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Abstract

The RobotMODIC project at the Universities
of Essex and Sheffield investigates the underlying
phenomena governing robot-environment interac-
tion. The project aims to “identify” — in the
sense of mathematical modelling and system iden-
tification — both a mobile robot’s motor response
to perceptual stimuli (task identification) and the
perceptual properties of the robot’s environment
(environment identification). Models are repre-
sented as either linear or nonlinear polynomials,
and are obtained using ARMAX and NARMAX
system identification techniques.

1. Motivation

Industrial and technical applications of sensor-response
systems (such as mobile robots) are continuously gain-
ing in importance, in particular under considerations
of reliability (uninterrupted and reliable execution of
monotonous tasks such as surveillance), accessibility (in-
spection of sites that are inaccessible to humans, e.g.
tight spaces, hazardous environments or remote sites)
and cost (transportation systems based on autonomous
mobile robots can be cheaper than standard track-bound
systems). Mobile robots are already widely used for
surveillance, inspection and transportation tasks — a
further emerging market with enormous potential is that
of mobile entertainment robots (Nehmzow, 2002).

In science, mobile robots are arguably the most impor-
tant tool to investigate the behaviour of embedded sys-
tems that interact with their environment. Because they
close the loop between perception and action through
their physical interaction with their environment they
are the research method of choice for the investigation
of intelligent behaviour in areas such as artificial intelli-
gence and cognitive science.

We believe that there are currently two major prob-
lems in mobile robotics research: i) the lack of a theory-
based design methodology for mobile robot control pro-
grams, and ii) the lack of accurate mobile robot models
as a design tool.

*R.L is a visiting scientist at Essex University from the Univer-
sity of Santiago de Compostela

The lack of a formal design methodology, based on
a theory of robot-environment interaction (which would
allow the methodical design of mobile robot control pro-
grams) means that control programs have to be devel-
oped through an empirical trial-and-error process. This
is costly and error prone. In addition, the lack of a theo-
retical foundation for mobile robotics means that devel-
opment tools have to be based on general assumptions
(e.g. idealised, simplified models of sensors) that com-
monly result in significant discrepancies between predic-
tion and actually observed behaviour of the physical mo-
bile robot.

2. RobotMODIC — Robot Modelling,
Identification and Characterisation

The RobotMODIC project addresses the two problems
of design and modelling by conducting a study with the
following four major aspects:

1. Modelling: We investigate the use of non-linear sys-
tem identification (polynomial NARMAX models)
and quantitative performance measures to charac-
terise robot behaviour and performance.

2. Identification and Characterisation: We investigate
how robot attributes, sensor properties and environ-
ment characteristics influence robot behaviour, and
to what extent.

3. Theory: We use these results to investigate how robot
control programs can be designed, and to study how
to obtain a theoretical framework to describe robot-
environment interaction.

4. Tools: The eventual goal of the project is to build
a novel mobile robot simulator based on accurate,
transparent models of robot-environment interaction,
rather than on generalised assumptions as is cur-
rently the case in state-of-the-art robot simulators.

2.1 FEzperimental Procedure

The experimental procedure we follow is generally as
follows. Using an autonomous mobile robot — in our



Figure 1: RADIX, THE MAGELLAN PRO MOBILE ROBOT USED
IN THE EXPERIMENTS DESCRIBED IN THIS PAPER

case Radiz, the Magellan Pro robot shown in figure 1 —
we execute a sensor-motor task under laboratory condi-
tions. During execution, we log all variables relevant to
the robot’s operation — all sensory perceptions and mo-
tor responses, as well as the robot’s position in (z,y, ¢)
space — every 250ms. Figure 2 shows one of the exper-
imental scenarios, and a logged trajectory.

We then model the
put variables,

relationship between in-
such as for example sensory per-
ception, and output variables, such as for in-
stance motor response, using the ARMAX
(Eykhoff, 1981, Eykhoff, 1974) or NARMAX method
(Billings and Chen, 1998, Chen and Billings, 1989).
This results in a transparent, analysable model of the
input-output relationship under investigation, which
can be used for environment or task modelling (see
sections 3. and 4.).

