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Abstract

In this paper, we present a general methodology for designing polynomial-time algorithms
for bicriteria scheduling problems on parallel machines with controllable processing times.
For each considered problem, the two criteria are the makespan and the total compression
cost and the solution is delivered in the form of the breakpoints of the e¢cient frontier.
We reformulate the scheduling problems in terms of optimization over submodular poly-
hedra and give e¢cient procedures for computing the corresponding rank functions. As a
result, for two of the considered problems we obtain the …rst polynomial-time algorithms,
while for the third problem we considerably improve the known running time.
Keywords: submodular optimization, parallel machine scheduling, controllable process-
ing times, bicriteria problems

1 Introduction

In this paper, we study preemptive scheduling problems on parallel machines with control-
lable processing times. In the model under consideration, the jobs of set  = f1 2     g
have to be processed on parallel machines 12    , where  ¸ 2. Throughout this
paper, it is assumed that  ¸ . For a job  2  , its processing time () is not given in
advance but has to be chosen by the decision-maker from a given interval [() ()]. That
selection process can be seen as either compressing (also known as crashing) the longest
processing time () down to (), or decompressing the shortest processing time () up
to (). In the former case, the value () = () ¡ () is called the compression amount
of job . Compression may decrease the completion time of job  but incurs additional
cost ()(), where () is a given non-negative unit compression cost. The total cost
associated with a choice of the actual processing times is represented by the linear function
 =

P
2 ()().

Each job  2  can be given a release date (), before which it is not available. In the
processing of any job, preemption and migration is allowed, so that the processing can be
interrupted on any machine at any time and resumed later on, possibly on another machine.
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It is not allowed to process a job on more than one machine at a time, and a machine
processes at most one job at a time.

Given a schedule, let () denote the completion time of job , i.e., the time at which the
last portion of job  is …nished on the corresponding machine. A schedule is called feasible
if the processing of a job  2  takes place no earlier than its release date (). The value
max = maxf()j 2 g determines the maximum completion time of all jobs and is called
the makespan.

The machines can either be identical, i.e., they have the same speed, or uniform, i.e.,
machine  has speed , 1 ·  · . Without loss of generality, throughout this paper we
assume that the uniform machines are numbered in non-increasing order of their speeds, i.e.,

1 ¸ 2 ¸ ¢ ¢ ¢ ¸  (1)

For some schedule, denote the total time during which a job  2  is processed on
machine , 1 ·  · , by (). Taking into account the speed of the machine, we call
the quantity 

() the processing amount of job  on machine . It follows that

() =
X

=1


()

Scheduling problems with controllable processing times have received considerable at-
tention since the 1980s, see, e.g., surveys by Nowicki and Zdrza÷ka [9] and by Shabtay and
Steiner [13]. The models with controllable processing times have found applications in sup-
ply chain management and scheduling, imprecise computation, make-or-buy decision making,
etc.

Traditionally, in this area two functions determine the quality of a schedule: (a) total
compression cost  given by a linear function

P
()(), and (b) a function  of the job

completion times. The following four types of models are mainly considered in the literature:

¦1 : to minimize  , subject to a bounded value of  ;

¦2 : to minimize  , subject to a bounded value of  ;

¦3 : to minimize some aggregated function, e.g., a linear combination of  and  ;

¦4 : to minimize both function  and  , i.e., to determine the set of the Pareto-optimal
solutions.

The problems considered in this paper fall in the category ¦4. We need to …nd the set
of Pareto-optimal solutions de…ned by the break-points of the so-called e¢ciency frontier;
see [18] for de…nitions and a state-of-the-art survey of multicriteria scheduling. Recall that
a schedule 0 is called Pareto-optimal if there exists no schedule 00 such that max(

00) ·
max(

0) and  (00) ·  (0), where at least one of these inequalities being strict.
Adapting standard notation for scheduling problems by Lawler et al. [7], we denote a

bicriteria problem in the most general setting by j() () = ()¡() j(max )
Here, in the …rst …eld we write “” to de…ne a processing environment that consists of
 ¸ 2 uniform parallel machines; this parameter is replaced by “” if the machines are
identical. In the middle …eld, the item “()” implies that the jobs have individual release
dates; this parameter is omitted if the release dates are equal. We write “() = ()¡()”
to indicate that the processing times are controllable and () is the compression amount of
job  to be found. The abbreviation “” is used to point out that preemption is allowed.
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Finally, in the third …eld we write (max ), which means that we are searching for a set
of Pareto-optimal solutions with respect to the two given criteria.

Notice that the bicriteria models are most general and if we know how to solve a ¦4
version of a scheduling model, then we can deduce a solution to any other single-criterion
counterpart, ¦1¡¦3 The bicriteria models are also most important since a solution delivers
to a decision-maker the whole range of options to choose from. Although the …rst studies on
the ¦4 problems date as early as 1982 [21], positive results for these problems are still quite
rare, as admitted in the survey [13]. Besides, attempts to handle the bicriteria problems lack
a general methodology.

Below we mainly review the previously known results on the bicriteria scheduling prob-
lems (model ¦4), as most relevant to this study.

Van Wassenhove and Baker [21], Tuzikov [19] and later Hoogeveen and Woeginger [5]
consider various versions of a bicriteria single machine problem with a function  representing
the maximum completion penalty. The break points of the e¢ciency frontier are found by
tracking the changes in the structure of a schedule as the processing times of the jobs change.

