The matrices B and C are assumed toc have
full rank m and |CB| = O,
Variable structure systems (Utkin, 1977 and 1978a) are characterized

by a discontinuous control action which changes structure upon reaching

a set of switching surfaces. The control has the form

+
u, (%) s.{(x) >0
u. = * ' (2.3)
* u’ (%) s.(x) <0
i 1.

L
where ug is the ith component of u and s;(x) is the ith of the m
switching hyperplanes which satisfy
s(x) = Cx = 0, (2.4)
The above system with discontinuous control is termed a variable structure
system (VSS) since the effect of the switching hyperplanes is to alter

the feedback structure of the system.

Sliding motion occurs, if at a point on a switching surface si(x) =0,



the directions of motion along the state trajectories on either side of
the surface are not away from the switching surface., The state then
slides and remains for some finite time on the surface si(x) =0
(Utkin, 1977 and 1978a). The conditions for sliding motion to occur

on the ith hyperplane may be stated in numerous ways. We need

lim §. <0 and lim §. >0 (2.5)
+ i - 1
5.0 s.+0
3 1
or equivalently
5.8, < 0 ‘ (2.6)

in the neighbourhood of si(x) = 0. 1In the sliding mode the system
satisfies the equations

si(x) = (0 and éi(x) = 0 (2.7)
and the system has invariance properties, yielding motion which is
independent of certain parameter variations and disturbances. Thus variable
structure systems are usefully employed in systems with uncertain and
time-varying parameters.

Consider the behaviour of the system dynamics during sliding when

the sliding mode exists on all the hyperplanes assuming that the non-unique
control u has been suitably chosen. During sliding equation (2.4) and
its derivative

§ = Cx = 0 (2.8)
hold and the equations governing the system dynamics may be obtained by
substituting an equivalent control ueq for the original control u, From
(2.1) and (2.8) the linear equivalent control is

S B! cax (2.9)
and substitution in equation (2.1) yields the equations governing the
system dynamics in the sliding mode

¥ = [I-B(CB) 'clax = A e (2.10)

Notice that during sliding m state variables can be expressed in terms of

the remaining (n-m) state variables using(2.4). This allows a reduction



in the order of the system matrix.
3 Projectors

3.1 Definition: Given a decomposition of space S into subspaces S] and

82 so that for any x ¢ §

X = %X +x. 3 X, € Sl’ x2 € 82 (3.1)

the linear operator P that maps X into x. is called a projector on Sl

1

along S,, i.e.

2
Px, = x, 3 Px,6 =0, (3,29

3.2 Properties of Projectors

Some useful properties of projectors are listed below (Pease, 1965):
1) A linear operator P is a projector if and only if it is idempotent,
i.e, if
P® = P. { 3.3
2) If P is the projector on S[ along 82 then (I-P) is the projector on
82 along Sl'
3) If P is the projector on R(P) (Range of P) along N(P) (Null space of

P then (I-P) is the projector on N(P) along R(P).

4) For any x € R(P)

Px = x, (3.4)
and
(I-P)x = 0. (3.5)
5) rank (P) = trace (P) (3.6)
and
rank (I-P) = n-rank (P). (3 7l
6) R(P) = N(I-P) _ (3.8)
and
N(P) = R(I-P), : (3.9)

3.3 Relevant Projectors

Certain matrix operators encountered in variable structure systems
(VSS) are projectors,

1) B(CB)"IC is a projector,



Proof: Since

1 1 1 1

[B(CB) €12 = B(CB) CB(CB) C = B(CB) ¢

B(CB)“1 is therefore idempotent and consequently a projector, B(CB)_IC
projects R" on R(B) along N(C) because
R[B(CB)_IC] = R(B) (3.10)

since R(BK) = R(B) 1f B and K are full rank. In our case
K = (CB)AIC which is full rank since B and CB are full rank, Similarly
N[B(CB) ¢l = N(C).
Since nullity (HC) = nullity (C) if H and C are full rank where
H = B(CB)m1 which is full rank.
2) [1 - B(CB)—]C] is a projector.
Proof: Either from Pproperty 2 or by expanding [I - B(CB)_]CT; and showing
that it is equal to [I - B(CB)_IC].