2.2 The NARMAX Approach to Modelling

Modelling paradigms widely used in robotics to date are
neural network and related algorithms. Many architec-
tures and training procedures are available, but without
exception all these methods develop models of the system
that are largely opaque. The trained neural network can
be used to predict future output values but it provides
little information regarding the structure of the under-
lying system. It is very difficult to interpret the model
in terms of known physical effects and consequently this
approach provides limited insight into the physics of the
underlying system.

There is an alternative approach which provides much
more information about the underlying system and
which provides results that allow the user to relate the
identified model to the behaviour of the underlying sys-
tem. This is known as the NARMAX (Nonlinear Auto-
Regressive Moving Average model with eXogenous in-
puts) approach.

The NARMAX approach is a parameter estimation
methodology for identifying both the important model
terms and the parameters of unknown nonlinear dy-
namic systems. For single-input single-output systems
this model takes the form

y(k} = F{?(k - 1)’y(k - 2)y(k - n’y)su(k -
d),...ulk—d—mn,),e(k—1),...,e(k —n.)] + e(k)

where y(k), u(k), e(k) are the sampled output,
input and unobservable noise sequences respectively,
Tiy, M, Te, are the orders, and d is a time delay. F[] is
a nonlinear function and is typically taken to be a poly-
nomial or a wavelet multi-resolution expansion of the
arguments. Usually only the input and output measure-
ments u(k) and y(k) are available and the investigator
must process these signals to estimate a model of the
system.

The NARMAX methodology breaks this problem into
the following steps: i) Structure detection, ii) Parameter
estimation, iii) Model validation, iv) Prediction, and v)
Analysis.

These steps form an estimation toolkit that allows
the user to build a concise mathematical description
of the system (Billings and Chen, 1998). The proce-
dure begins by determining the structure or the im-
portant model terms, then continues to estimate the
model parameters. These procedures are now well es-
tablished and have been used in many modelling do-
mains (Billings and Chen, 1998). Once the structure of
the model has been determined the unknown parame-
ters in the model can be estimated. If correct parameter
estimates are to be obtained the noise sequence e(k),
which is almost always unobservable, must be estimated
and accommodated within the model. Model validation
methods are then applied to determine if the model is
adequate. Once the model is accepted it can be used
to predict the system output for different inputs and to
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Figure 2: THE ENVIRONMENT IN WHICH EXPERIMENTS WERE CONDUCTED (LEFT), AND THE ROBOT’S TRAJECTORY (RIGHT).
THE ROBOT IS VISIBLE IN THE BOTTOM RIGHT HAND CORNER OF THE LEFT IMAGE.

study the characteristics of the system under investiga-
tion.

There are considerable advantages to modelling input-
output relationships using transparent polynomial func-
tions, rather than opaque mechanisms such as artificial
neural networks:

1. The input-output representations are very compact
and require very little space (memory) and processing
time to compute.

2. They are amenable to rigorous mathematical anal-
ysis. For example, models of robot speed can be
turned into models of robot acceleration by differ-
entiating, models of acceleration can be modified to
models of speed through integration. Also, it is easier
to estimate parameters such as Lyapunov exponent
or correlation dimension from a closed mathematical
function than from a time series.

3. Input-output relationships can be analysed graphi-
cally, plotting is straightforward, whereas in opaque
models this is not possible.

4. The acquired model actually says something about
the relationship between inputs and outputs. Param-
eters and lags indicate relevant process components.

5. The analysis of similar behaviours, obtained by dif-
ferent means — for example achieving a particular
robot behaviour through both a controller derived

from control theory and one based on machine learn-
ing techniques — is easier when the models under-
lying those behaviours are considered: stability, sen-
sitivity to noise, identification of relevant and irrel-
evant sensor signals are easier when a transparent
mathematical expression is available for analysis.

3. Example 1: Environment Modelling

3.1 Modelling Sensory Perception

As stated in section 2., one of the aims of the Robot-
MODIC project is to derive accurate, transparent com-
puter models of robot-environment interaction that
can be used for code development: generic simula-
tion programs are replaced by specific models of robot-
environment interaction, derived from real-world data
obtained in robotics experiments.

