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Discrete Time subharmonic modelling and Analysis: Part II.
Frequency domain analysis

L.M Li and S.A Billings

Department of Automatic Control and Systems Engineering
University of Sheffield, Mappin Street, Sheffield S1 3JD

Abstract: In Part I of this paper(Li and Billings, 2004), a2 new method of constructing
MISO NARX models was introduced for a class of severely nonlinear systems that
exhibit subharmonics. In this, the second part, the frequency domain properties based
on the results of the time domain MISO modeling in Part I are revealed, explained and
discussed. First, the derivation of generalised frequency response functions(GFRF’s)
from time domain MISO NARX models is introduced. The steady state response
synthesis problem using the input spectrum and the MISO GFRF’s is then
investigated in order to verify the effectiveness and accuracy of the MISO modeling
approach for severely nonlinear systems. Finally a new frequency domain analysis
method is introduced for systems that exhibit subharmonic oscillations.

1. Introduction

In part I of this paper(Li and Billings, 2004) a new way of constructing MISO NARX
models for systems that exhibit subharmonics was presented based on a multiplexed
input signal. In this, the second part of the paper, the frequency domain properties of
the MISO NARX model, which is used to represent systems that exhibit
subharmonics, will be introduced.

The frequency domain behaviour of nonlinear systems has been studied by several
authors, including Bussgang, et. al.(1974) and Bedrosian and Rice(1971). More
recently Kim and Powers(1988) and Billings and Peyton Jones(1990) investigated the
estimation and analysis o f generalised frequency response functions. However, this
analysis is only valid for weakly nonlinear systems. In the second part of this paper
new results are introduced to provide a frequency domain analysis of severely
nonlinear systems which exhibit subharmonics. The frequency domain analysis of
subharmonic behaviour is an important problem but surprisingly few results appear to
be available, and the main objective of the current paper is to begin to address this
oversight.

The paper begins in Section 2 with the determination of the generalised frequency
response functions(GFRE’s) for MISO nonlinear models. These are extended in
Section 3 to generate the GFRF’s based on a Dual-Input-Single-Output(DISO) NARX
model and the interpretation of the frequency response behaviour is studied. In
Section 4 a formulation for the frequency domain response synthesis of DISO systems
using GFRE’s is proposed, and applied to verify the validity of the results. New
analysis results relating to subharmonic behaviour are also derived. Conclusions are
presented in Section 5.

2. MISO Frequency Domain Volterra Analysis

For a SISO nonlinear system the Volterra functional series can be expressed as



y0=3 [ [ hyters)] [ute-rae, (1)

where £, (7,,:-,7,) is the ‘nth-order Volterra Kernel’. The multi-dimensional Fourier
transform of 4,() yields the ‘mth-order frequency response function’ or the
Generalised Frequency Response Function (GFRF):

H (0, 0,)= f ,[;hn (T, o1, Jexp(—jlw T, ++-+ w1, ))dr, -dt, (2)

In present study, the models that allow a frequency domain analysis for subharmonic
systems are based on the MISO format arising from the new input-multiplexing
technique, which was illustrated in detail in part I of this paper(Li and Billings, 2004).
Therefore the GFRE’s for SISO nonlinear systems will need to be extended to MISO
nonlinear systems.

For a MISO nonlinear system with N inputs, the output can be expressed as(Swain
and Billings, 2001)

w0 w N N N
YO=D 3. O=22 > Dy () (3.2)
n=1 n=1 m=lny=n =iy,
where
y:“‘ ) = J . Ih:"l i (E pvee Ty )Hu,. (t—r,)dr, (3.b)
o St i=1

Provided that the infinite sum of homogeneous terms in a Volterra system
representation is convergent, which usually requires a bound on u(f) over a time
interval, a finite Volterra series, sometimes called a polynomial Volterra series(Rugh,
1981), can be used in practice. Among polynomial Volterra series, usually only the
first few terms are significant, and the higher order terms decay rapidly. In this
discussion, the first three orders of the nonlinear output will be considered, since this
has been found to be sufficient for most practical cases.

The simplest form of MISO model, that is, a dual-input-single-output(DISO) model,
will be studied in detail. The results below are based on the DISO model identified for
a system that exhibits second order subharmonic oscillations introduced in Part I of
this paper(Li and Billings, 2004). The GFRF’s of this model, up to third order, will be
considered throughout the paper. This makes the whole analysis much simpler, more
transparent and thus easier to understand.