[1 - B(CB)_}C] projects R" on N(C) along R(B). Since the rank of
a matrix 1s the dimension of its range space, by letting P = B(CB)_IC we
cbtain from (3.10)

rank (P) = rank (B) = m (3.1D)

and from (3.7)

rank (I-P) n — rank (P)

= n - m (3.12)
Therefore any n x n matrix pre-multiplied by [I - B(CB)-!C] will have
at most rank n-m.

Both of the above projectors turn out to be of invaluable help
in exploring the basic features of Variable Structure Systems.
3) If A is an m x n matrix and A® is a generalized inverse of A then
AN, ABA, T -AAB T -ABa
m n

are all idempotent and therefore projectors (Graybill, 1969). The proof
follows immediately from the definition of the generalized inverse of a
matrix, i.e.

(Aa%)2 = aaBaa® - aa8



AA® and APA are projectors on R(A) and R(A5) respectively and (Im - AAB)

(In - AgA) are projectors on N(Ag) and N(A) respectively.

1

Further properties of B(CB) 'C and [In - B(CB)_IC] include

a) The matrix B(CB)-1 qualifies as a right inverse of C.

Proof:
. -1
Since CB (CB) = Iﬁl
it follows that
c® - B(cB) .

Also (CB)“iC qualifies as a left inverse of B,

b) e8¢ projects R" on R(C®) or R(B) along N(C).

c) [T = c&c] projects R" on N(C) along R(B). In other words the columm
space of [I - CgC] is the same as that of N(C),

4, Projector Theory and VSS in the Sliding Mode

We shall now apply the above theory to VSS.

4,1 Order Reduction

In the sliding mode the equation describing the system is given by

%* = [I-3B(cB) 'clax = A ; (2.10)

X

eq
, -1 . . .

[T - B(CB) CJ] is a projector which maps all the columns of A on

N(C). The order of the system has therefore been reduced because the

state vector 1s now constrained to lie in N(C) which is an (n-m)th

dimensional subspace (see (3.14)).

4,2 The Invariance Principle Revisited

The invariance principle formulated by DraZenovié (1969) states
that for the system given by
X = Ax 4+ Bu + Df (2 )
s = Cx (£.3)
to be invariant to disturbance f ¢ &' in the sliding mode, the columns
of the matrix D should belong to the range space of B, i.e. col(D) e R(B).
This principle will now be re-examined and a more general version derived.

This generalization extends the theory to the case where CB is



singular (assuming sliding exists).
Theorem 4.1: The system given by (4.2) and (4.3) is invariant with
respect to the disturbance f in the sliding mode if

col(D) ¢ R[B(CB)™ 'C] (4.4)
or

col(D) e R[B(CB)®C] if CB is singular (4.5)
where col ( ) stands for colummns of ( ),
Proof: The system in the sliding mode satisfies

% = [T -B(cB) 'clax + [I - B(cB)™'cIns. (4.6)
For the system to be invariant to £, [I - B(CB)“]CJD should be zero.
Suppose |CB| = 0., If

col (D) ¢ R[B(CB) 'cJ

then (3.5) gives

1

[I-B(CB) CID = 0O
as required,
Conversely,1f

[T - B(cB) 'cIp = 0
then

col(D) e N[I - B(cB) 'cJ

and from (3.8)
col(D) e R[B(CB)_lc] ;
For |CB| = 0 we can replace (CB)_I by (CB)® in the above proof.
The condition (4.4) is identical to that given by DraZenovié for the
case |CB| # 0 because
RIB(CB) 'c] = R(B)
and the condition (4.4) is equivalent to rank (B D) = rank B (Dra¥enovié, 1969).
Remark 4,1 B(CB)gC can easily be shown to be a projector.
Bemark 4.2 When CB is singular the invariancy is weakened since
R[B(CB)EC] < R(B).