This section explains our procedure of deriving envi-
ronment models, here using a simple robot behaviour
in order to make the main mechanisms clear. Figure 3
shows the modelling relationship investigated in the ex-
periments discussed in this first example.

For the purpose of this paper, we have chosen to in-
vestigate the wall-following behaviour of a Magellan Pro
mobile robot (actually, the control code used to drive the
robot was not a wall-following, but an obstacle-avoidance
program. However, the interaction of our robot with
its environment resulted in a wall-following trajectory).
The robot used is shown in figure 1, the trajectory we
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Figure 3: ENVIRONMENT MODELLING: A KNOWN FUNCTION (SUCH AS THE POLYNOMIAL GIVEN IN TABLE 1) MAPS ROBOT
POSITION TO SENSORY PERCEPTION
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Figure 4: MODELLING THE ROBOT’S LASER PERCEPTION L67 AS A FUNCTION OF POSITION (SEE ALSO TABLE 1). TRUE SENSOR
PERCEPTION IS SHOWN AS A SOLID LINE WITH CIRCLES, THE MODEL-PREDICTED OUTPUT AS A SOLID LINE.
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Figure 5: L67 (MODELLED IN TABLE 1) IS THE ROBOT’'S SINGLE-RAY LASER PERCEPTION TOWARDS THE RIGHT HAND SIDE OF
THE ROBOT. L = L45 — L90 IS THE AVERAGE OF ALL LASER RAYS ON THE RIGHT HAND SIDE OF THE ROBOT.

logged every 250ms with an overhead camera is shown
in figure 2. For analysis, this data was subsequently
subsampled at a rate of 1:15, so that the time elapsed
between data points is 3.75s. The average speed of the
robot in this experiment was 8cm/s, so that the distance
travelled between logged robot positions is about 30cm.

The model equation in table 1 computes the distance
measured by the laser sensor at 67 degrees from the left
of the robot (L67) as a function of its position (z,y).
Tt shows that the robot's laser perceptiong L67(t) can
be modelled as a function of the robot’s (z,y) position
at times ¢ and ¢t — 1 easily and accurately. Pearson’s
correlation coefficient between modelled and true data
is 0.75 (significant, p<0.01).

Tt is interesting to note that the robot’s orientation ¢ is
not needed in order to model the perception of the laser
sensor. The reason for this is the restricted motion of
the robot (following the perimeter of the environment),
which by specifying (z,y) essentially also specifies orien-
tation ¢, so that ¢ is not needed explicitly in the model.

3.2 Obtaining the Model

In order to obtain the non-linear model equation in ta-
ble 1, a NARMAX model identification methodology was
followed. First, the model structure is determined by
choosing regression order and degree of the inputs and
output. ‘Degree’ is defined as the sum of all exponents
in a term, where a ‘term’ is a mathematical expression
as shown in each line of tables 1 and 2.

To determine a suitable model structure, we us the
orthogonal parameter estimation algorithm described in
(Korenberg et al., 1988). This indicates (prior to the
calculation of the model) which model terms are signifi-
cant for the calculation of the output.

We then obtain the model, using the first half of the
available data (“training data”), and validate it using
the remaining half (“validation data”).

4. Example 2: Task Characterisation
and Identification

In task identification the objective is to obtain a model
of the control program of the robot. This results in the
“compression” of program code into a single polynomial
equation. An immediate advantage in doing this is the
ease of communication of a robot task in cases where
the actual code implementation of the task is of little
interest (as opposed to the robot’s behaviour resulting
from the execution of the task).

Like the control program, the task model maps sensory
perception to robot motor response (see figure 6). In or-
der to obtain the model of a control program, the robot’s
sensory perception and its response to that perception is
logged while it is executing the control program. Using
the sensory perception as input and motor response as
output the same modelling technique used in environ-
ment modelling (see section 3.) is used here in order to
find a suitable model of the control program.