From (3), the first three orders of the outputs for a DISO system are

2 o0
WO=yO+yEO =) [B" @ue-7)d (4.a)
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S [ (4.b)
= Z Z _[ ,[hzm " (7, T u(t —1 Ju(t~ 1, )dz dr,
m=lny=n —cg—on
¥3(8) = y3™ (@) + p3 (0) + p3 () + 3 ()
2 2 2 @ W@ e (40)
=3NS [ [ eyl - ute = (e - 7 )drdrdr,
H|=1 Ny =M N3=Ny —n—co—co

and the first three orders of GFRF’s for this DISO system are



B @)= [h" Gexpjor)dy  with m ={12) (52)

H;" (0,,0,)= J- J.h:m“n: (1, T,)exp(—j (0,7 +®,7T,))dr,dt,

—on—on

(5.b)
with [n,,n,]= {[L1],[1,2],[2,2]}

H " (0 05,0, = J- Jh;"‘”"zu’” (T,,T,,7T5)eXp(—j(®,T, + ©,T, + ©,T;))dt,dt,dt,
with [n,n,,m] =4{[LL1};[L12];[1.2,2],[2.2,2]}

(5.c)
The self-kernel DISO GFRF’s generated using the above probing scheme are not
necessarily unique in the sense that changing the order of any two arguments
generates a new function without changing the value of y,(¢f) m eqn (3). The

symmetric version of H," " () is normally used because this is unique and has
values that are independent of the order of the arguments. This is given as

Uy geeaslly 1 Uy geetly
H." ! (col}"'smu):_1 ZHn "(wls"'amn) (6)

Mgy
* all permutations
0f © 0.0y

The DISO Volterra model structure can then be visualized as illustrated in Figure 1.
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Figure 1. DISO frequency domain polynomial Volterra model

3. Generating the GFRF’s for the MISO Model Built for Subharmonic
Systems

Nonlinear generalized frequency response functions represent an inherent and
invariant property of the underlying system. They are independent of external input-
output signals and provide a powerful analysis tool for characterising nonlinear
phenomena.



The GFRF’s are essentially an extension of the widely applied gain and phase linear
frequency response analysis method to the nonlinear case.

Non-parametric e stimation methods for GFRF’s o f weakly nonlinear SISO systems
have been studied by many authors(Brillinger, 1970; Lee and Schetzen, 1965,
Koukoulas and Kalouptsidis, 1995; Kim and Powers,1988). The common limitations
of these methods are the high complexity of the computations involved and the large
data sets required, the restriction on the input signals, and the need for windowing and
smoothing. Alternatively, GFRF’s can be obtained using the so-called ‘probing
method” (Bedrosian and Rice, 1971;Billings and Peyton Jones, 1990), based on
parametric models such as nomnlinear differential/difference models. The latter
parametric method of obtaining GFRE’s will be used in this study.

For weakly SISO nonlinear systems, the SISO GFRF’s provide comprehensive tools
in frequency domain analysis. However, for severely nonlinear systems that exhibit
subharmonics, this approach cannot be applied. To overcome this limitation, the SISO
problem has to be transformed into a MISO problem, as studied in part I of this
paper(Li and Billings, 2004). The parametric method of obtaining GFRF’s for MISO
systems(Swain and Billings, 2001), which is an extension of the SISO parametric
method, will therefore be investigated below.

The frequency domain analysis of nonlinear systems based on MISO parametric
models is generally complex and is not easily transparent. Hence to illustrate the
approach consider the DISO nonlinear difference model from eqn (16) in part I(Li and
Billings, 2004), for the subharmonic nonlinear system eqn (14) in Part I with a
sampling frequency f, =40/7 . Note that the analysis results are not restricted to the

DISO case.
Eqn (16) from part I(Li and Billings, 2004) is rewritten below as eqn(7).

y(k) = 3.9187y(k-1) - 5.7870(k-2)+3.8163 y(k-3)-0.9482 y(k-4) +0.0032u, (k-6)-0.00794u, (k-5)
+ 000533 1u, (k-4) -0.000614u, (k-1) -0.00439u, (k-6)-0.00840u, (k-4)+0.01135u, (k-5)
+0.001437u, (k-2)+ 0.00126y> (4-1)+0.000032 1y (k-4)-0.00249 1y (k-1) y(k-2)