A similar method is applied to problem  j() ¡ () j(max ) with identical
parallel machines by Nowicki and Zdrza÷ka [10] who obtain an (2)-time algorithm.

For problem j()¡() j(max ) with uniform machines, Nowicki and Zdrza÷ka
in [9] describe an approach that allows …nding an ¡approximation of the e¢ciency frontier
in pseudopolynomial ((¡ )) time, where  and  are the optimal makespan values
if all jobs are fully decompressed and fully compressed, respectively.

A systematic development of a general framework for solving scheduling problems with
controllable processing times via submodular methods has been initiated by Shakhlevich and
Strusevich [14, 15] and further advanced by Shakhlevich et al. [16] and Shioura et al. [17].
This paper makes an additional contribution to the development of this approach.

In [14, 15] a number of scheduling problems with controllable processing times have
been formulated in terms of maximization linear programming problems de…ned over spe-
cial polyhedra with submodular constraints. For several models, including those studied in
this paper, the corresponding rank functions of submodular polyhedra have been developed.
Still, at that stage, the solution methods developed in those papers have mainly remained
schedule-based and implemented the greedy procedures of compression or decompression the
processing times of the jobs. The only advantage of the submodular reformulations has been
that of an easy justi…cation of the greedy approach for the whole range of related problems.
Prior to [14, 15], the researchers justi…ed the greedy reasoning from the …rst principles and
in a problem-dependent way. As far as the bicriteria problems are concerned, Shakhlevich
and Strusevich [14] combine submodular and scheduling reasoning to develop an ( log)
time algorithm for problem  j() ¡ () j(max ), while in [15] they design the
…rst polynomial-time algorithm for problem j() ¡ () j(max ), that requires
( log + 4) time. While submodular reasoning has been crucial in deriving those re-
sults, its potential has not been explored in [14, 15] in depth.

Further advantages of applications of submodular optimization have been demonstrated
in [16]. For the bicriteria problem of minimizing the total compression cost and the maximum
completion penalty  a fast algorithm based on a reformulation in terms of a maximization
linear programming problem over a (parametric) submodular polyhedron intersected with a
box has been designed. An important statement contained in that paper has become one
of the essential tools that is used in all our subsequent papers, including this study. This
statement, quoted below as Theorem 1, states that a linear programming problem over a
submodular polyhedron intersected with a box can be reduced to a problem de…ned over a
better structured polyhedron, a so-called base polyhedron with a modi…ed rank function. It
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is well-known that the resulting problem admits a greedy solution algorithm with the optimal
decision variables written in close form; see Theorem 2 in Section 2.

For the single criterion counterparts (model ¦1) of the models considered in this paper,
Shioura et al. [17] develop the fastest known algorithms based on a submodular reformulation
and decomposition. These results are yet to appear in the form of a journal publication.

In this paper, we continue the line of research that links scheduling with submodu-
lar optimization and present fast algorithms that solve bicriteria problems  j() () ¡
() j(max ), j()¡() j(max ) and j() ()¡() j(max ).
Our reasoning is “schedule-free” and is based on reformulation of the corresponding prob-
lems as optimization problems with submodular constraints. For each of these problems we
develop an appropriate routine for computing the corresponding rank functions as piecewise-
linear functions followed by computing their sum, with several stages of the solution process
being problem-independent, either technically or at least ideologically.

Table 1: Time complexity of the algorithms

Machines Release Dates Previously Known This paper

Identical Parallel Zero ( log) [14] N/A
Identical Parallel Di¤erent N/A (2 log)
Uniform Parallel Zero ( log+ 4) [15] ( log)
Uniform Parallel Di¤erent N/A (2)

The summary of the results relevant to this paper is given in Table 1. Notice that here we
do not consider problem  j()¡() j(max ), because the algorithm from [14] has
the running time of ( log) leaving no room for further improvements, since solving any
bicriteria problem under consideration requires the sorting of the jobs with respect to their
unit compression costs. Please observe that for problem j() ()¡() j(max )
no polynomial-time algorithm has been previously known, even for its special case with
identical machines, i.e., problem  j() () ¡ () j(max ).

The remainder of this paper is organized as follows. Section 2 gives a brief review of the
necessary facts on submodular optimization, demonstrates how the scheduling problems un-
der consideration can be formulated in terms of maximization linear programming problems
with submodular constraints and provides the explicit expressions for the corresponding rank
functions. The key new outcome of that section is a collection of general principles that are
applicable to solving any bicriteria scheduling problem under consideration. Those principles
are aimed at obtaining an expression for the cost function as a piecewise linear function of
makespan. Sections 3 through 5 consider each of the three problems individually and contain
algorithms for computing the corresponding rank functions and for …nding the cost functions
in the piecewise linear form. Some concluding remarks are given in Section 6.

2 General Principles

In this section, we describe algorithms for …nding the set of Pareto-optimal solutions to the
bicriteria problems j() ¡ () j(max ) j() () ¡ () j(max ) and
 j() () ¡ () j(max ).

We start with the features that are common to all problems. Let () denote a feasible
preemptive schedule in which all jobs are completed by time . The task of checking whether
such a schedule exists for a given  can be formulated in terms of submodular optimization.
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For completeness, we introduce the necessary de…nitions. For a set  = f1 2     g,
let 2 denote the family of all subsets of  . For a subset  µ  , let R denote the set
of all vectors p with real components (), where  2 . For a vector p 2 R , de…ne
() =

P
2 () for every non-empty set  2 2 and de…ne (;) = 0.