The model presented in table 2 and figure 7 produces
the robot’s rotational velocity (the model’s output) from
a single input L which is the mean value of the laser sen-
gor readings in the range 45-90 degrees (figure 1). As
can be seen from table 2, the behaviour of the robot in
this case is easily modelled and requires only very few
input components, with short regression order. Figure 2
shows that the model is accurate, the Pearson correlation
coefficient between modelled and true rotational veloc-
ity of the robot is r = 0.987 (significant, p<0.01). For
further, more detailed discussion of this experiment see
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Figure 6: TASK IDENTIFICATION: A KNOWN FUNCTION (SUCH AS THE POLYNOMIAL GIVEN IN TABLE 2) MAPS SENSORY PER-
CEPTION TO ROBOT MOTOR RESPONSE
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Figure 7: MODELLING THE ROBOT’S MOTOR RESPONSE (ROTATIONAL VELOCITY ¢) AS A FUNCTION OF LASER SENSOR PERCEP-
TION L (SEE ALSO TABLE 2). TRUE ROTATIONAL VELOCITY IS SHOWN AS A SOLID LINE WITH CIRCLES, THE MODEL-PREDICTED
OUTPUT AS A SIMPLE SOLID LINE.



L67(t)=

+1.8801351

+0.0087641 * x(t)

-0.0116923 * x(t-1)
-0.0060061 * x(t-2)
+0.0116420 * y(t)

+0.0143721 = y(t-1)
-0.0064808 * y(t-2)
+0.0004983 * x(t)"2
+0.0021232 * x(t-1)"2
+0.0006722 * x(t-2)"2
-0.0002464 * y(t)~2
+0.0018295 * y(t-1)"2
+0.0015442 * y(t-2)"2
-0.0028887 * x(t) * x(t-1)
+0.0023524 * x(t) * x(t-2)
+0.0002199 * x(t) * y(&)
-0.0025234 * x(t) * y(t-1)
+0.0022859 * x(t) * y(t-2)
-0.0029213 * x(t-1) * x(t-2)
+0.0006455 * x(t-1) * y(t)
+0.0014447 * x(t-1) * y(t-1)
-0.0027139 * x(t-1) * y(t-2)
-0.0004945 * x(t-2) * y(%)
+0.0003262 * x(t-2) * y(t-1)
+0.0009349 * x(t-2) * y(t-2)
-0.0010366 * y(t) * y(t-1)
+0.0013326 * y(t) * y(t-2)
-0.0037855 * y(t-1) * y(t-2)

Table 1: PARAMETERS OF THE POLYNOMIAL MODELLING THE
ROBOT'S SINGLE-RAY LASER PERCEPTION L67 AS A FUNC-
TION OF THE ROBOT'S POSITION (X,Y). THE TIME SERIES OF
THIS MODEL IS SHOWN IN FIGURE 4. SEE ALSO FIGURE 5.

also (Iglesias et al., 2004).

5. Conclusion

5.1 Summary

In this paper we argue that there are two pressing prob-
lems in mobile robotics research — 1) the lack of a theory-
based robot design methodology and ii) the lack of accu-
rate robot models. The RobotMODIC project is aimed
at these issues, and seeks to model both robot reaction
to sensory stimuli (task) and sensory perception as a
function of position (environment) through polynomial
models, using a NARMAX process.

In this paper, we present a simple experimental
setup — wall-following behaviour of a Magellan Pro
mobile robot — and the application of our modelling
paradigm to this scenario. We demonstrate that it is
possible to model both the robot’s response to sensory
stimuli (section 4.) and the robot’s sensory perception

dphi(t)/dt=
+0.5436893
-0.6750176 L(t)
+0.0984578 L(t-1)

Table 2: PARAMETERS OF THE POLYNOMIAL MODELLING THE
ROBOT'S ROTATIONAL VELOCITY qb AS A FUNCTION OF LASER
PERCEPTION L = [L45 — [80. THE TIME SERIES OF THIS
MODEL IS SHOWN IN FIGURE 7. SEE ALSO FIGURE 5.

at certain locations of the environment (section 3.).

5.2  Discussion

5.2.1 Motivation

Computer-modelling of robot-environment interaction is
a very useful tool in robotics research, for three main
reasons:

1. Software development cycles are shortened,
2. ‘what if?’ scenarios can be investigated,

3. direct, ‘absolutely fair’ comparisons between two ap-
proaches to the same robot task are possible, because
both approaches would be executed using identical
‘robots’ in identical environments.