+ 0.000414 * (k-2)+0.000739 y(k-2) y(k-4) + 0.0019 13 (k-1) y(-3)-0.001312 y(k-2) y(%-3)
-0.000756y(k-1)y(k-4) + 0.000223y* (k-3) +0.0002209u (k-6) -0.00102713u, (k-5)u, (k-6)
+0.001770u, (k-5)72+0.0001113u, (k-3)u, (k-6) + 0.0003873u, (k-3)u, (k-5)
-0.001462u, (k-4)u, (k-5)
(7
Initially the system (7) is probed by setting u, (k) = e’** and u, (k) = 0. The output of
the system is therefore

yi (k) = H' (@,)e’™* (8)

Substituting the values of u,(k),u, (k) and y;" (k) into (7) and equating coefficients of
e’ yields

-0.0032¢7° -0.00794e”** +0.00533e7*“ -0.000614e7™

H"(w,)= _ - . . 9
(@) 1-3.9187¢7™ +5.7870e7>*-3.8163¢7*% +(0.9482¢7*® 2
Setting u, (k) = 0 and u, (k) = e’®* as the probing input yields
. -0.00439¢7% -0.00840e7** +0.01135¢7**" +0.001437¢7>*
Hl 2('5')1) = (10)

1-39187e7™ +5.7870e7**-3.8163e”** +0.9482¢7*“



The second order frequency response functions are functions of the coefficients of the
second order nonlinearities and the first order(linear) frequency response functions

H /™ . The derivation of the self-kernel transforms /7" and H,*” is similar to that in
the SISO case, setting {u (k)=e™* +&™* Lu,(k)=0} and {u(k)=0

Josk

,u, (k) = e’* + e’**} respectively in the probing procedure.

Notice that H;"™ has association with pure output AR terms(such as y(k —i)y(k — k) ),
pure u, MA terms(such as u, (k — i)u, (k - k) ) and output-u, cross product terms(such
as y(k—i)u,(k-k)), and has nothing to do with any regressors involving u, (for
example, y(k —u, (k — k), u,(k —)u,(k—k)).

Setting u,(k) = 0 ,u,(k)=e’* +e’*, Hi* can be derived which has association
with pure output AR terms, pure u, MA terms and output-u, terms, and has nothing
to do with any regressors involvingu, .

For the current system (7), setting u, (k) = &’** +e’** ,u, (k) =0, the output will be
y(k) =y (k) + ;" (k)
= HE (@)™ + HP (@0,)e7 + I (0,,0,)e @ )
1 H;‘w. (a)z ,a}])ej(wwwz)k % H;m (wlnml )e,-'Zw;k s H;ﬁu, (a)z,cuz)e“‘”z"
Substituting the values of u, (k) ,u, (k) and y(k)into (7) and equating coefficients of
e/ @tk yields
Hy" (0,,,)
0.00126 Hlullul e-f(ﬂ)l*mz) +321e-05 Hfllul ej(4w]+4w2) -0.002492 Hl"‘lil‘l e‘j(wl+2w2)
+0.000739 H 1"1g7m2) 1 000191 H ;" e @9 1+ 0.000414 H 1 g 020
- 0001311{:‘?“1 g-iGet3en) 0000756H:‘11"| e'.i(’”l“"‘“’:) +0.000223 Hlul,”. g iBatim)
+0.000221e7 62 *5%) . 0,00103¢ 0 *6#2) 4 0.00177¢ 2>

+0.0001113¢@a*6e) 4 0003873 G252 _() 001462¢ @ +5)
1-3.9187e7@*%) 4 5787074+ _3 81637 ™1*%2) 1 (948274 1+ )

(12)
where H,}"' (0,,0,)=H!" (o) H" (0,).

Note that )" (w,,®,) in (12) is not symmetric over {@,,®,}. A unique symmetric
version of H,"" (w,,®,) which is used in practical situations can be obtained by using
(6).