Therefore in this case there will be no rejection in the sliding



mode to any disturbance that belongs to R(B) but not to R(B(CB)gC).
Remark 4.3 Substituting h(x, t) for Df in equation (4.2) allows the
effect of parameter variations in A and B to be incorporated into the
system equations. An analysis similar to that in the proof of
Theorem 4.1 yields the conditions for invariance to parameter
variations in A and B,

Remark 4.4 It is well known that the scalar system

ki = %, i=1, ..., n-1
n

x = = z a.x. + bu

n L 171

1s invariant to parameter variations when it is in the sliding mode.
This is because all variations in the a; and b belong to R(B) where
B=7[0,0, ..., b] .

4.3 Physical Interpretation of Disturbance Invariance

Physical insight into the invariance principle is achieved using
projector theory. Let P = B(CB)_lc.

From the previous definitions the projector P decomposes the state

space X into the direct sum

X = R(P) + N(P) (4.7)
or

X = R(P) + R(I-P). (4.8)
Alternatively

R(P) n R(I-P) = {¢}. (4.9)

Since X e R(I-P) during sliding, for x not to be affected by any
disturbance f, the disturbance should lie in the complementary subspace
of (I-P), i.e. f ¢ R{P) which is the condition of invariance.

4,4 Effect of Sliding on the System Zeros

Young (1977) has shown for scalar variable structure systems
that the system zeros are unaffected by the sliding mode., This is

to be expected since the sliding mode results from state feedback,



and it is well known that state feedback cannot affect the system
zeros (Kouvaritakis et al.,, 1976). However, it is instructive to
demonstrate that this is indeed the case here,

Given the system S(A, B, C) we wish to show that the system zeros
are not affected by the organization of a sliding mode on the
intersection of the hyperplane

s = Gx = 0, (4.10)
We note that sliding results from the application of state feedback

u = o PEEY D e (4,11)

eq
which yields the closed-loop system
. =}
x = [I-B(GB) "Glax = AGX. (4.12)

Let us prove that the zeros of S(AG, B, C) are identical to the
zeros S(A, B, C). The zeros of S(AG, B, C) are given (see El-Ghezawi
et al,, 1982) by the n-m eigenvalues of

ME[T - B(CB) 'CI[I - B(GB) 'g]aM
] ]

ME[T - B(CB)_ICJAGM

= M8[I - B(GB) 'G - B(CB) 'C + B(CB) 'CB(GB) 'GlaM
= 501 - B(cB) 'clam. (4.13)

But the eigenvalues of (4,13) are the zeros of the systems S(A, B, C)

and S(AG, B, C). Therefore sliding does not alter the system zeros,

Sie Further Insight into Variable Structure Systems

It is now apparent that projector theory provides a neat method
of studying many properties of VSS in the sliding mode. It also
exposes the relationships between recurring themes associated with
VSS in the sliding mode. These themes involve the closed-loop
eigenvector matrix W = (w]wE ...wD_m) of AEq’ the input matrix B
and the projector matrix P = B(CB)_IC together with the generalized
inverses of W and B, The relationships obtained in this section will

be invaluable when formulating new methods for constructing the

switching hyperplanes matrix C in Section 8.



5.1 The Relationship between B, W and P.

Lemma 5.1 The closed-loop eigenvector matrix W of Aeq is independent
of the colums of B, i.e.

R(W) n R(B) = (¢} . (5.1)
Proof: The nonsingularity of CB implies that the colums of B are

independent of N(C) and since col(W) € N(C) equation (5.1) 1is

established.
Theorem 5.1: In VSS the selected generalized inverses of B and W should
satisfy
BSW = 0 (5:7)
and
wes = o. (5.3)

Proof: Since R(B) = R(P) and col (#) lies in the
null space of P then (Hohn, 1973),
P[B W] =[RB 0], (5.4)
From (5.1) the inverse of [B U] always exists.
Thus P is given by
-

P = [B 0][B W] (5.5)

Let T = [B W] (5.6)

and -1 F
T = (54:4)
LG
1

then using T T = 1 it can be shown that

F = g% (5.8)
and G = w® (5.9)
such that

B = 0 (5.2)

w8 = 0 (5.3)

Q.E.D.

