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Discrete Time subharmonic modelling and Analysis: Part L.
MISO NARX modelling

L.M Li and S.A.Billings

Department of Automatic Control and Systems Engineering
University of Sheffield, Mappin Street, Sheffield S1 3JD

Abstract: Traditionally the Volterra time and frequency domain analysis tools cannot
be applied to severely nonlinear systems. In Part I of this paper, a new method of
building a time-domain NARX MISO model for a class of severely SISO nonlinear
systems that exhibit subharmonics is introduced and it is shown how this allows the
Volterra time and frequency domain analysis to be extended to this class of nonlinear
systems. The new approach is based on decomposing the original single input based
on a Fourler analysis to provide a set of modified input signals which have the same
period as the output signal. A MISO NARX model can then be constructed from the
decomposed multiple inputs and the single output signal. The resulting MISO model
is shown to meet the basic requirement for the existence of a Volterra series
representation from which important frequency domain properties can be derived. In
Part II of this paper, the frequency domain properties of the resulting MISO model
will be explored in detail.

1. Imtroduction

Over the last few decades, the theory and techniques of nonlinear system
identification, for both continuous time and discrete time models, have been studied
and developed. The vast majority of these methods were developed for weakly or
mildly nonlinear systems, where the underlying system can be represented by a
Volterra series. A big advantage of the Volterra based representations is that they can
be readily transformed into the frequency domain using Generalised Frequency
Response Functions (GFRF’s). The inherent features of the underlying nonlinear
systems can be studied using the GFRI’s(Bedrosian and Rice, 1971; Bussgang, et. al.,
1974, Lang and Billings, 2000), and this provides an analogous theory to linear
frequency response methods, which are so important for linear systems. Many
nonlinear phenomena have been analysed and interpreted in terms of the GFRF’s,
including gain compression, intermodulation effects, harmonics and desensitisation.

A much more complex class of nonlinear systems is refered to as ‘severely nonlinear
systems’, where dynamic behaviours such as limit ¢ ycles, subharmonics and c haos
exist. This study will focus on a particular class of severely nonlinear systems that
exhibit subharmonics. Subharmonic systems exist widely in the real world, for
example, in medical science(Greenman et. al., 2004; Velazquez, et. al.,, 2003), in
mechanical systems(Buhler and Frendi, 2004), in electric and magnetic
systems(Tommaseo, et. al., 2004) and in marine science(Umar and Datta, 2003), etc.
Unfortunately subharmonic systems cannot in general be represented by a finite
Volterra series. Although this class of nonlinear systems can still be modelled using



the NARMAX representation in the time domain, frequency domain analysis is very
difficult and virtually no results exist in this field, despite the fact that subharmonics
are essentially a frequency domain phenomenon. So far most analysis for
subharmonic systems has been done using methods based on the bifurcation diagram,
or Poincaré map, etc. It would however be highly desirable if the GFRF’s, which are
used to analyse weakly nonlinear systems, could be extended to apply to subharmonic
systems to provide an analysis tool for a better understanding of the internal
mechanism associated with subharmonic generation. Recently, Boaghe and
Billings(2003) used a MISO Volterra modelling procedure for subharmonic systems,
from which frequency domain properties can be acquired. The work of this paper is to
try to establish an improved procedure for such a link between the subharmonic
system and GFREF’s.

The paper is divided into two parts. In Part I a procedure to build MISO NARX
models that are potentially Volterra meaningful for subharmonic systems is
introduced. This is done by decomposing the input signal such that the resulting
decomposed individual input signals have the same period as the subharmonic, It is
shown that these individual input signals can be considered as multiple input signals
to the system which in turn allows the analysis of the system using GFRF’s. This is
basically an improved procedure based on Boaghe and Billings’(2003) method for
time domain identification. The improvement is two-fold. First, a simple and
straightforward input signal decomposition was adopted in Boaghe and Billings(2003).
But the higher frequency components w hich result from the d ecomposition method
may result in ill-parameterised models. A Fourier analysis based input signal
decomposition is adopted in this paper to solve this problem. Another significant
advantage of the new band-limited decomposition is that the quantitative analysis of
the formation of subharmonics 1s now possible. This will be explained in detail in Part
II. Second, Boaghe and Billings(2003) used discrete time Volterra models( NX
models) in the MISO modelling. This had the advantage of converting the MISO
model into two SISO sub-models, which simplifies the frequency d omain analysis,
but at the expense of using much larger model structures which can result in distorted
Generalised Frequency Response Functions. Therefore MISO NARX model
structures are adopted in this paper in a bid to obtain more accurate frequency domain
estimation. A new frequency domain analysis will be performed based on the MISO
model instead of on the SISO sub-models in Boaghe and Billings(2003). A simulation
example is used to illustrate the new procedure.