Unlike the self-kernel transforms H,™ and H,**, the cross-kemel transforms /3"
will be associated with pure output AR terms(such as y(k —i)y(k —k)), output-u,
cross product terms(such as y(k—i)u,(k—k) ) and output- u, cross product
terms(such as y(k —i)u, (k — k) ), but will have no relation to pure u; MA terms(such
as u,(k —i)u,(k—k)) and pure u, MA terms(such asu, (k —)u, (k- k) ). By probing
the system (7) using u,(k)=e’** and u,(k)=e’ ®*  the output of the system
becomes



y(k) = yi (k) + 2 (k) + ;" (k)
= H' (0,)e’™* + H* (w,)e’* + Hi" (0, @,)e’ (13)

+ H;:“l (wz,wl)ef(wﬁmz)k

Substituting the values of u,(k),u, (k) and y(k)into (7) and equating coefficients of

ej(a),JraJ:)k

yields

H:IHZ (mli mz)
0.00126 H ™ e+ 1 321e-05 H, " ¥ -0.002492 H " e ¥ "2
+0.000739 H " e @) 1+ 0.00191 Hy e @3 +0.000414 H,j g 10422

-0.0013 IH:1]N2 e-j(zfih +3my) _ 0.0007561‘[1{‘1‘“2 e-j(m, Hay) o 0.000223 H;‘l. "Ze'j(3ﬁ’1 +3w,)
1-3.9187¢7™*®) 4 5787027 %Y 381637 10,9482 "

(14)
where H /" (w,,0,) = H" (0,)H* (®,) .

Note that H2** does not have the symmetric property like H,™ so that H,"* cannot
be symmetrized using (6). An alternative average cross-kernel transform was

therefore defined in Swain and Billings(2001) to overcome this problem. This is
defined as

e (601,002) = E[H;qu (wls@2)+H:2u' (mwml)] (15)

2avg

The third order self-kemel frequency response functions H,;"* and H;**“ can be
obtained by probing the system (7) by setting {u (k) =e’®* +e/™ +&/*
Ju, () =0} and {u,(k)=0 ,u,(k)=e"""+e’ @k | e/** 1 respectively. The third
order cross-kernel frequency response functions A ;™ and H;"* can be obtained by
probing the system (7) by setting {u,(k) =€’ +e’™* ,u,(k)=e’**} and
{u,(k) = e’ ,u, (k) = e’ +e’™*} respectively. Like the second order cross-kernel
transform H )" , the third order cross-kernel GFREF’s, H;*““ and H;"**, are not
symmetric over {,,®,,®,}. However, H;*** (w,,m,,0;) and H"** (0, ®,,®,) are
still symmetric over {®,,®,} and {w,,®,} respectively.

H\"(-)and H* (-) for the model eqn (7) are plotted in Figure 2.

It can be seen from Figure 2 that the difference in the gain plots between
H!()and H;*(-) is very small, but there is a significant phase difference. This
difference is reflected in the higher order transfer functions. As will be seen in the

next section, this difference is vital in the formation of subharmonics at a frequency of
1 rad/sec. This point will be revisited latter in section 4.2.

Inspection of figures 2-5 shows that the gain for every transfer function becomes very
small for frequencies over 3 rad/sec. This reflects the fact that the output signal
contains mainly frequency components at 1 rad/sec and 2 rad/sec. The interpretation
of Figures 2-5 will be considered in more detail in section 4.2.
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Figure 2. H " (-)and H* (-) for the DISO system (7): (a) Gain (b) Phase

The functions H,™, H3** and H': are plotted in Figures 3,4 and 5 respectively.
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Figure 3. Gain plot of H ;™ for DISO system (7)
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Figure 4. Gain plot of H,** for DISO system (7)
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Figure 5. Gain plot of H;" for DISO system (7)

4. Frequency Domain Response Synthesis

The main limitation for the analysis of nonlinear s ystems using the GFRF’s is that
only harmonics 7w, and intermodulations me; +kw, , where w, , @; and w, are

frequency components in the input and #,m, k are integers, can be represented by this
type of analysis. Therefore while a SISO NARX model built using the original input-
output signals of a subharmonic system can provide a very good time domain
representation of the underlying system, an equivalent Volterra domain/frequency
domain representation will not exist. This is because the GFRF’s cannot represent
subharmonics components “/, , where nis integer. This is a severe limitation which
precludes a full frequency domain analysis of subharmonic behaviour which of course
is essentially a frequency d omain effect. We have shown in Part I(Li and Billings,
2004) however that this limitation can be avoided by using a MISO NARX model and



computing the GFRF’s based on this MISO model. All the analysis in section 3 was
based on the assumption that the DISO GFRF’s are valid and accurate in the Volterra-
kemel sense. The validity of this Volterra/frequency representation will be verified in
this section.