Substituting F (5.8) and G (5.9) in (5.7) and then in (5.5) we get



- g
P = BB°, (5.10)
If the calculation of the inverse of the matrix T is to be avoided,
P should be obtained either from (5.10) subject to condition (5.2)
or from (5.4) as the solution of
o= 0. (5.11)
The solution of (5.11) 1is
- - g
P = H(I - WW%) (5.12)
where H is an n % n arbitrary matrix and W8 satisfies (5.3).

5.2 The Relationship Between P and Aéq

Using

Aeq = (I - P)A : (2.10)

and multiplying both sides by (I-P) gives

o = ~py2 - o o= =
(1 P)AEq (I-p) <A (I-pP)A Aeq' (5.13)

Therefore Aéq is (I-P)-invariant or equivalently the columns of A
eq

belong to R(I-P), This implies that
M. = & (5.14)
Equation (5.14) can also be obtained by multiplying both sides of (2.8)
by P.
From (2.,10) assuming [A]| = 0,
=1
-0 = Aqu (3413)
which establishes that Aqu—l is a projector since (I-P) is a
projector., From (5.15)
= |
- - A A
P I Aeq . (5, 16)
By multiplying both sides of (2.10) by 8% and noting from (5.10)
that P = BB® we get
BPa = 0. | (5.17)

@i Projector Theory and the Design of VSS in the Sliding Mode

The utilization of projector theory in the design of VSS in the
sliding mode appears promising since it leads to new methods for

constructing the switching hyperplanes.



The problem of selecting the switching hyperplanes with desired
design objectives can be easily solved using projector theory.
Desired design objectives may encompass
(1)  Arbitrary eigenvalue assignment.

(ii) Arbitrary specification of CB.,

(iii) The choice (partially) of the eigenvectors of Aeq.

The freedom in choosing the assigned eigenvectors is partial and the
degree of freedom increases with increasing R(B).

Existing design methods (Young et al., 1977) and (Utkin and Yang,
1978) cater for case (i) above. All our proposed methods require the
availability of the closed-loop eigenvectors W. The determination of
these eigenvectors will be described in the following section.

7. The determination of the Eigenvector Matrix W

The design methods to be described in section 8 for the construction
of the switching hyperplanes require the availability of the closed-loop
eigenvectors W. A well known fact related to the linear feedback
systems eigenvalue-eigenvector assignment question is that

(A + BO)W = WJ (7.1)
where K 15 an m x n feedback matrix chosen to yield the desired
closed-loop poles specified by the eigenvalues of J (Sinswat and
Fallside, 1977). The (n-m) x (n-m) matrix J may be diagonal or have
Jordan block form. I£f£ rank (K) = m then equation (7.1) implies that
col(AW = WJ) e R(B) . (7.2)

The problem of arbitrary eigenvector assignment has been tackled
by Shah et al. (1975) where it has been shown that, in general, it
is impossible to specify all components of any one eigenvector
arbitrarily using state feedback. In matrix form (7.2) is equivalent
to

AW -~ WJ = BL (743)

where L 1s an arbitrary m x (n-m) matrix chosen to provide linear



combinations of the columns of B. This influences the solution of
W and provides partial control over the n-m eigenvectors W - The
eigenvectors should be independent of B, i.e. they satisfy

R(W) n R(B) = {¢}. (7.4)
The solution of equation (7.3) which also satisfies (7.4) may be
determined algebraically utilizing the structure of the given system.