In Part IT of this paper, the frequency domain aspects of the MISO NARX modelling,
including GFRF estimation from MISO NARX models, quantitative interpretation of
the subharmonics, and validation of the accuracy of GFRE’s by response synthesis
will be considered. This provides, for the first time, a systematic analysis procedure
for subharmonic systems in the frequency domain.

2. Volterra modelling and its limitations

One of the most studied representations of nonlinear systems is the Volterra
series(Volterra,1930). The Volterra series is a nonlinear functional series that can be
expanded as a polynomial functional series. This is a direct generalisation of the linear
convolution integral, and can be expressed as
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where y, (¢) is the ‘n-th order output’ of the system

() = _E---thn(rl,---,r")ln—[u(t —7,)d, n>0 (1.b)

where ki (7,;:-7,) is called the ‘nth-order Kemnel’ or ‘nth-order impulse response
function’. If n=1, this reduces to the familiar linear convolution integral.

The SISO Volterra series representation (1) can easily be generalised to allow for
multiple inputs. Thus for a multi-input system with a single output y(¢) and N inputs

{u1 | P (r)}, the MISO Volterra series is given by(Swain and Billings, 2001,)

y(t) = i)&, )= iZ SIED N (2.2)

n=1 m=lny=n =M,y

where
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The discrete time domain counterpart of the continuous time domain SISO Volterra
expression (1) is

ymzinm (3.0)
where
1) =33 b (e m )] [l - 7,) n>0,keZ (3.b)
L 2
Similarly the discrete form of the MISO Volterra expression (2) is
ym=2im2mwam (4.

where

N
N T— (k)= Z”'Zhn],...,n.\, (Tns'-'Tlnl;"';Tms-”sfw,,fv)HHuj (k-7;) (4.b)
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Early research on nonlinear system identification using the Volterra and Wiener series
have been thoroughly reviewed by Hung and Stark (1977), and Billings(1980). The
direct application of the Volterra series representation in nonlinear system modelling
has been reported, for example, in Schetzen(1980), Billings and Fadzil(1985), and
Subba and Nunes(1985). The problems associated with this approach are the
computational complexity involved, and an excessive parameter set which is often
needed to describe simple nonlinear systems. This tends to inhibit practical
applications.



There are many other methods which are available to model nonlinear systems,
including neural networks, neuro fuzzy methods, etc. But the models obtained using
these methods can be difficult to interpret. For example neural networks can find
models that predict the data well, but it is very difficult to analyse the results, to relate
them to the underlying system or to map them into the frequency domain. These
methods therefore tend to be purely time domain approaches. The NARX model,
which is the noise free part of the NARMAX model and has been extensively studied
by Billings and co-workers(Billings et al.1988, Billings and Voon, 1983; Billings and
Chen, 1989), can easily be mapped into the frequency domain to reproduce
Generalised Frequency Response functions(GFRE’s) (Billings and Tsang, 1989). This
produces a powerful representation for a large class of nonlinear systems and the
Volterra model can be regarded as a special case of the NARX model. T herefore,
because of the excellent potential Volterra /frequency domain analysis features it is
often of practical interest to construct NARX models wherever possible.

However, not all NARX models can be mapped into the frequency domain. For
example, strongly nonlinear systems or systems that exhibit complex dynamics, such
as limit cycles, subharmonics and chaos, which can be described by standard NARX
models in the time domain, cannot generally be analysed systematically in the
frequency domain.

In the following sections, the link between the NARX model and the
Volterra/frequency representation for a class of severely nonlinear systems that
exhibit subharmonics is investigated.

3. Subharmonic analysis and input signal decomposition

In the real world, it is usually assumed that the output signals are corrupted by noise.
There are many ways available to remove the influence of noise in system
identification so that the system analysis can be conducted based on noise free models.
Here we can assume that an accurate noise free model, no matter in what format, e.g.,
neural network, polynomial or wavelets, etc, has been obtained by system
identification techniques. Then the designated input signal, which would trigger the
appearance of subharmonics, is fed into the noise free model and input-output signals
are collected accordingly.