A valid frequency domain/Volterra representation of a nonlinear system will exist if
the steady-state response of the system under harmonic input(s) can be accurately
recovered from the GFRF’s. Another advantage of using the Fourier-based band-
limited multiple inputs therefore becomes clear. Since the spectrum of each individual
input is band-limited and fully known, the output spectrum can be obtained from the
input spectrum and the DISO GFRF’s. This can then be used to provide a quantitative
measure related to the formation of subharmonics.

4.1 Response of a DISO nonlinear system to a sum of sinusoidal signals

A new method of calculating the output response of a DISO nonlinear system in the
frequency domain based on the symmetric self-kernel transforms and the averaged
cross-kemel transforms will be derived in this section and used to analyse the
subharmonic response.

The output response will consist of two parts. The first part is related to the self-kernel
transforms and the second part is related to the cross-kernel transforms. Derivation of
the response relating to the self-kernel operators is quite similar to the SISO case, as
both share the property of symmetry. For example, when calculating the response

arising from A ;™ , it can be assumed that the response is due to the sole input u,, with
u, =0. Up to third order nonlinear output responses for SISO GFRE’s under multi-

tone input signals are given in Bussgang, et al., (1974) and general expressions for all
GFREF’s were derived by Peyton Jones and Billings(1989). But a new approach has to
be adopted for the asymmetric cross-kemel operators. The derivation of the response
of the second and third order cross-kernel operators is given below.

Assume that each of u, andu, is a single-tone sinusoidal

u, =4l L LI — g1 g
e e (16)
u, =2 +L e =b+b’
where * denotes complex conjugation.
The response for the second order cross-kemel operators will be
J’S = Hy" [uu, |+ Hy™ [uu, ]
= 2H, 5 [, ] a7
=2{H;" [ab]+ H}" [a'b" ]+ H}' [a™b] + H % [ab” ]}
The first term in (15) is
Wy = Wiy @'l (1-1)) , jo"? (1-5)
2Hyw [ab] =42 [ [ hyte (5,,7,)e™" ez dx, -
= %H?:ﬁg (a)Ul ’ w“: )eJ{ﬂ’ el
The second term in ( 15) is
Wity o4 — A'E Wity —ja" (t-7;) = j@'"? (t-15)
2H3 [0 =22 [ [ B (r,,7,)e /" Ve R d g dr, -

_ A'BT pruws o _w __uny =@M 0"y
=B H.Zavg( o, )e




Eqns (18) and (19) are complex conjugates of each other, so the addition of the first
two terms in (17) is given by
2{H " [ab]+ H " [a'b"]} = Re[ABH " (0" ,w" )e’ " "] (20)

2 avg 2 avg 2 avg
Similarly, the third and fourth terms in (17) are c omplex conjugates o f each other,
hence

2{H"l"2 [atb]_E_Hulu: [abr]} :RG[AB‘HWIHZ ((Dui ’_muz )ef(co“lfmnz)r] (21)

2 avg 2avg 2 avg

Therefore the final second order cross-kernel response of a DISO Volterra system for
a single-tone input signal is

y;2 = Re[ABH;';ig ((Dui , @™ )ej(m"l a2 )t ] (22)
+ Re[AB"H2t, (0"~ /"™

2 avg

WU U,

For the third order cross-kernel response under the operator A (0,,0,,0,),it

3avg
is essential to notice that there is no longer overall symmetry over all three

frequencies { ®,,®, and ©, }, but only symmetry over { ®,,®, }. Hence

y3“2 = Ho g g, |+ B T |48 7 [

=3H"" [uu,u, ]

Javg

*~\2 7 % 24 % * (23)
= 3H e [a®h]+3H e [(a7)* 6" 1+ 3H e [a”" 1+ 3H 2 (@) b]
+6H " [aa"b]+ 6H e [aa"b" ]

The first and second term in (23) are complex conjugates of each other, hence

R [azb}+3Hu|u,u3 [(aa)zb*] — %Re[AZBHulu,uz ((Du' ,mm ,(Du: )ej(Zm"‘ +m'"2 ).'] (24)

3avg 3aveg 3avg

The third and fourth term in (23) are also complex conjugates of each other, hence

3Hu1u1u1 [a2b=]+3Hu,ulu2 [(aa)zb] =%RC[AZB*HMWIHE((DM,(DM' ,_(Dug)e;‘(Zm“‘—m"Z):]

3avg 3 avg 3avg
(25)

Because of the symmetric property over { ®,,®, }, the last two terms in (23) can be
re-expressed as

6H " [aa"b]+ 6H " [aa’b" ] = 6H """ [aa’b]+ 6H " [a"ab"] (26)