8. The Construction of the Switching Hyperplanes C

The problem of constructing the switching hyperplanes constitutes
a special case in the more general problem of pole-assignment. Some
design methods select the switching hyperplanes which minimize
quadratic functionals (Utkin and Yang, 1978). Here the switching
hyperplanes matrix C is to be chosen so that Aeq has m zero-valued
eigenvalues and n-m eigenvalues specified by the designer. Any
eigenvalue assignment method can be used. However, a reduction in
the computational effort involved especially in the case when m = n
can be obtained using properly adapted eigenvalue placement
algorithms (Young et al., 1977) and Utkin and Yang (1978). In
addition methods available for zero assignment given matrices A, B
can also be used to obtain the matrix C (Kouvaritakis and MacFarlane,
1976, part 2).
Method I: The "B®" method.
Let the matrix C satisfy

CB = 5§ (8.1)
where S 1s an arbitrary m x m nonsingular matrix and

cWw = 0. (8.2)
A solution to (8.1) always exists, since B is full rank, giving the
particular solution

t = 8BE . (8.3)

This solution alsc satisfies (8.2) since it is required from (5.2)



that B% = 0. A systematic method of finding B® which will always
satisfy BSW = 0 is by constructing [B w]_]. The first m rows of this
inverse gives BE satisfying B8y = 0 (see (5.5) - (5.9)).

Remark It can be shown that the direct calculation of P is not

necessary for the determination of C., We have

B(ce) ¢ = BsTlc = o, (8.4)

A solution for C always exists since E&S-l and P in (8.4) have
the same range (see (3.10)). A particular solution is
¢ = sB®p. (8.5)

From (5.10) P = BB® and therefore

C = SBpp® (8.6)
Since
Bn _
. B®B Im (8.7)
it follows that
¢ = sBb (8.8)

which is independent of P,
Method IT: The "W" method.
Here C is determined directly from the n x (n-m) eigenvector
matrix W.
Since
col (W) « N(C) (8.9)

it follows that

¢ = rwh

where I' is an arbitrary nonsingular m x m matrix and W5 is the annihilator

of W (1,e. wiw = 0). If the value of CB is immaterial, I can be chosen
arbitrarily. However, if CB is required to assume a certain value S

I' must be determined from



CB = S5 = IWB (8.11)
I = S(WB) . (8.12)
The inverse of (WLB) always exists since R(W) n R(B) = {4}.
From (8.11) and (8.12)
¢ = sotm) Wt (8.13)
The C calculated using this method is also equal to sB®, This is
because (WJ'B)_]Wl qualifies as a generalized inverse of B and satisfies
w's 'wtw = 8B = 0. (8.14)
The matrix (WLB)_IWL will always qualify as 88 that satisfies
B&W = 0 irrespective of the choice of W,
9, Examples
In all these examples A and B are given. It is required to find
the switching hyperplanes matrix C which will assign the specified
eigenvalues of J (7.1) to Aeq

Example |

We wish to assign two repeated eigenvalues at -4. Since the eigenvalues

are repeated and n-m > m we should use the Jordan block form

We mext calculate the eigenvector matrix using condition (7.2)

1 i

w o= 24 26
5

16 -128

Using the B® method (Method I) we get B® = [16 8 1] and C = SB® =S[16 8 1]

Using the W method (Method II) with CB = 8 we get



1 -5 |t
1 ]
c = s[w]wzj 5 = -4 26
16 -128

sfie 8 1]
where 5 is an arbitrary constant.

As a check the resulting eigenvalues of Aeq are given by

0 1 0
sp(Aéq) =sp| O 0 1 = {0, -4, -4}
L 0 -16 -8 |

Two eigenvectors associated with the two eigenvalues at -4 can be

easily shown to be equal to v, and W

Example 2

= 1 1] 0 0
A = 0 = ] } , B = 0 1
G 0 -1 1 I
It is required to assign a single eigenvalue at A = -1 so J = -1,
Note that A has three eigenvalues at ~1|
0 1 z
A - AL = 0 0 | = AS
10 0 0

By choosing 2 ! where £ 1is the first column of the matrix L

_I‘
I

eqn (7.3) we obtain the single eigenvector satisfying (5.1)
" h
Wo= | -l
1
|



where h is arbitrary but nonzero.