For linear systems, the steady-state output response always has the same frequency
components as that of the input signal. For nonlinear systems driven by a sine wave,
new frequency components can be produced in the steady-state response. When these
new frequency components are at fractions of the frequency of the driven signal, they
are referred to as subharmonics. The presence of subharmonics is an important
practical problem in the dynamics of many nonlinear mechanical systems, and
Feigenbaum(1980) has noticed that subharmonic generation is the first step on the
route to chaos. Subharmonic systems however do not have a Volterra representation.
This can be seen from the following theorem.

Theorem 1 (Boyd et al, 1984). [Periodic steady state theorem] If the input of a
nonlinear system described by a Volterra series operator N is periodic with period T
for £>0, then the output Nu approaches a steady state, which is also periodic with
period 7.

It can be concluded from Theorem 1 that a Volterra/frequency domain equivalence of
a direct SISO NARX model built upon the original input-output signals of a



subharmonic system will not exist. This is because the period of the output signal of a
subharmonic system will be an integer multiple greater than the period of the input
signal. An alternative means is therefore needed to allow a frequency domain
analysis and interpretation of systems that exhibit subharmonics.

It is therefore impossible to obtain a Volterra analysis directly from an ordinary input-
output model of a subharmonic system. But if the given input signal could be
modified to create input(s) with period(s) equal to the subharmonic oscillation, then
the periodic steady state theorem could be satisfied(Boaghe and Billings, 2003). If the
subharmonic under investigation has a period n times the original input period
T(=Y), a modified input u,, should have a period n times the real input period.

Intuitively, this can be achieved by decomposing the original input signal u(¢) into an

n dimensional signal, that is, u_, =[u;...;u,;...;u, ], Where
0 te[0;T)
u(t) te[(-D)TT)
umod = Z i (5)
0 teliT;(i+1)T)
0 te[(n-)I;nT)

It can easily be verified that
w, O+ +u, )+ +u, () =ull) (6.2)
which has the property
u,(t)=u,(t—il) (6.b)

An illustrative example of the creation of a modified input for a second order
subharmonic system is illustrated in Figure 1.

By modifying the input signal u(f) as in (5), each individual component u, (¢) has the
same period as the subharmonic. It can be assumed that the original single harmonic
input signal u(f) is actually composed by those individual components u,(f), which
can then be seen as multiple driven inputs of the subharmonic system. Theorem 1 can
now be satisfied by the fact that the each input component u,(f) in u_ , and the output
y(?) have the same period n7, and this in turn enables a Volterra representation based
on a new MISO model using the multiple-input-single-output configuration
{lu...;u;5..5u, 1, ¥()} . The advantage of this approach is that now the Generalised

mod

Frequency Response Functions can be used, for the first time, to provide a unified
frequency domain analysis of subharmonic systems.

It can be seen that the information required for MISO modelling is the order n of the
subharmonic and the period T of the input signal u(f). This information can be
obtained by analysing the given system using a bifurcation diagram and a response
spectrum map (Billings and Boaghe, 2001). However this naive way of decomposing
the input may cause discontinuity effects, which can result in high frequency
components, in each decomposed individual input signal. Usually the steady state
output of a subharmonic system contains only a limited frequency bandwidth. Any
excessive high frequency components may cause inaccuracies in the model predicted



output(MPO), and large model coefficients. Therefore an improved decomposition
technique has to be introduced.

Since the decomposed input signals u,(f) in (5) are periodic in »7, this can be
represented by a simple trigonometric Fourier series as (Hsu, 1967)

@

u,(t) = a, + ) _[a, cos(2) + b, sin(42)] (7)

with @ = %
The Fourier coefficients a,,a, and b, can be evaluated as

T/2

e
ay =% [ u ()it 8)
a, =2 T:Zui(t) cos(ke)dt ©)
be =% [ u,()sin(te)dr (10)

