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Abstract

The RobotMODIC project run by the Univer-
sities of Essex and Sheffield investigates ways of
quantitative description and accurate, transpar-
ent modelling of robot-environment interaction.
Transparent, analysable models allow the evalua-
tion of robot controllers with regard to issues such
as stability, relevance of individual sensor percep-
tions for the control task at hand, and quantita-
tive comparison of different approaches to robot
control.

In this paper we specifically discuss the prob-
lem of task identification. Using the example of a
simple wall-following program, we present trans-
parent polynomial models that achieve similar be-
haviour to the original controller. ARMAX and
NARMAX modelling methods have been used to
obtain these models.

1. Introduction
1.1  Motivation

To date the main efforts in the mobile robotics field have
been oriented towards the development of different con-
trollers aimed to obtain specific behaviours in a mobile
robot. These controllers are usually combined through
different control architectures, in order to let the robot
solve more complex tasks. Many of these control pro-
grams have been developed through an empirical trial-
an-error process of iterative refinement, until the robot’s
behaviour resembles the desired one to the desired degree
of accuracy. It is also common to find different control
approaches to obtain the same behaviour in the robot.
Although the development of all these controllers is in-
teresting and necessary, there is a very important prob-
lem related with the required comparison between the
different solutions achieved with all of them. Normally,
in all the published articles it is possible to find a gual-
itative analysis of the behaviour achieved by the robot,
but not an evaluation from a mathematical point of view.
Contrasting different behaviours or even exchanging con-
trollers between different research groups is something

extremely useful, but too complex because usually the
code of the controller is not portable between differ-
ent, robot platforms. Moreover, if we manage to put in
our robot the controller developed by another research
group, it also could happen that slight differences be-
tween the robots or the environments where they move
may cause the controller not to work properly. The prob-
lem in this case is that normally we don't have a clear
idea why this happens.

There is a strong tendency to work in the field of mo-
bile robots from an engineering point of view, but we
mustn’t forget that the object of all experimental sci-
ence is the knowledge and representation of the phys-
ical world around us (Eykhoff, 1981). As it is said in
(Nehmzow, 2001a), research on guantitative descriptions
of mobile robot behaviour is still in its infancy. Mobile
robotics is still an empirical discipline that uses exis-
tence proofs extensively. The first step towards a science
of mobile robotics would be the development of quan-
titative, rather than qualitative descriptions of mobile
robotics behaviour.

1.2 Robot-Environment Interaction

A mobile robot operating in, and interacting with the
environment, essentially performs a complex function
that is governed by sensory perception, actuator per-
formance and environmental factors (Nehmzow, 2001b).
In this paper we present the results we have obtained
and the procedure followed in order to model this func-
tion. In general, task identification and characterisa-
tion represents a procedure which lets us model the
behaviour of a robot starting from its sensor percep-
tion. The work described in this paper is part of the
RobotMODIC project at the Universities of Essex and
Sheffield (Nehmzow et al., 2004). This project aims to
identify both a mobile robot’s motor response to per-
ceptual stimuli (task identification henceforth), and the
perceptual properties of the robot’s environment (envi-
ronment identification).

Task identification and characterisation would let us
understand better some important properties of the
robot’s behaviour, analyse the stability of the controller



or the sensibility to the sensor noise.

The usual way to analyse behaviour stability is to
simply move the robot to different situations and en-
vironments, but there is usually no mathematical proof,
On the other hand, sometimes what the robot is do-
ing depends just on what it is seeing through two or
three specific sensors, so not all the sensor information
has the same importance. Nevertheless when method-
ologies like reinforcement learning and artificial neural
networks are applied, we don’t have a transparent rela-
tionship between what the robot is doing and what it is
seeing through each one of its sensors.