A set function  : 2 ! R is called submodular if the inequality

( [  ) + ( \  ) · () + ( ) (2)

holds for all sets  2 2 . For a submodular function  de…ned on 2 such that (;) = 0,
the pair (2  ) is called a submodular system on  , while  is referred to as the rank
function of that system.

For a submodular system (2  ), de…ne two polyhedra

 () = fp 2 R j () · ()  2 2g (3)

() = fp 2 R j p 2  () () = ()g (4)

called a submodular polyhedron and a base polyhedron, respectively, associated with the sub-
modular system. Notice that () represents the set of all maximal vectors in  ().

For a scheduling problem under consideration, below we explain that the set of feasible
schedules () can be described as a polyhedron for the form

 () = fp 2 R j () · () 2 2 ; () · () · ()  2 g (5)

where  : 2 ! R is a set function and lu 2 R are vectors of lower and upper bounds on the
processing times, respectively. For a set of jobs  µ  the value () is the total processing
requirement for the jobs of set  with respect to their actual processing times, while function
() represents the total largest processing capacity available for these jobs. Notice that if
function  is submodular then the polyhedron  () is a submodular polyhedron  () of
the form (3) intersected with a box.

All problems under consideration share the same necessary and su¢cient conditions for
the existence of a feasible schedule with a given common deadline , as formulated, e.g., in
[1]. Informally, these conditions state that for a given deadline  a feasible schedule exists if
and only if

(i) for each  1 ·  · ¡ 1,  longest jobs can be processed on  fastest machines by time
, and

(ii) all  jobs can be completed on all  machines by time 

Thus, for a problem at hand, we need to …nd an expression for the largest processing
capacity available to process any subset  of jobs. Such expressions are presented below in
the form of a set function (), which in all cases appears to be submodular. As a result,
checking the existence of a feasible schedule () reduces to determining a feasible point in
the polyhedron  () associated with the relevant rank function .

Consider problem j() ¡ () j (max ) in which all jobs are simultaneously
available at time zero, i.e., () = 0. The machines are numbered in accordance with (1).
De…ne

0 = 0  =
X

=1

 1 ·  ·  (6)

where  is the total speed of  fastest machines.
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To complete before time , for any set that contains more than  jobs, including the
whole set of jobs  , the total processing capacity  should be enough, while for any set
 with less than  jobs it should be su¢cient to use the jj fastest machines during the
time interval [0 ]. Therefore, problem j()¡() j (max ) is associated with the
polyhedron  () with the rank function  of the form

() =

½
jj if jj · ¡ 1

 otherwise
(7)

The conditions () · (),  2 2 , for the function () of the form (7) correspond
to the conditions (i) and (ii) above. As proved in [15], function  is submodular.

Consider now problem j() () ¡ () j (max ) in which the jobs have indi-
vidual release dates. To derive the rank function for the polyhedron  () associated with
checking the existence of a feasible schedule () observe the following. For a feasible solu-
tion vector p, the following conditions should be satis…ed: any job can be completed by time
 if it is processed by the fastest machine, any pair of jobs can be completed by  if they are
processed on two fastest machines, etc., any subset of at most ¡ 1 jobs can be completed
by  on ¡1 fastest machines, and …nally, all jobs can be completed by  on all  machines.
In order to take into account the release dates, assume that the jobs are numbered in such
a way that

(1) · (2) ·    · () (8)

and for a set  2 2 de…ne () as the -th smallest release date in set , 1 ·  · jj.
Similarly to the piece of notation (), we denote the sum of the release dates of the jobs
of set  by ().

For a non-empty set  of jobs, the largest processing capacity available on the fastest
machine 1 is 1 ( ¡ 1()), the total largest processing capacity on two fastest machines
1 and 2 is equal to 1 (¡ 1()) + 2 (¡ 2()), etc. Thus, we deduce that

() =

(
jj ¡

Pjj
=1 () if jj · ¡ 1

 ¡
P

=1 () otherwise
(9)

This formula is shown in [8, 15] in a di¤erent (but equivalent) form. Function () can be
proved to be submodular as in [15].

If the machines are identical, then for the resulting problem  j() () ¡ () j
(max ) function (9) can be simpli…ed. For a set of jobs  µ  , let () denote the sum
of min fjj g smallest release dates for the jobs of set . Notice that if jj · ¡ 1 then
() = (). For completeness, de…ne (;) = 0. Then

() =

½
jj ¡ () if jj · ¡ 1
 ¡() otherwise

(10)

This formula is also shown in [17], where the roles of the release dates and the deadlines are
exchanged. Observe that jj = jj and  =  for identical machines, assuming that the
speed of any machine is 1.

In our previous work [16], we have demonstrated that a linear programming problem
over  () can be reduced to optimization over a simpler structure, namely, over a base
polyhedron. In fact, we have shown that a problem of maximizing a linear function over the
intersection of a submodular polyhedron and a box is equivalent to maximizing the same
objective function over a base polyhedron associated with another rank function.
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Theorem 1 (cf. [16]) Polyhedron  () is non-empty if and only if l 2  () and l · u.
If  () is non-empty, then the set of maximal vectors in  () is a base polyhedron ()
associated with the submodular system (2  ), where the submodular rank function  : 2 !
R is given by

() = min
 22

f( ) + ( n  ) ¡ ( n)g  2 2  (11)

A detailed proof of Theorem 1 is given in [16]. Notice that Theorem 1 can also be derived
from Proposition II.2.11 of [2], which addresses the truncation operation for generalized
polymatroids.