The high frequency components in (7) may induce problems as discussed above.
Therefore a modified decomposition input method is introduced where only a limited
band-width is allowed by truncating the standard Fourier series expression (7)

u™ () =a, + i[ak cos() + b, sin(£24)] (11)
=1
This point is perhaps better understood through a simple example.
Assume the input signal to be analysed is
u(t) = 6sin(wt), w=1
as shown in Figure 1 (a).
Assume that there is a third order subharmonic, thatis, n=3.
Decomposing u(t) using the rules in (5) yields u,(¢),u,(¢) and u,(¢) as in Figure 1
(b),(c) and (d).
u, (i=12,3) can also be expressed as a Fourier series

u, (f) = a,, + Z[alk cos(42) + b,, sin(£2)]
k=1

=1.0741cos(t/3)-0.6201sin(z/3) +1.7187 cos(2t / 3) + 0.9923sin(2¢ / 3) + 2.0sin(z)
—1.228cos(4¢/3)+0.709sin(4¢/3) —0.5374 cos(5¢/3) —0.3102sin(5¢/3) +...

u,(t) =a, + Z[azk cos(£2) + b,, sin(£2)]
k=1

=1.2402sin(t /3) -1.98465in(2¢ / 3) + 2.0sin(t) - 1.4180sin(4¢ / 3) + 0.6204sin(5¢ /3) + ...

u,(t) = ay, + Z[a3k cos(¥2) + by, sin(£24)]
k=1

=-1.0741cos(z/3) - 0.6201sin(t/3) —1.7187 cos(2¢/3) + 0.9923 sin(2¢ / 3) + 2.0sin(¢)
+1.228cos(4¢/3) + 0.709sin(4¢/3) +0.5374cos(5¢/3) —0.3102sin(5¢/3) +...



The modified " can now be obtained from the truncated u, by removing all
frequency components above 4/3 rad/sec, and this is shown in Figure 2.

SAVAV \/ VAV \/ \AVAVE
AV Ve Vanen
g S Ve Vel Ve
g el Vol Vol

Figure 1. Original input and decomposed signal using rules (5)

(C)]

(b)

(c)

1 1 1 1 1
0 10 20 30 40 50
t(sec)

Figure 2. Fourier analysis based decomposition using rules (11)

new

It can also be observed that the newly decomposed signals u;" satisfy the relations

' (£) + 1l (£) + 12 (1) = u() (12.2)
and 1w (t) = u (t —iT) (12.b)

The aboveresultin (12) can be generalised to the nth order subharmonics case, to
give an equation similar to eqn (6) for the infinite frequency case:

UM (E) + o () + oo+ 2" () = u(f) (13.2)



and u" (£) =u"" (t —iT) (13.b)

The relation in (13) is very important for the modification of the input signal
decomposition because this means that the modification does not violate the basic fact
that the original input is composed of all individually decomposed signals.

It can be seen that the new input decomposition is band-limited and smooth. Another
advantage of using a Fourier analysis based decomposition is that a quantitative
Volterra/frequency domain analysis is now possible. This will be illustrated later in
Part II of this paper.

4. MISO NARX modelling

new

The decomposed individual signals u" satisfying (13) can be regarded as multiple

driven input signals to a system which can be modelled using a MISO NARX model
as shown in Figure 3. This model consists of a time multiplexor M and a MISO
system S. To simplify the modelling process, it is assumed that the final MISO NARX
model does not contain cross-product terms of the type w,u i = j.

Figure 3. MISO modelling structure for a subharmonic system

The modelling procedure for nonlinear systems that exhibit subharmonics can
therefore be summarised as

i). Compute the bifurcation diagram and response spectrum map from the input-
output data,

ii). Identify the subharmonics of order » from the response spectrum map,

iii). Generate an n-dimensional decomposed input u,_ , =[u,;...;%,;...;u,] using the
rules in eqn (5),

iv). Perform a Fourier analysis on each individual decomposed input u,, and

determine the bandwidth of the final inputs #™ based on the spectrum of the output,
and

v). Build a MISO NARX model based on the n-dimensional inputs " and the
single output y(7).

5 Simulation example

Consider a system described as

J+02y+y—0.1y* = Asin(wt) (14)



Ity

The Response Spectrum Map(RSM), introduced by Billings and Boaghe(2001), for

system (14) which is excited at the frequency @ = 2 rad/sec, is ploted in Figure 4.