A deeper study through mathematical models of the
different solutions achieved for the same behaviour would
let us understand better the weakest aspects of the dif-
ferent controllers. Understanding the reason why our
robot behaves properly in some situations, and why in
others its behaviour is totally different and unexpected,
would help us to develop more robust behaviours and
solve new problems in the future, instead of solving sev-
eral times the same kind of behaviours, just changing
the methodology used, and without a clear idea of why
our new solution may be better or worse than previous
ones. As it is said in (Eykhoff, 1981), trying to optimise
a control system without identifying it seems a danger-
ous solution.

A mathematical description of a robot’s behaviour, for
example in the form of a (polynomial) model, facilitates
communication between research groups. Control code
can more easily be shared, analysed for stability and sen-
sitivity to certain sensor signals. The sharing of models
makes the design of mobile robot controllers more trans-
parent, as the control strategy is clearly expressed in
closed form. Furthermore, unlike opague models (such
as for instance artificial neural networks or fuzzy con-
trollers), transparent models have obvious benefits when
reasons for any failures need to be established.

2. System Identification

2.1 Introduction

In this section we discuss the relevant aspects to the
problem of task identification and characterisation, and
the different modelling options we have used.

Let us assume we have a sensor-based controller that
we want to identify and model. This controller is able to
process the sensor information and decide the commands
that the robot must carry out at every point in time in
order to solve a specific problem or carry out a particular
task. Our aim is to replace the original controller with a
mathematical representation in such a way that, starting
from the sensor information, the model should be able to
make the robot behave in the same way as the original
controller did.

Tt is convenient to characterise system identification

by three elements: a set of data, D, a set of models M,
and a criterion C.

Tn our case, the set of data is information collected
from the robot when it is moving in a specific environ-
ment, solving a particular task. The set of data consists
on a sequence of input-output pairs {u(tx), y(tx)}, where
u(ty) are the sensory perceptions and (i) the motor re-
sponses of the robot, which have been logged during the
robot’s operation at discrete sampling points t.

The identification problem consists of finding a model
in the set M that explains the data set D. By the set M
of models we can understand a class of functions used to
obtain the mathematical expression we are looking for.
In the model that we select there will be a set of param-
eters whose value has to be determined according to the
information stored in D. The adjustment of this param-
eters will be carried out according to a specific criterion
C, normally called loss function (Eykhoff, 1981).

2.9 Model Validation

Once the model is obtained it has to be validated.
System identification is an iterative procedure which
includes the selection of model structure and crite-
ria for the parameter estimation and finally validation.
There is no guarantee that a suitable model can be
obtained with the chosen model structure and the pa-
rameter estimated. There are many validation methods
(Box and Jenkins, 1970). In our case, to avoid the prob-
lem of overfitting and to check if the models we obtained
are suitable for our purposes, we applied two different
options.

First, we divided the experimental data in two differ-
ent sets: a training data set, which is used for parameter
estimation, and a validation data set, which is used for
validation. As we will see clearly in the next subsec-
tion, the adjustment of the parameters of the models
will be carried out trying to reduce a specific error (eval-
uated through what we previously called loss function,
see equation 2) over the training data set. Omce the
parameters are determined, this error will be evaluated
again, but in this case over the validation data set, try-
ing to see if it is similar to the one obtained with the
training data.

Second, we have validated the obtained models by ac-
tually controlling our mobile robot using the models, and
comparing the behaviours obtained. The purpose of this
second validation procedure was to establish that the
obtained model was not only numerically close to the
original, but also resulted in similar robot behaviour un-
der real-world conditions.

In the next two subsections we’ll describe briefly each
one of the two modelling options we have used in this
work.



2.8 ARMAX modelling

One of the parameterised model structures we have used
is the ARMAX model (Auto-Regressive Moving Av-
erage model with eXogenous inputs) (Eykhoff, 1981).
Through the ARMAX structure we’ll consider that the
task we are trying to identify can be described by equa-
tion 1.

P Q R
y() =Y aky(t — k) + ) bmult —m)+ Y cre(t — 1),
k=1 m=0 =0
(1)

where y(t), u(t), and e(t), are the sampled output, in-
put (which can be multidimensional), and unobservable
noise sequences respectively.