Using Method IT with CB = SI, and k = 1

& =312(WLB)—1WL
-2 1 1 1

=3
1 0 0 I
-2 -1 1

= § .
|1 I 0

Note that i1if Method

will be obtained as

-2 ~] 1
B8 =
1 1 0
giving once again
-2
c = sB® =51,B% = 5
2
1
Example 3
[ 1.38 -0.2077 6.715
10,1952 -4.29 9.998
A —r
1 0 =5
_ 2.2037 4:.273 3.343
The solution of (7.3) with
=10 0
J = and L
0 -10
gives
-0.3235 0.3891
0.3891 0.3936
W 0.3781  -0.6878
-0.2155 -0,0480

I had been used then a BE

" which ensures ng =0

0
-5.676 | 0
-13.802 5.679
B =
5 1.136
-5 | | 1.136
] 0
0 I




Since the two eigenvectors W are independent and R(B) n RK(W) = {4}, using

(5.5) the matrix P can be determined together with B® which is given

1

by the first two rows of the inverse of [B W] ', Let the matrix CB

be assigned the diagonally dominant value

Using Method I, B® is found as the first two rows of

-0.0751 0.1128 0 0.3163 ]
-0,5386 0.0098 -0.3178 0.2686
(5wl ! o=
-0.8167 0.5016 0 -2.5077
1.8908 0.4171 0 ~2.085 |
and c = sB®
{ 0.0751 -0,1128 0 -0.3163
| 1.0773 -0.0196 0.6357 -0.5373 |
Conclusion

A new treatment of VSS in the sliding mode has been developed using
projector theory. The employment of projectors in the study of VSS
has been shown to provide further insight into their operation.
Furthermore new methods for constructing the switching hyperplanes
have been formulated, In addition to solving the eigenvalue placement
problem these methods allow CB to be specified arbitrarily and allow
partial control over the choice of the closed-loop eigenvectors. The
examples included have illustrated the feasibility of the proposed
methods,
ﬂpkigyigggement
The authors gratefully acknowledge that this work was supported by SERC under
research grant number GR/C/03119,
References

el - - . . - . .
Drazenovié, B, 1969, '"The invariance conditions in variable structure

systems', Automatica, Vol 5, pp.287-295.



El-Ghezawi, O.M.E., Billings, S.A., Zinober, A.S.I, 1982, "Variable
structure systems and system zeros', to appear in Proc. IEE,
series D,

Graybill, F.A., 1969, "Introduction to matrices with applications in
statistics'", Chapter 6, Wadsworth Publishing Company.

Hohn, F.E. 1973, "Elementary matrix algebra", third edition, Macmillan.

Kouvaritakis, B., MacFarlane, A.G.J. 1976, "Geometric approach to the
analysis and synthesis of system zeros, Parts | and 2", Int. J.
Control, Vol 23, pp.149-182,

Pease III, M.C. 1965, "Methods of matrix algebra", Academic Press.

Shah, S.L., Fisher, D.G., Seborg, D.E. 1975, "Eigenvalue/eigenvector
assignment for multivariable systems and further results for
output feedback control", Electronics Letters, Vol 11, No 16,
pp.388-389.

Sinswat, V., Fallside, F. 1977, "Eigenvalue/eigenvector assignment by
state feedback", Int. J. Control, Vol 26, No 3, pp.389-403,

Utkin, V.I. 1977, "Variable Structure Systems with sliding modes",

IEEE Trans. Automatic Control, Vol 22, pp.212-221.

Utkin, V.I. 1978a, "Sliding modes and their application in variable
structure systems', M,I.R. Publishers, Moscow.

Utkin, V.I. 1978b, "Application of equivalent control method fo the
systems with large feedback gain", IEEE Trans., Automatic Control,
Vol 23, pp.484-486,

Utkin, V.I., Yang, K.D. 1978, "Methods for constructing discontinuity
planes in multidimensional variable structure systems", Automation
and Remote Control, Vol 39, pp. 1466—1470,

Young, K.D. 1977, "Asymptotic stability of model reference systems with
variable structure control", IEEE Trans. Automatic Control, Vol 22,

pp.279-281.