Since ( n  ) = () ¡  ( \  ) for  µ  , we may rewrite (11) to obtain

() = () + min
 22

f( ) ¡ ( \  ) ¡ ( n)g  (12)

For the problems under consideration, …nding a schedule with the makespan max =  and
the minimum total compression cost  reduces to the problem of maximizing the functionP

2

()() over  () . In turn, due to Theorem 1, the latter problem reduces to

Maximize
X

2

()() (13)

subject to p 2 ()

The bene…t gained by such a reduction is the possibility of using the most well-known
result of submodular optimization that guarantees that a solution to the problem of maximiz-
ing a linear function over a base polyhedron can be found by a greedy algorithm. Informally,
to determine an optimal vector p¤ such an algorithm starts with p¤ = l and considers the
components of the current p¤ in the sequence  = ( (1)   (2)       ()) such that

((1)) ¸ ((2)) ¸ ¢ ¢ ¢ ¸ (()) (14)

giving the current component the largest possible increment that keeps the vector feasible.
Another advantage of the reduction to a problem of the form (13) is that the solution

vector p¤ can be obtained essentially in a closed form, as stated in the theorem below. De…ne

() = f(1)     ()g  1 ·  · ; (15)

for completeness, de…ne 0() = ;.

Theorem 2 (cf. [3]) Given an LP problem of the form (13), let  = ( (1)   (2)       ())
be an ordering of elements in  that satis…es (14). Then, vector p¤ 2 R given by

¤(()) =  (()) ¡  (¡1())   = 1 2     

is an optimal solution to problem (13).

Theorem 2 provides the foundation for our new approach that …nds the e¢ciency frontier
of the bicriteria scheduling problems in a closed form.

Let ¤() denote a schedule with a makespan max =  that minimizes the total compres-
sion cost. The solution to a bicriteria problem will be delivered as a collection of break points
of the e¢ciency frontier ( ()), where  is a value of the makespan of schedule ¤() and
 () is a (piecewise-linear in ) function that represents the total optimal compression cost.
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Let also ¤( ) denote the optimal value of the actual processing time of job  in schedule
¤(). It follows that

 () =
X

=1

 (()) ¤ (() )  (16)

For the problems under consideration, due to (7), (9) and (10), the rank function ()
as well as the function () are functions of ; therefore in this paper we may write ( )
and ( ) whenever we want to stress that dependence.

Given a value of  such that all jobs can be completed by time , de…ne a function

() = (() ) 1 ·  ·  (17)

computed for this value of . By (12),

() = (()) + min
 22

f( ) ¡ (() \  ) ¡ ( n())g 

For all scheduling problems under consideration, due to (7), (9) and (10), there are  ex-
pressions for ( ), depending on j j 2 f1 2    ¡ 1g or j j ¸ . As we show in the
following sections, …nding the minimum in the above formula results in () represented as
a piecewise-linear function of the form of an envelope

() = (()) +

8
>>>>><

>>>>>:

 +
 for    ·  

¡1 +¡1
 for    · ¡1 

...
1 +1 for 2   · 1 
0 for 1    +1

(18)

where  denotes the smallest deadline  for which there exists a feasible schedule (),
while the values 

 , 1 ·  ·  are appropriately determined problem-dependent constants.
Their calculation will be explained in the subsequent sections. Notice that if for some ,
0 ·  ·  ¡ 1, the function (()) + ¡ + ¡

 does not contribute into () as a
piece, the breakpoint ¡ is set equal ¡+1 .

The value of  can be found for each problem in advance, since it is equal to the minimum
makespan, provided that the processing times are equal to their lower bounds (). For the
model with uniform machines this takes ( +  log) time if the release dates are equal
[4], and ( log + ) time if the release dates are di¤erent [12]. For the model with
identical machines and di¤erent release dates we can use the algorithm from [11] that requires
( log) time, provided that the jobs are numbered in accordance with (8).

Recall that by Theorem 2

 () =
X

=1

 (()) ¤ (() ) =
X

=1

 (())
¡
() ¡ ¡1()

¢


For completeness, de…ne  ((+ 1)) = 0 and rewrite

 () =
X

=1

 (())
¡
() ¡ ¡1()

¢
=

X

=1

( (()) ¡ ((+ 1)))() (19)

Thus, in order to be able to compute the function  () we …rst have to compute the
functions (),  = 1 2      for all relevant values of , and then to compute their weighted
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sum by (19). This function fully de…nes the e¢ciency frontier for the corresponding bicriteria
scheduling problem.

Theorem 2 implies that we need a procedure that computes the value of a submodular
function () for a given  2 2 . In the following sections, we explain how to compute
function () for the scheduling problems under consideration and how to adapt the corre-
sponding procedures for computing the functions () of the form (18).

Another feature of our approach that is common for all scheduling problems under con-
sideration is related to computing function  (). Assume that for a scheduling problem
piecewise-linear functions () of the form (18) are found. We can organize the break
points of these functions as an £ matrix

 =

0

B
B
B
@

1 ¡11 ¢ ¢ ¢ 11
2 ¡12 ¢ ¢ ¢ 12
...

. . .
...