According to equation 1, the current output of the
system y(t), depends on the P previous outpuf values
y(t — 1),..,y(t — P), and also on the current and the Q
past values of an extra external input signal: u(t), u(t —
1),..,u(t — Q). P and Q values are known as input and
output orders.

As previously mentioned in section 2.1, we have a set
of data D which we try to model using the polynomial
expression given in equation 1. The data used for mod-
elling consists of sensory perception and motor responses
obtained at consecutive discrete points in time. Half of
this data are used as training data set, while the remain-
ing half is used as validation set.

Through an iterative process, the values of the pa-
rameters a(t),..,b(t), are estimated trying to minimise
the value of a loss function. This loss function is de-
fined as the squared difference between the output of
the system in each sampling time, y(t), and the output,
{(t), predicted by the model for the same point in time
(equation 2).

N

loss_function = Z

t=maz{P,Q}

() - 9®)* ()

where N is the number of points in the data set. If
correct parameter estimates are to be obtained, the noise
sequence e(t), which is almost always unobservable, must
be estimated and accommodated within the model.

ARMAX modelling has been successfully applied for
system identification in a large variety of different prob-
lems. The linearity in the parameters to be calculated
makes its estimation easy; the linear structure allows us
to obtain a predictor with a simple closed expression.

2.4 NARMAX modelling

We have also used another model structure in or-
der to solve the problem of task identification.
This new representation structure, known as NAR-
MAX (Nonlinear Auto-Regressive Moving Average

model with eXogenous inputs) (Chen and Billings, 1989,
Korenberg et al., 1988), is more suitable than the previ-
ous one for the modelling of nonlinear systems. In fact,
this new strategy can be very suitable for task identifi-
cation in robotics, given that sometimes the behaviour
of the robot tend to be of high dimensionality and often
with discontinuous control laws.

The polynomial NARMAX model is linear in the pa-
rameters, thus allowing the application of readily avail-
able parameter estimation techniques, and without im-
posing any restrictions in the nature of the inputs.
For the modelling experiments reported here, we have
adapted and simplified the general model proposed in
(Chen and Billings, 1989), the model we use takes the
form given in equation 3.

P
y) =D axy(t — k) + F'(ult), .yt - Q) -1, (3)

k=1

where F!(u(t), ...,u(t — Q)) is a polynomial of degree [
where the input signals are combined. @ is the input
order or maximum input lag, and P is the output order.
Assuming the input signal is multidimensional, u(t) =
(u1(t), .., un(t)), the expression of F! can be written as:

Fllu(t), .,ult — Q) =
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where Ge,e,,... .04 aT€ coeflicients whose values have
to be estimated.

NARMAX system identification involves two main
stages: (i) structure selection (by means of which the
most useful terms to be included in the model are se-
lected), and (ii) parameter estimation.

In our case we have used the mutual information
(Abarbanel, 1996) between the output and the inputs
as criterion to select those terms that are more relevant
for the problem. Once this is done, a parameter esti-
mation is carried out trying to minimise the same error
we used in ARMAX modelling (equation 2). In general,
the steps we followed in order to obtain our NARMAX
models are the following:

1. Structure selection (mutual information is used for
this)

2. Parameter estimation

3. If the error value calculated over the training data
set is being reduced go to step 4, otherwise stop

4. Removal of the irrelevant terms according to the last
values estimated for their coefficients. Go to step 2.
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Figure 1: THE MAGELLAN PRO MOBILE ROBOT USED IN THE EXPERIMENTS DESCRIBED IN THIS PAPER (A) IS EQUIPPED WITH
16 ULTRASOUND SENSORS AND A SICK LASER SCANNER. THIS LASER SCANNER HAS AN OPENING ANGLE OF 1807, AND IT IS
ABLE TO DELIVER 180 DISTANCE MEASUREMENTS, ONE PER DEGREE (B).

3. Experimental Results

3.1 Modelling Approach and
Experimental Procedure

In this section we discuss the application of the previ-
ously described ARMAX and NARMAX modelling ap-
proaches for task characterisation and identification. A
detailed discussion is beyond the scope of this paper —
instead we demonstrate the method using basic examples
obtained through real-world robotics experimentation at
Essex.