One major reason why robot-environment modelling
has not yet fulfilled these promises is the lack of faithful-
ness of existing models. Usually, models are constructed
using generic models of sensor and environment proper-
ties (e.g. modelling sonar sensors as cones). A second
limitation hampering robotics research is the fact that we
still lack quantitative descriptions of robot-environment
interaction (Nehmzow and Walker, 2003).

The RobotMODIC project addresses these issues, by
constructing transparent models of robot-environment
interaction that use real data' to model the behaviour
of one specific robot in a specific environment. Unlike
generic models that inevitably fail to pick up idiosyn-
crasies of a particular robot or environment, this ap-
proach will detect those local aberrations.

5.2.2 Weaknesses of the RobotMODIC ap-
proach

The work discussed in this paper models the interaction
of a specific robot with a specific environment. This can
be viewed as a restriction, in that it limits the generality
of the approach — modelling using real data produces
not a generic model, but a specific one. Our reply to
this point is that generic modelling of the operation of a

IData obtained by operating a physical robot in the desired
environment.



physical robot in the physical world cannot be accurate
enough to be useful, because local idiosyncrasies have
a fundamental influence on the operation of the robot.
Any useful computer model of robot-environment must
be of a specific experimental scenario. A detailed discus-
sion of this can be found in (Lee, 2000).

A second point is that the quality of the acquired mod-
els is dependent upon the data used to construct the
model. The first model discussed in this paper in sec-
tion 3. is an example: the aim was to obtain a maodel
of sensory perception as a function of robot location
(see figure 3). However, because all training data was
obtained in a limited region of the available space —
the space along the edges of the experimental arena —
the acquired model will only make credible predictions
in that region. In analogy to photography we refer to
this aspect as that of obtaining a ‘sensorgraph’, i.e. a
comprehensive representation of sensory perceptions in
as many different positions and orientations as possible.
Figure 8 shows such a sensorgraph for the square arena
of figure 2.

Figure 8: TRAJECTORY FOLLOWED BY THE ROBOT TO OB-
TAIN A ‘SENSORGRAPH' OF THE ARENA SHOWN IN FIGURE 2

Methods for data logging that are best suited for ob-
taining faithful models of robot-environment interaction
are currently under investigation at Essex.

Acknowledgements

The authors thank the following institutions for their
support: The RobotMODIC project is supported by the
Engineering and Physical Sciences Research Council un-
der grant GR/S30955/01.

R.I is supported by Xunta de Galicia through sabbat-
ical fellowship DOG 20/05/2004, and through research
grant TIC2003-09400-C04-03.

References

Billings, S. and Chen, S. (1998). The determination of
multivariable nonlinear models for dynamical sys-
tems. In Leonides, C., (Ed.), Neural Network Sys-
tems, Techniques and Applications, pages 231-278.

Chen, S. and Billings, S. (1989). Representations of
non-linear systems: The narmax model. Int. J. Con-
trol, 49:1013-1032.

Eykhoff, P. (1974). System identification : porameter
and state estimation. Wiley-Interscience, London.

Eykhoff, P. (1981). Trends and Progress in System
Identification. Pergamon Press.

Iglesias, R., Kyriacou, T., Nehmzow, U., and Billings,
S. (2004). Task identification and characterization
in mobile robotics. In Melhuish, C. and Nehmzow,
U., (Eds.), Towards Autonomous Robotic Systems,
TAROS 2004 (submitted).

Korenberg, M., Billings, S., Liu, Y., and Mcllroy, P.
(1988). Orthogonal paramter estimation for non-
linear stochastic systems. Int. J. Control, 48:193-
210.

Lee, T. m. (2000). A new approach to mobile robot sim-
ulation by means of acquired neural network models.
PhD thesis, University of Manchester.

Nehmzow, U. (2002). Mobile Robotics: A practical in-
troduction, 2nd edition. Springer Verlag.

Nehmzow, U. and Walker, K. (2003). The behaviour of
a mobile robot is chaotic. AISBJ, 1(4).