 ¡1 ¢ ¢ ¢ 1

1

C
C
C
A
 (20)

where each row is a non-decreasing array. Then, the weighted sum  () given by (19) can
be found by merging the arrays of the break points, obtaining a non-decreasing sequence of
() potential break points of function  (). It is straightforward to compute the value
of  () between any two consecutive break points.

It is well-known that merging  sorted arrays of  elements each into a single sorted
array requires ( log ) time; see e.g., Section 5.4.1 of [6]. Merging  =  rows of  = 
elements of matrix  would take ( log) time. Thus, having found the functions (),
1 ·  · , the function  () of the form (19) can be computed in ( log) time.

On the other hand, if the columns of matrix  are known to be sorted, then the list of
the break points of  () can be obtained in ( log) time by merging  =  columns
of  =  elements each, which is an improvement over ( log) for  ¸ .

Below we present a su¢cient condition for the columns of matrix  to be ordered. The
following lemma holds for all scheduling problems under consideration, provided the rank
functions () satisfy (18).

Lemma 1 Let  be the matrix of the break points of the piecewise-linear functions ()
1 ·  · , of the form (18). Then, for , 1 ·  ·  and , 1 ·  · ¡ 1 the inequality

¡1
 ¡

 · ¡1
+1 ¡

+1 (21)

implies that
 · +1. (22)

Proof: For simplicity, we present the proof assuming that the intervals (¡1  ] and
(¡1+1 


+1] are both non-empty. The proof can be appropriately adjusted to handle the case

that at least one of these intervals is empty.
The break point  is the solution of the equation

(()) + ¡1 +¡1
 = (()) +  +



i.e.,  =
¡
¡1
 ¡



¢
 ( ¡ ¡1) =

¡
¡1
 ¡



¢
 where  is the speed of machine .

Similarly, +1 =
¡
¡1
+1 ¡

+1

¢
. Then (21) implies (22), as required.

As discussed in Section 3, for one of the scheduling problems due to its special structure
the running time for computing function  () can be reduced to ( log). For the other
problems, such a reduction, even if possible, will not reduce the overall running time, see
Sections 4 and 5.
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For all scheduling problems studied below, the corresponding rank functions () given
by (7), (9) and (10) depend on the cardinality of set . This is why in the subsequent
consideration it is convenient to use the sets

Y = f 2 2 j j j = g 1 ·  ·  (23)

that contain all subsets of the ground set with exactly  elements; for completeness we de…ne
Y0 = f;g.

3 Uniform Machines, Common Release Date: Rank Function

Computation

In this section, we consider problem j()¡() j (max ) and present a procedure
for computing the rank function () for a given deadline  and set  µ  . Then we show
how that procedure can be adapted for …nding all functions () = (() ) for all  2 
as piecewise-linear functions of 

We assume that the machines are numbered in accordance with (1), and the values
0 1      are de…ned by (6).

For given  and set , due to (7) and (12) we may write () = min
©
0() 00()

ª
,

where

0() = () + min
0··¡1

½

 ¡ max
 2Y

f( \  ) +  ( n)g

¾

; (24)

00() = () +  ¡ max
¸

½

max
 2Y

f( \  ) +  ( n)g

¾

; (25)

recall the de…nition of Y in (23).

Lemma 2 For problem j() ¡ () j (max ), given a deadline  and a set ,
de…ne  to be a list of values (()j 2 ), while  to be a list of values (()j 2 n),
and let  denote the -th largest element in the merger of these lists. Then

0() = () + min
0··¡1

8
<

:
 ¡

X

=1



9
=

;
 (26)

00() =  ¡ (n) (27)

Proof: Observe that for each , 0 ·  · ¡ 1, the equality

max
 2Y

f( \  ) + ( n)g =
X

=1



holds, and (26) immediately follows from (24).
To compute 00(), we need to determine max 2Y¸f( \  ) + ( n )g. Since

each job in  contributes either the lower bound or the upper bound on its processing time,
it follows that

max
 2Y¸

f( \  ) + ( n)g = () +  (n) 

so that (25) becomes 00() = () +  ¡ () ¡ (n) and (27) is valid.
The value () can be found by the procedure below.

Procedure PsiCompQr0
Input: An instance of problem j()¡() j (max ), a deadline  and a set  µ 
Output: The value ()

10



Step 1. Determine a list  of values (()j 2 ) and a list of values (()j 2 n).
Determine the values 1, 2,. . . ,¡1, where  is the -th largest element in the
merger of the lists  and .

Step 2. Compute 0() and 00() by (26) and (27), respectively.

Step 3. Output () = minf0() 00()g.

The most time-consuming part is Step 1, where choosing the ¡1 largest elements in the
merger of the lists  and  can be done in () time by using the median …nding technique,
and sorting the  ¡ 1 largest elements can be done in ( log) time. Hence, Procedure
PsiCompQr0 requires (+ log) time.

Procedure PsiCompQr0 will be the basis of our algorithm for solving the bicriteria prob-
lem j()¡() j (max ) presented below. Recall that we need to …nd the functions
() = (() ) computed for all values of  and all  2  , where the sets () are
de…ned by (15). As mentioned in Section 2, the value of , the smallest deadline  for which
a feasible schedule exists, can be found in (+ log) time by an algorithm from [4].