The robot we use is the autonomous mobile robot
Radix, a Magellan Pro robot shown in figure 1. As
we can see in this figure, this robot has 16 ultrasound
sensors, and is furthermore equipped with a SICK laser
scanner.

Initially, we let Radix operate under the control of
a controller developed to let the robot follow walls on
its right hand side in a closed environment. While the
robot was moving, the sensory perceptions, as well as
the translational and angular velocity of the robot were
logged every 250 milliseconds.

In order to solve the problem of task identification in
this case, we applied the ARMAX and NARMAX strate-
gies trying to obtain two different kinds of model, one to
model the link between sensory perception and angular
velocity, and the other to model the link between sensory

perception and translational velocity of the robot.

3.2 The Wall-Following Controller Modelled

To clarify our modelling approach by way of presenting
an example, we begin by discussing the original wall-
following controller used (this section). We continue by
presenting the identification (models) of this task (sec-
tion 3.3.1) and conclude by discussing the validation of
these models (section 3.3.2).

The controller we have developed determines which
are the motor responses of the robot suitable to keep it
following the wall on its right (figure 2). In particular
it determines the angular and linear velocities starting
from a distance, ld, which is calculated from the infor-
mation provided by the laser scanner:

90 . .
> oo distance_angle;i
S0 )
i=0"

where distance_angle;, with i € [0,90°], are the right
side distances delivered by the SICK laser scanner. We
can see that these 90 distances are weighted in such a
way that the information coming from the front of the
robot is more important than the distances detected on
the right side (0O degrees).

Once the Id distance is calculated, the angular and
linear velocities § and v are set to the following values:

ld =

(4)
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Figure 2: (A) ENVIRONMENT WHERE THE EXPERIMENTS WERE CONDUCTED. THE ROBOT IS VISIBLE CLOSE TO THE CENTRE
OF THE IMAGE. (B) ROBOT'S TRAJECTORY WHEN THE WALL FOLLOWING CONTROLLER IS BEING USED.
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where Vipaz = 0.15m/ s is the maximum desired speed,
Gmaz = 1.2m and dpin = 0.57n, and, finally, dgyg = 1m.

3.8 FEzxperimental Results
3.8.1 Models Obtained

After moving the robot using this controller, we have
modelled the angular and linear velocities using different
ARMAX and NARMAX strategies.

For modelling the angular velocity, both strategies
(ARMAX and NARMAX) were able to obtain accurate
models when the input signal u(t) used the same dis-
tance criterion as the original controller (equation 4).
The models obtained in both cases are shown in table 1.

To obtain the model in this case, we have actually used
information about the original control program, that is,
we used exactly the same sensor information that was
used in the original wall follower. Furthermore, we pre-
processed the sensor information in the same way as was
done in the original controller. For many applications,
however, such information may not be available — it
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Figure 3: NARMAX MODELLING OF THE ANGULAR VELOC-
ITY AS A FUNCTION OF THE LASER SENSOR PERCEPTION (SEE
TABLE 2)

will sometimes be the case that only trajectory and sen-
sor information is available to model the control program
governing the robot’s behaviour.

To show the usefulness of task identification, we there-
fore obtained different models of the angular velocity,
where different sensory inputs were used. Specifically, we
obtained and validated 4 different models of the angular
velocity. Two of them used the 16 sonar sensor measure-
ments as input signal at every point in time, while the
other two used the laser sensor in a way different to that
used in the control program.

The ARMAX strategy was successfully employed in
the two models where all the ultrasound measurements
were used as inputs.