REM

Frequency frad'sec]

& 55 P 6.5 5 8 8.5 ®
A

Figure 4. RSM for the continuous time system (14)

From the RSM in Figure 4, it can be seen that a second order subharmonic occurs at
the amplitude range A <[6,10.8]. In this example, the amplitude of the driven input is

set as 4 = 8. The decomposition factor should be setas» =2 because o f the second
order subharmonic present.

The system (14) was simulated using a Fourth order Runge-Kutta algorithm at a
sampling frequency f, = 40/ with zero initial conditions. The Fourier analysis of the

initial decomposed u, (i =12) is:
u,(¢) =3.3901cos(r) + 4.0sin(2¢) - 2.0424 cos(3¢) - 0.4903 cos(57) +...
u, (¢) = -3.3901cos(t) + 4.0sin(2f) + 2.0424 cos(3t) +0.4903cos(5¢) +...  (15)

In order to decide the appropriate truncation order of the input u,, it is necessary to
consider the spectrum of the resulting output, which is shown in Figure 5.

100 T T T T T T T T T T

50 -

-100 - n —

Power Spectral Density(dB)

-150 | .

-200 ol

-250 - \/ﬂ—

L 1 L s 1 L 1 L 1 1

o 0.5 1 1.5 =2 2.5 3 3.5 4 4.5 5
Frequency (rad/sec)

Figure 5. Power spectrum of the output y(¢) for eqn (14)



It can be seen from Figure 5 that the spectrum of the output y becomes negligibly
small for the frequencies above (including) @ =3. This suggests that the frequency
range in the input signals can be set up to @ = 3. Therefore the truncation order N was
chosen as N=3 in this example, which means that the truncated input signals will
contain 3 frequency components @ =1,2and3 , which are incidentally also the

dominant frequency components in u, . The final modified input signals

u® and u}** which will be used in the MISO NARX modelling are shown in Figure 6.

2

ul__new(t)

t(sec)

uz2_new(t)

[s] é 1I0 115 2I0 2I5
t(sec)
Figure 6. The finally decomposed input signals u;*" and ;" used in the MISO
modelling of eqn (16)

new new

By using the decomposed 2-dimentional inputs [#* #;”] and the output y, a second
order MISO NARX model was identified as
y(k) = 3.9187y(k-1) - 5.7870(k-2)+38163 y(k-3)-0.9482 y(k-4) +0.0032u, (k-6)-0.00794u, (k-5)
+ 0.00533 11, (k-4) -0.000614u, (f-1) -0.00439%u, (k-6)-0.00840u, (k-4)+0.01135u, (k-5)
+0.001437u, (k-2) + 0.00126y (k-1)+0.0000321y 2 (k-4)-0.002491y(k-1) y(k-2)
+ 0.000414 1> (k-2)+0.000739 y(k-2) y (k-4) + 0.00191y(k-1) y (k-3)-0.001312 y(k-2) y(k-3)
-0.000756y(k-1)y(k-4) + 0.000223y (k-3) + 0.0002209u; (k-6) -0.00102713u, (k-5)u, (k-6)
+0.001770u (k-5)+0.0001113u, (k-3)u, (k-6) + 0.0003873u, (k-3)u, (k-5)
-0.001462u, (k-4)u, (k-5)
(16)
The model predicted output, which is a perfect match to the original output(actually
overlying the original output), is plotted in Figure 7.
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Figure 7. Model Predicted Output for the MISO model egn (16)
compared to the real output signal

6. Conclusions

NARX modelling has been extensively applied in model fitting for a large class of
nonlinear systems and is often followed by frequency domain analysis. Unfortunately,
the frequency domain analysis has until now been restricted to mildly (or weakly)
nonlinear systems. While NARX time domain modelling is capable of fitting models
to severely nonlinear systems that exhibit subharmonics and other complex
behaviours, the frequency domain capacity is lost.

A novel MISO NARX modelling algorithm, designed for a special class of severely
nonlinear systems that exhibit subharmonics, has been proposed in this study to
overcome these problems. The key idea is to split the original input signal into n
individual inputs(where n is the order of subharmonics), with each individual input
having the same period as that of the output signal. To enable accurate and
parsimonious modelling, a smooth/band-limited input signal decomposition is
essential, and this can be done based on a Fourier analysis/truncation. In Part IT of
this paper, a comprehensive frequency domain analysis will be introduced to verify
this idea and to provide a frequency domain interpretation of subharmonic systems.
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