Given a , 1 ·  · , de…ne  1 ·  · ¡1, as the -th largest element in the merger
of the lists  of the values (()j 2 ()) and  of the values (()j 2 n())  It
follows from Lemma 2 that

() = (()) + min
0··

f +
 g  (28)

where


 =

8
<

:

0 for  = 0
¡

P
=1  for 1 ·  · ¡ 1

¡(n()) ¡ (()) for  = 
(29)

Notice that once all values 
 are found for some , 1 ·  · , determining () in

the form (18) or (28) is equivalent to the problem of …nding the lower envelope of  linear
functions given in increasing order of their slopes . Exactly this problem has been studied
in [20] and has been shown to be solvable in () time. We use that method as part of our
algorithm presented below. Our algorithm is based on Procedure PsiCompQr0 applied to
 = () for all  = 1      For each , 0 ·  · , it maintains a sorted list  of  ¡ 1
largest values among f() j  2 ()g [ f() j  2 n()g.

Algorithm AllPsiQr0
Input: An instance of problem j() ¡ () j (max )
Output: A collection of functions (), 1 ·  · , each in a piecewise-linear form

Step 1. Find a sequence  de…ned by (14). If required, renumber the machines so that
(1) holds and compute the values , 1 ·  · , by (6). Compute  by running an
algorithm from [4] applied to () = ()  2  .

Step 2. Create list 0 that contains ¡1 largest values (),  2  , sorted in non-increasing
order. De…ne 0() := ; and set  (0 ()) := 0 and  (n0 ()) :=  ().

Step 3. For  from 1 to  do

(a) Set() := ¡1()[f()g, (()) := (¡1())+(()), and (n()) :=
(n¡1()) ¡ (()).
If (()) is less than the smallest element of ¡1, rename ¡1 as  without
updating it and go to Step 3(b).

11



Else delete from ¡1 the element (()), if it belongs to ¡1, or its smallest
element, otherwise. Insert (()) in that list keeping the resulting list in non-
increasing order. Call the resulting list .

(b) Taking the elements in list  in the order of appearance, rename them by  1 ·
 · ¡ 1. Scanning the values  in the order of their numbering, compute the
sums

P
=1 , 1 ·  · ¡ 1, and thereby …nd the values 

 by (29).

(c) Compute 
 := ¡(n()) ¡ (())

(d) Use the algorithm from [20] to determine function () in the form (18), as a
lower envelope given by its break points  ·  · ¡1 · ¢ ¢ ¢ · 1 

Let us estimate the running time of Algorithm AllPsiQr0. Step 1 is the preprocessing
stage that requires ( log) time. Step 2 can be implemented in (+ log) time, since
choosing the ¡1 largest values takes () time and sorting them requires ( log) time.
For a typical iteration  of the loop in Step 3 the updates in Step 3(a) require () time.
Since the list  is kept sorted, the values  1 ·  ·  ¡ 1, and all their partial sums
can be found in () time. Thus, all values 

 , 1 ·  · , can be found in () time.
The algorithm from [20] employed in Step 3(d) also needs () time. Thus, the following
statement holds.

Lemma 3 For problem j()¡() j (max ) the functions () for all , 1 ·  ·
, can be computed in ( log+ ) time.

As mentioned in Section 2, computing function  () of the form (19) that determines
the e¢ciency frontier for the original bicriteria scheduling problem additionally requires
( log) time. However, for the problem under consideration this running time can
be reduced due to the following statement.

Lemma 4 Let  be the matrix of the break points of the piecewise-linear functions ()
1 ·  · , of the form (18) computed for problem j()¡() j (max ). Then, for
all , 1 ·  ·  and all , 1 ·  · ¡ 1 the inequality (21) holds.

Proof: Take an arbitrary , 1 ·  · ¡ 1 First, consider the case that 1 ·  ·  ¡ 1, so
that in accordance with (29)

¡1
 = ¡

¡1X

=1

 

 = ¡

X

=1



and ¡1
 ¡

 = , where  is the -th largest element in list . Similarly, ¡1
+1¡

+1 =
+1. Recall that list +1 either coincides with  or is obtained from list  by replacing
an element  of list  by  ( (+ 1)), where

 ( (+ 1)) ·  ·  ( (+ 1)) ; (30)

see Step 3(a) of Algorithm AllPsiQr0. As the result, the -th largest element in list +1 is
no smaller than in list , i.e.,

¡1
 ¡

 =  · +1 = ¡1
+1 ¡

+1

and (21) holds.
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Now we look at the case  = . It follows from (29) that

¡1
 = ¡

¡1X

=1

 
¡1
+1 = ¡

¡1X

=1

+1

Also (29) implies that


+1 = ¡(n+1()) ¡ (+1())

= ¡(n()) +  ( (+ 1)) ¡ (()) ¡  ( (+ 1))

= 
 +  ( (+ 1)) ¡  ( (+ 1)) · 

 

If the lists  and +1 coincide, then ¡1
 = ¡1

+1 = ¡
P¡1

=1  and

¡1
 ¡

 = ¡1
+1 ¡

 · ¡1
+1 ¡

+1

as required.
If the two lists are di¤erent, then, as explained above, this is due to the fact that in

Step 3(a) of Algorithm AllPsiQr0 an element  of list  is replaced by  ( (+ 1)), so that
(30) holds. This implies that

¡1
+1 ¡

+1 =

Ã

¡
¡1X

=1

 + ¡  ( (+ 1))

!