Regarding the models where the values coming from
the laser scanner make up the input information, both
ARMAX and NARMAX strategies were used (table 2).
In this case, the values delivered by the SICK laser scan-
ner were grouped in order to obtain a 6 dimensional vec-



NARMAX

B(2) = +1.3089801 + ld( — 1) — 13270617 * ld(¢) * ld(t — 1)

ARMAX

B(t) = +0.5609629 + (£ — 1) +0.4298233 (¢ — 2) — 0.9185964 » [d(t) + 0.4559368 * ld(t — 1)
+0.4644224 # 1d(t — 2)

Table 1: ARMAX aANpD NARMAX MODELS OF THE ANGULAR VELOCITY i, WHEN THE SAME DISTANCE CRITERION AS IN THE
ORIGINAL CONTROLLER (4) WAS USED AS INPUT. IN THE ARMAX MODEL WE USED INPUT AND OUTPUT ORDERS OF 2 AND 1,
RESPECTIVELY. FOR THE NARMAX MODEL INPUT ORDER=1, OUTPUT ORDER=0, AND DEGREE=1.

tor of distances d = (d[1],...,d[6]). Each distance was
calculated in the following way:

Ej:{i—l)l.’)—l—lﬁ

= (i-1)15+1 distance_angle;

15 :

dli] = b Lol

(5)
where distance_angle; are the distances on the right
side delivered by the SICK laser scanner.
The same vector of distances, 7, also proved to be
very useful in the ARMAX model we obtained to predict
the linear velocity (table 3).
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Figure 4: ARMAX MODELLING OF THE ROBOT'S TRANSLA-
TIONAL VELOCITY AS A FUNCTION OF THE LASER SENSOR
PERCEPTION (SEE ALSO TABLE 3)

Figures 3 and 4 show the actual angular and trans-
lational velocities of the robot, as well as the model-
predicted velocities. To see the degree of accuracy of the
models we have calculated the Pearson (r) and Spear-
man rank correlation coefficients between the modelled
and the true velocities of the robot. Thus, in the case of
the angular velocity,  varies between 0.993 (significant,
p<0.05) in the best case (NARMAX model), and 0.872
(sig., p<0.05) in the worst one (ARMAX model using
the 16 ultrascund sensors as input information, input
order=1, output order=0). The Spearman rank corre-
lation coefficient obtained for these two models, 0.983
(sig., p<0.05) and 0.817 (sig., p<0.05) respectively, also

represent the maximimum and the minimum values for
this parameter.

When the linear velocity was modelled using AR-
MAX, the values correponding to the Pearson and the
Spearman rank correlation coefficients were 0.966 (sig.,
p<0.05), and 0.946 (sig., p<0.05), respectively.

Through these values is important to notice that
NARMAX strategy let us achieve a better model than
ARMAX, which is reasonable taking into account that
NARMAX can model non linear systems. On the other
hand, we could also appreciate that the correlation coef-
ficients are higher for those models using laser as input
information than for those using sonar readings instead.
Thus, r=0.934 (sig., p<0.05) for the ARMAX model us-
ing 16 ultrasound sensors, input order=4, and output
order=0, while for the ARMAX model using laser as
input information, input order=1, and output order=0,
r=0.968 (sig., p<0.05). The Spearman rank correlation
for these two models is 0.896 (sig., p<0.05), and 0.923
(sig., p<0.05), respectively. There are two reasons which
can justify these values: one of them is the fact that laser
readings are more accurate. The other reason is that the
original behaviour we have modelled decides the robot’s
behaviour at each instant starting from the laser read-
ings.

3.8.2 Validation of Models

In order to validate all these models, we applied the two
options mentioned in section 2.2. The value of the loss
function was evaluated over the training and the testing
data sets, and all these models were used to control the
movement of the robot.

The trajectories observed when the models were ap-
plied to move the robot were very similar to the one
obtained with the original controller (compare figures 2
and 5).

In general, we observed that the use of high input or
output orders in the model tend to cause a generalisa-
tion problem (overfitting). As the number of terms of
the model increases, the value of the loss function over
the training data decreases. The problem is that when
we apply a model with a high number of terms to con-
trol the robot, its movement tends to become unstable.
Occasionally the model even makes the robot fail.