3 avg 3avg 3avg Javg

which will be complex conjugates of each other, hence,

6H " [aa"b]+ 6H """ [aa’b'] = 2Re[ A4’ BH ™" (0" ~0",0")e™™]  (27)

Javg Javg 3avg
Therefore the third order cross-kernel response of a DISO Volterra system for a
single-tone input signal is

12 _ 3 2 Uy o U u uy N J(20" "2 )
Vs *TRe[A BHALvIg (0", 0", 0" )e ]

+3Re[A7B HIe (0" 0" ~0" )&/ ] (28)

Javg
+3Re[A4"BHI (0" ,—0", 0" )e’™]

In summary, assume that each of u, and u, is a two-tone sinusoidal

10



U

M2=

L
A

8

| =3 2. [dexp(joit) + Alexp(— joi'1)]

i=l

[Bexp(jo;*t) + B exp(— jw;*t)]

2
i=1l

The output frequency components from the first and second order DISO GFREF’s in
response to these inputs are tabulated in Table 1, and the third order results are

tabulated in Table 2.
Frequency Amplitude Type of Response
@' 1=132) e b Linear
o,? (i=1,2) B.H(®)
207 (1=1,2) 0.54,4H;" (o), o)

20" (i=1,2)

o -0 =00=12)
o'+
o' — oy

o -0 =01=1,2)
0 + oy
® — o5

o' +o;*(=12)
o; -0 ({=12)
o' +o2,0L,j=12,i#j

/" —a)jf’, t. 1 =l2 i F

03B B.H,* (@1, ,0,*)
054, 4 H" () ,—w,"

0544, H" (@ ,0;')
0.54, A; H" (0" ,—w;")
0.5B,B;H,;* (0" ,—w;")
0.5B,B,H;* (0" ,w,*)
0.5B,B,H,* (0" ,—@,*) )

ABH @,0}) }
Ai'Bi*H;:zuu; (w'_un ,_m;"z)
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Table 1. First and second order DISO nonlinear system responses
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inter - modulation terms

third order cross
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Table 2. Third order DISO nonlinear system responses

For example for the DISO nonlinear model in (7) where u, andu, consists of three

tones each,

3

=4 [Aexp(joi ) + 4 exp(~jo)'1)]

-

¥

3

1

where

ul
u, =+ [Bexp(joi*t) + B exp(— joi1)]

A, =3.390, 4, =-4.0j, 4, =-2.0424,

B, =-3.390,B, =

w," =1rad/sec,m

-4.0j,B, =2.0424

' =2rad/sec,w;y’ =3rad/sec

w;* =1rad/sec,wy® =2rad/sec,w;* =3 rad/sec

(29)

(30)

Substituting the values from (30) into the expressions in Tables 1 and 2 yields the first,
up to second and up to third order nonlinear output responses, shown in Figure 6. It
can be seen from Figure 6(b) that the response up to second order(first order plus
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second order response) provides a quite good estimation of the actual output response,
and as the order of the GFRF’s used to compute the response increases to third
order,Figure 6(c), the estimation error reduces even further. An additional estimation
error reduction can be expected if the order of the GFRF’s were increased further.

A comparison of the original output spectrum and the synthesized response spectrum
in Figure 7 reveals that the DISO Volterra system response from the derived GFRE’s
provides a very accurate estimation of the harmonics. This provides a confirmation of
the validity in the analysis and the procedure developed to analyse severely nonlinear
systems that exhibit subharmonics.

5 T T T T T T T T T

(b)

(c)

1
300 350 400 450 500

-5

1 1 1 1
0 50 100 150 200 250

Figure 6. (a) First order output response, (b) up to the second order response and (c)
up to third order response: Solid— synthesized output; Dashed-- original output

100 T T T T T

-100

Respanse Power Spectrum (dB)
&
o

-150

=
=

_200 1 1 1
(o} 0.5 1 1.5 2 2.5 3

frequency (rad/sec)

Figure 7. Output spectrum: Solid-- synthesized output; Dashed-- original output;
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4.2 Discussion

A recently introduced method for detecting the presence of subharmonics is the
Response Spectrum Map (RSM) (Billings and Boaghe, 2001). For the continuous
time system under investigation(eqn (14), Part I of this paper(Li and Billings, 2004)),
the Response Spectrum Map can be obtained by varying the input amplitude 4, where
the driving frequency is ® = 2 rad/sec.