¡ (
 +  ( (+ 1)) ¡  ( (+ 1)))

= ¡1
 ¡

 + ¡  ( (+ 1)) ¸ ¡1
 ¡

 

which completes the proof.
Lemma 4 allows us to give the following estimate of the running time required to solve

problem j() ¡ () j (max ).

Theorem 3 Problem j() ¡ () j (max ) is solvable in ( log) time.

4 Uniform Machines, Di¤erent Release Dates: Rank Function
Computation

In this section, we consider problem j() () ¡ () j (max ) and present a pro-
cedure for computing the rank function () for a given deadline  and set  µ  . Then
we show how that procedure can be adapted for …nding all functions () = (() ) for
all  2  as piecewise-linear functions of 

We assume that the jobs are numbered in non-decreasing order of the release dates, i.e., in
accordance with (8). As above, the machines are numbered in accordance with (1), and the
values 0 1      are de…ned by (6). As in Section 2, let () denote the -th smallest
release date for the jobs of set .

Due to (9) and (12) we represent the function () as () = minf0() 00()g,
where

0() = () + min
0··¡1

(

 ¡ max
 2Y

(
X

=1

( ) + ( \  ) +  ( n)

))

 (31)

00() = () +  ¡ max
 2Y¸

(
X

=1

( ) + ( \  ) +  ( n)

)

 (32)
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We describe a dynamic programming procedure that computes the function () for
given  and . To compute 0() we de…ne

() =

½
() if  2 
() if  2 

(33)

and introduce

( ) =
X

=1

( ) + ( )

so that (31) can be re-written as

0() = () + min
0··¡1

½

 ¡ max
 2Y

f( )g

¾



For some , 1 ·  · ¡ 1 consider job ,  ·  ·  and the subsets in Y that contain no
jobs   . Denote the set of such subsets by Y[]. Let [] be a real number given by

[] = max f( ) j  2 Y []g 

We note that Y [] = Y, and therefore in order to compute 0() we need to determine
the value

[] = max f( ) j  2 Yg 

The lemma below shows that the values [] can be computed by a dynamic programming
approach.

Lemma 5 For each  = 1 2     ¡ 1, we have

[] = ¡1[ ¡ 1] + () + () (34)

[] = maxf[ ¡ 1] ¡1[ ¡ 1] + () + ()g for  =  + 1  + 2      (35)

where it is assumed that 0[] = 0 for  = 0 1 2     .

Proof: For each  = 1 2    ¡1, the set family Y[] contains only one set f1 2     g.
Therefore, we obtain (34) as follows:

[] = (f1 2     g) =
X

=1

f() + ()g = ¡1[ ¡ 1] + () + ()

We then suppose that 1 ·  · ¡ 1 and 2 ·  · . We have

Y[] = Y[ ¡ 1] [ f [ fg j  2 Y¡1[ ¡ 1]g

For  2 Y¡1[ ¡1], the equality ( [fg) = ¡1( )+ ()+() holds, since the jobs
are numbered in non-decreasing order of the release dates. Hence, the equation (35) can be
obtained as follows:

maxf( ) j  2 Y[]g

= max fmaxf( ) j  2 Y[ ¡ 1]gmaxf( [ fg) j  2 Y¡1[ ¡ 1]gg

= maxf[ ¡ 1] ¡1[ ¡ 1] + () + ()g

14



We now explain how to compute function 00(). Suppose that we know the set  00 such
that j 00j ¸  and

X

=1

(
00) + ( 00) = max

(
X

=1

( ) + ( )

¯
¯
¯
¯ 2 Y  ¸ 

)

 (36)

Let  2  be the job such that the set f 2  00 j  · g contains exactly  elements. It
should be noted that  itself need not be an element of  00. Since the jobs are numbered in
non-decreasing order of the release dates, it follows that the jobs of set  00 with  smallest
release dates are contained in the set  001 = f 2  00 j  · g, so that

X

=1

(
00) =

X

=1

(
00
1 )

Denote  002 = f 2  00 j   g, so that  00 =  001 [  002 . Since

X

=1

(
00) + ( 00) =

X

=1

(
00
1 ) + ( 001 ) + ( 002 )

we may include all jobs    into set  002 to achieve the maximum in (36). Thus, for a
chosen , we de…ne  002 = f + 1  + 2     g.

In order to …nd set  00, it su¢ces to determine set  001 , which can be done by performing
a systematic search among all -element subsets of jobs from  . In our computation of
0() we use the values [] and the sets Y[] de…ned for 1 ·  ·  ¡ 1 and  ·  · 
We now extend our de…nitions to the case of  = . In other words,

[] = max
 2Y[]

(
X

=1

( ) + ( )

)

 (37)

where Y[] denotes the set of all -element subsets with no jobs   . For …nding the
values [], we simply extend the procedure outlined in Lemma 5 for  = . Let 1[] be
a set in Y[] such that

X

=1

(1[]) + (1[]) = []

We also de…ne
2[] = f 2  j   g

Then, 00() can be represented as

00() = () +  ¡ max
··

(
X

=1

(1[]) + (1[]) + (2[])

)

= () +  ¡ max
··

8
<

:
[] +

X

=+1

()

9
=

;


The value () can be found by the procedure below.

Procedure PsiCompQrj
Input: An instance of problem j() () ¡ () j (max ), a deadline  and a set
 µ 
Output: The value ()
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Step 1. For  = 0 1 2     , set 0[] = 0. For  = 1 2     and  =   + 1     ,
compute the value [] by using the recursive formulas (34) and (35). Compute ¤() =P

=+1 () for  2  .