We observed some statistics of the original controller’s



NARMAX

~1.2538074 * d[5](t — 1) * d[6](t)

+14.435493 * d[5]

G(¢) = —8.0721900 # d[6) (¢ — 1) + 12.234227 * d[6]() — 2.1568866 « d[6](t) = d[6](t — 1)

—3.5634503 % d[5)(¢ — 1) + 13.713349 * d[5](¢ — 1) » d[6](t — 1) — 9.6794691 * d[5(¢ — 1) * d[6](t)
( )+ d[B](t— 1) + 3.9611084 * d[5]( ) + 6.7678404 + d[5](t) * d[6](t — 1)

—16.980652 % d[5](t) * d[6](£) + 5.2273765 = d[5) () + d[6] (£)  d[6)(t — 1)

—0.6226611 * d[5](t) * d[5](t — 1) — 10.826077 * d[5](¢)
t)

Y+ d[B](t — 1) = d[6](t — 1)

) # d[5)(t — 1) + d[6](t) — 2.1819942  d[5(t) * d[5] (t — 1) * d[6(t) = d[6](t — 1)

ARMAX
+0.2141653 * d[5)(t) — 0.4676208 * d[6](t)

6(t) = —0.0833922 * d[1)(t) + 0.0686805 * d[2](£) + 0.0012728  d[3] () — 0.2209385 * d[4](2)
+0.3688172 * d[1](t — 1) + 0.0356499 * d[2](t — 1)
40.0500439 * d[3](t — 1) + 0.2122142 « d[4](t — 1) -

0.1606333 * d[5](t — 1) 4 0.2895952 * d[6](t — 1)

Table 2: ARMAX anD NARMAX MODELS OF THE ANGULAR VELOCITY §, WITH THE INFORMATION DELIVERED FROM
THE LASER SCANNER USED AS INPUT. IN THE ARMAX MODEL THE INPUT AND OUTPUT ORDERS WERE SET TO 1 AND O,
RESPECTIVELY. FOR THE NARMAX MODEL INPUT ORDER=1, OUTPUT ORDER=0, AND DEGREE=1. THE MEANING OF d[i)

VALUES, Vi =1, ...,6 18 SPECIFIED IN EQUATION 5.

v(£)=-+0.0075999%d[1](t)+0.0271140%d[2] (t)
-0.0099592*d[3] (t)+0.0471389%d[4] (t)
-0.0095064*d[5](t)+0.0855093*d[6](t)

-0.0221077*d([1)(t-1)-0.0371495*d[2] (t-1)
+0.0239458*d[3] (t-1)-0.0280440*d[4] (t-1)
-1)-0.0364634*d[6)(t-1)

+0.0299362*d[5) (

Table 3: ARMAX MODEL OF THE ROBOT'S TRANSLATIONAL
VELOCITY v(t), WHEN THE INFORMATION DELIVERED FROM
THE LASER SCANNER WAS BEING USED AS INPUT. INPUT OR-
pER=1, OUTPUT ORDER=0. THE MEANING OF D[1] VALUES,
i = 1,...,6 1S SPECIFIED IN EQUATION (5)

behaviour as well as those of the models being executed
on the robot, for a period of about 100 minutes each.
Results are shown in table 4. The trajectory obtained
using the model given in the last row of table 4 is shown
in figure 5.

It is interesting to note here that a robot’s be-
haviour — in this case wall-following — can be achieved
in the traditional way of encoding the control procedure,
using an established language such as for example C. It
can, however, also be obtained by identifying the be-
haviour (in the sense of system identification), and ex-
ecuting the identified model on the robot. The possi-
bilities for generating robot control code and sharing it
across platforms is obvious.