RSM

B S TR S e

Frequency [rckises]

2 35 & 5 7 i3 8 &5 9

Figure 8. RSM for the continuous time system(eqn (14), Part I(Li and Billings,
2004))

The Response Spectrum Map for this system is illustrated in Figure 8, which gives a
very clear insight into the dynamical regimes generated by varying the amplitude 4.
The darker the bars in the RSM, the more significant the frequency components are.
For the amplitude range 4< [0,6], only harmonic and superharmonic content is
evident, although the superharmonic at @ = 4 rad/sec is much less significant than the
harmonic at o =2rad/sec . Around the neighborhood of A>6, a half
subharmonic( ® =1rad/sec ), harmonic( ®=2rad/sec ), supersubharmonic
(@ =3rad/sec) and superharmonic( m =4 rad/sec) begin to appear. These effects
peak in the amplitude range [7,10]. When 4>10.8, the system becomes unstable.

Based on these results a global SISO NARX model for 4<[0,10.8] is possible.

Simulating the system (eqn (14) in Part I(Li and Billings, 2004)) and applying the
NARX parametric estimation procedures produced the identified model

y(k) = 1.9783(k —1) — 0.9844 y(k — 2) + 0.0006 109 (k — 1)

(B
+0.006105u(k - 1)

However, the RSM in Figure 8 shows that there is a difference in the system
behaviour over the two amplitude regions 4 €[0,6] and 4 €[6,10.8]. For 4 [0,6],
the GFRF’s obtained from (31) will be meaningful since the system is clearly weakly
nonlinear with a valid Volterra representation over this amplitude range. But for
A €[6,10.8], the RSM shows that a simple Volterra representation will not be valid.
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This indicates that, although the GFRF’s are an inherent property of the underlying
system, the existence of the GFRF’s can depend on input signal properties, in this
case the input amplitude. However, by using the results derived in the present paper a
new and valid analysis based on the GFRF’s can be obtained in the amplitude range
A €[6,10.8], where subharmonics are present. This is achieved by expressing the time

domain model as a multi-input system.

Before proceeding to the analysis of the formation of subharmonics for the mput
amplitude range A €[6,10.8] using the DISO GFRF’s generated from model (7),
consider initially why the global NARX model (31) will fail to explain the formation
of subharmonics in the frequency domain.

The SISO GFRE’s from (31) will be valid for the amplitude range 4 €[0,6]but will
lose validity for the subharmonic situation with 4 €[6,10.8], since the output has

frequency components which are half the value of the input frequency. Consider why
simply splitting the input in the model eqn (31) will not work whereas the procedure
introduced in section 3 will.

Define the input split as
u =[u;u,| where u, (£) +u,(t) = u(f) (32)
Using (32), (31) can now be expressed as a DISO NARX model as

(k) = 1.9783 y(k —1) — 0.9844 y(k — 2) +0.0006109 > (k 1)

33
+0.0061052, (k —1) + 0.006105u, (k —1) it

The DISO model (33) now satisfies the Volterra requirement of period matching
between the input-output signals. It is now therefore easy to see that from (33), the
GFREF’s will be

H'()= H* ()

Hy* ()= Hy* () = Hi% 0) (34)

2avg

Consider the analysis of the subharmonic at o}',®}* =1rad/sec for example. The
corresponding linear part of the frequency domain formula relating to the generation
of this subharmonic at ©}',®;* =1rad/sec, from Table 1, is

y* =Re[AH" ()] +Re[B H " (01%)] (335)

Note that from eqn (30) the amplitude at the subharmonic
frequency(®!,»!* =1rad/sec) of the two inputs are opposite signs to one another,
ie.,A, =—B,. Therefore by substituting A, =~-B, into (35) and noticing from (34)
that H" (w;") = H,* (@,*), the result of (35) becomes

= (36)

this means that there is no subharmonic component which results from the linear part
of the GFRF’s from eqn (33). Actually, the frequency components other than those at

the driven frequency % =y =2rad/sec from the linear transfer functions
H{"(-)and H* (-) , will be cancelled out, as in the SISO case.