Tn the histogram of distances shown in figure 6, we can
see that in almost all the different modelling situations,
the robot’s distance from the wall stays in the interval
[0.25m,0.6m]. Even more, all the curves in the histogram
show a fast fall between 0.35 and 0.5 meters. The only
behaviour which seems to be different is the one obtained
through the use of the ARMAX model of the angular
velocity, when laser information was used as input. In
this case, although the shape of the curve is similar to the
one corresponding to the original controller, the robot
seems to move a bit further away from the wall which is

Figure 5: ROBOT’S TRAJECTORY WHEN THE MODELS CORRE-
SPONDING TO THE TRANSLATIONAL AND ANGULAR VELOCI-
TIES WERE USED. IN THIS CASE THE MODEL USED FOR THE
LINEAR VELOCITY WAS THE ONE USING ARMAX, WHILE THE
ANGULAR VELOCITY WAS MODELLED WITH NARMAX. THE
VALUES DELIVERED BY THE LASER SCANNER ARE USED AS
INPUT INFORMATION IN BOTH MODELS. COMPARE THIS TRA-
JECTORY WITH THE ORIGINAL TRAJECTORY SHOWN IN 2.

being followed.

The fact that we were able to obtain accurate models
with different input signals proves that it is not necessary
to know in advance the characteristics of the controller.
This fact increases the usefulness of the task identifica-
tion and characterisation, given that the mathematical
expressions obtained can help us to understand better
the relationship between what the robot sees through
the different sensors, and its movement in the environ-
ment. Through the coeflicients obtained in the model we
can analyse which sensor information seems to be more
relevant.We can also attempt to achieve the same wall
following behaviour, using different sensors, e.g, replac-
ing laser with sonar.

Moreover, we could even think of moving the robot
with the help of a man-machine interface or a joystick,
“teaching” the desired behaviour. Once this is done, we
could try to obtain the corresponding models starting



Model Minimum distance | Maximum distance
Original Controller 0.26m 0.85m
ARMAX, 16 ultrasound sensors, input order=1,output order=0 0.28m 0.59m
ARMAX, 16 ultrasound sensors, input order=4,output order=0 0.25m 0.89m
ARMAX, laser, input order=1, output order=0 0.41m 0.78m
NARMAX, laser, input order=1, degree=1, output order=0 0.25m 0.97m
NARMAX, laser for angular velocity, ARMAX laser for linear velocity 0.24m 1.0m

Table 4: DISTANCES BETWEEN THE ROBOT AND THE WALL WHICH WAS BEING FOLLOWED WHEN ITS MOVEMENT WAS CON-

TROLLED BY EACH ONE OF THE MODELS. SEE ALSO FIGURE 6
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Figure 6: THE RELATIVE FREQUENCY OF THE DISTANCES BE-
TWEEN THE ROBOT AND THE WALL WHICH WAS BEING FOL-
LOWED CAN BE SEEN IN THIS HISTOGRAM. [T WAS OBTAINED
STARTING FROM THE ROBOT’S MOVEMENT WHEN IT WAS CON-
TROLLED BY EACH ONE OF THE MODELS. SEE ALSO TABLE 4.

from the data logged during the robot’s operation. Fi-
nally, taking into account the conclusions obtained from
the analysis of the model (trying to see, for example,
which sensor information seems to be more relevant, etc)
it should be easier to develop a good controller.

4. Conclusions

In this paper we have emphasised the use and relevance
that task identification and characterisation could have
in the mobile robotics domain. Using mathematical
models to characterise the link between sensor percep-
tions and motor response of a mobile robot opens new
doors in the research on quantitative descriptions of be-
haviours in mobile robotics.

Once transparent mathematical models of sensor-
motor behaviour are available, they can be used to deter-
mine the stability of controllers, to identify the relevance
of individual sensor signals for the overall robot opera-
tion, or even to obtain new and more concise control
mechanisms.

In certain cases it may be possible to exchange task

models between different robot platforms, thus essen-
tially “programming” mobile robots not through the ex-
plicit definition of a control mechanism, but through a
model derived from it. This may, in some cases, lead to
platform-independent control programs, in other cases it
will aid the design of control programs for novel robot
platforms.

Our first experimental results confirm that there are
cases where this approach is viable. The circumstances
under which task identification is a viable way of con-
trolling robots in general is subject to ongoing research
at Essex and Sheffield.
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