The contributions towards the formation of this subharmonic at o}’ ,;* =1rad/secby
the second order transforms, according to Table 1, are from the three second order
transforms, namely the two self-kemnel transforms H;" () and H;**(-), and the
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cross-kernel transform H;% () . The components involving frequencies @',

w!* = 3rad/sec are relatively insignificant compared with the components involving

the other two frequencies, therefore for simplicity only the first two frequencies in
each input signals will be taken into accountin the discussion. T he exact formula,

. 2
after omitting @;"' and @;”, is

Y2' =5 serson t V2 custkeme (37.a)
where
P2 itrema = RE[A] 4, H™ (-0, @, )]+ Re[B B, H;™ (-0 ,@;*)]  (37.b)
and
V5 eossotemet = RE[A] B, H35 (—o)" 37 )]+ Re[A, B{ H i, (@, —@*)] - (37.¢)

By using the properties in (30) and (34) it can be seen that

w s o =
yl self-kermel — 0 and y2 cross-kermel O

which means

v =0 (38)

The same cancellation will also happen in the higher order GFRF’s. Therefore overall,
there are no subharmonic components resulting from the GFRF’s derived from (33).

The above analysis indicates that GFRF’s derived from the SISO-turned-MISO model
(33) will play exactly the same role as the normal SISO GFRF’s from (31), and hence
will fail to explain the presence of subharmonics when A <[6,10.8] and therefore can

not be seen as valid in the sense of the Volterra/frequency domain.

The new MISO NARX modeling procedure introduced in the present paper, however,
avoids the above problems. The new approach is capable of generating valid
frequency domain GFRF’s but only if thisis applied to the correct form of MISO
model, eqn (7) in this case. The formation and analysis of this s ubharmonic in the
frequency domain will be investigated using the new GFRF’s results derived in
section 3.

From Figure 2 it can be seen that although the gain plots of /7}" (-)and H*(") are

quite close, there is a significant phase difference between them. This phase
difference plays an important role in this example for the generation of the
subharmonic at @;", @,* = 1rad/sec. By substituting the amplitude values in (30) and
the linear transfer function results in (9) and (10) into (35), the new subharmonic
components due to linear transforms from the new DISO NARX model (7) can be
obtained. From Figure 6(a) it can be seen that these subharmonic components from
linear transforms make a significant contribution towards the formation of the overall
subharmonic.

In this example it is the phase difference that leads to the generation of subharmonics.
The results suggest that for general subharmonic systems, analysed using the new
MISO modeling approach, there will be either a gain difference, or a phase difference,
or both, in the linear transforms. Note that the higher order transfer functions, both the
self-kernel and the cross-kemel transforms, are functions of the linear transfer
functions H " (-)and H,* (-), therefore the differences between H " (-)and H () will
be reflected in the higher order transfer functions. This means that there will be no
cancellations when using (37) to compute the subharmonic c omponents relating to
second order transfer functions in (12) and (14). From figure 3 and 4, it can be seen

that there are significant differences between H,"™ (-) and H,**(:) . Therefore the
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resulting 3" e e Will be quite significant. From Figure 5, the averaged cross-kernel

transform H;% () is nearly symmetric over {@,,®,}. This means that the resulting

V3 oseemer 18 T€latively less significant.

This procedure of finding subharmonic components can be continued to include
higher order transforms until an accurate estimation is achieved. If necessary this
could be implemented using symbolic algebra software. From Figure 6(b) it can be
seen that up to the second order frequency response has already provided a quite
accurate e stimation o f the original output. Therefore the c ombination of the output

response y;" and y;" provides a quantitative measure about the formation of the

subharmonic ®,',®,* =1rad/sec.

5. Conclusions

It is well known that the generation of subharmonics is the first step towards chaos.
Studying the internal mechanisms associated with subharmonic generation in the
frequency domain is therefore very important both to study subharmonic behaviour
and to provide insight into chaos. The frequency domain equivalence of the Volterra
series representation, the GFRF’s, have been extensively studied and have played a
very important role in the analysis of mildly nonlinear systems. This powerful tool,
however, can not be applied to nonlinear systems that exhibit subharmonics. In this
study, for the first time, it has been shown that it is possible to associate GFRF’s with
subharmonics systems using a new MISO modeling procedure.

The MISO nonlinear response synthesis problem based on GFREF’s has been studied
based on a Dual-Input-Single-Output(DISO) illustrative example. The formulae for
computing up to third order DISO nonlinear frequency responses has been derived
and applied to a simulation example to demonstrate the validity of the
Volterra/frequency representation. The formation of subharmonics using the new
GFRF’s analysis has also been discussed.

The application of this new procedure to real subharmonic systems should provide
more insight and a better understanding of this complex phenomenon.
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