Step 2. Compute

0() = () + min
0··¡1

f ¡ []g

00() = () +  ¡ max
··

f[] + ¤()g (38)

Step 3 Output () = minf0() 00()g.

The dynamic programming computation in Step 1 requires () time, and Step 2 can
be done in ( + ) time. Thus, the overall time complexity of Procedure PsiCompQrj is
().

In order to obtain the functions () of the form (18), we run Procedure PsiCompQrj
for  =  (()), 1 ·  · , and de…ne


 =

8
<

:

0 for  = 0
¡[] for 1 ·  · ¡ 1
¡max··f[] + ¤()g for  = 

(39)

Having found these values we …nd the representation of the function () in the form of
a lower envelop, as in Step 3(d) of Algorithm AllPsiQr0.

As the preprocessing stage, we need to determine the value of  and the sequence ,
which takes no more than ( log + ) time. All functions () for all , 1 ·  · ,
will be found in (2) time. As mentioned in Section 2, computing function  () of the
form (19) that determines the e¢ciency frontier for the original bicriteria scheduling problem
additionally requires ( log) time. Thus, the following statement holds.

Theorem 4 For problem j()¡() j (max ), …nding the functions () for all
, 1 ·  · , followed by the computation of function  () requires (2) time.

5 Identical Machines, Di¤erent Release Dates: Rank Func-

tion Computation

The approach from the previous section is of course applicable to problem  j() () ¡
() j (max ) with identical parallel machines. However, for the latter problem a
more e¢cient procedure for computing the rank function () for a given deadline  and set
 µ  can be developed. We present such a procedure below and show how that procedure
can be adapted for …nding all functions () = (() ) for all  2  as piecewise-linear
functions of 

As above, we assume that the jobs are numbered in non-decreasing order of the release
dates, i.e., in accordance with (8). As in Section 2, for the jobs of set  let () denote
the sum of  smallest release dates (provided that jj ¸ ), while () denotes the sum
of all release dates.

We have () = minf0() 00()g, where 0() and 00() are given by (31) and (32),
respectively. Since we consider identical parallel machines, equation (31) can be simpli…ed
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as

0() = () + min
0··¡1

½

 ¡ max
 2Y

f( ) + ( \  ) +  ( n)g

¾

= () + min
0··¡1

½

 ¡ max
 2Y

f~( \  ) + ~( n)g

¾



where ~() = () + () for  2  and ~() = () + () for  2  n . This formula
is the same as the formula (24) in Section 3, except that () and () in (24) are replaced
with ~() and ~(), respectively. Therefore, for a given set  and a deadline , the value
0() can be computed by a slight modi…cation of Procedure PsiCompQr0, which requires
(+ log) time.

We now show that the computation of 00() in Procedure PsiCompQrj of Section 4 can
be made faster. The most time-consuming part in Procedure PsiCompQrj is to compute the
values [] [+1]     [] in formula (38), and below we show that this can be done
more e¢ciently in ( log) time, instead of () time.

For  2  , de…ne () by (33). The values [] de…ned by (37) can be computed as
described in the procedure below.

Procedure Psi2CompPrj
Input: An instance of problem  j() () ¡ () j (max ), a deadline  and a set
 µ 
Output: The value 00()

Step 1. De…ne the values () := () + () for  2  .

Step 2. De…ne  := f(1)     ()g and [] :=
P

2 ().

Step 3. For  from + 1 to  do:
Find (), the smallest value in . If () ¸ (), de…ne [] := [ ¡ 1]; otherwise
de…ne

 := ( n f()g) [ f()g [] := [ ¡ 1] ¡ () + ()

Step 4. Compute 00() by (38).

Notice that in each iteration  of the loop in Step 3 of Procedure Psi2CompPrj, set 
consists of  largest values in f() j  = 1 2     g. Since we need to get access to the
smallest element in , we implement  as a heap.

Step 1 takes () time. Forming a heap for set  in Step 2 requires ( log) time.
For each  in the loop in Step 3 the required updates can be done in (log) time. Step 4
needs () time. Thus, the overall time complexity for computing 00() is ( log).

Algorithm AllPsiQr0 can be modi…ed in order to obtain the functions () of the form
(18). In particular, the values 

 for  = 1 2      and  = 0 1    ¡1 can be computed
quite similarly to Algorithm AllPsiQr0 in ( log + ) time. The most time-consuming
part is to compute the value 

 for  = 1 2     , each of which can be computed in
( log) time by Procedure Psi2CompPrj. Thus, …nding all functions (), 1 ·  · ,
takes (2 log) time. As mentioned in Section 2, computing function  () of the form
(19) that determines the e¢ciency frontier for the original bicriteria scheduling problem
additionally requires ( log) time. It can be veri…ed that the function  log is non-
decreasing as long as  ¸ . Thus, the inequality  log ¸  log holds for all  · ,
except for  = 3 and  = 2. This implies that for all non-trivial values of  and  the
equality  ( ( log+ log)) = (2 log) is valid. Thus, the following statement
holds.
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Theorem 5 For problem  j() () ¡ () j(max ), …nding the functions ()
for all , 1 ·  · , followed by the computation of function  () requires (2 log) time.

6 Conclusion

The main contribution of this paper is a new methodology for solving bicriteria scheduling
problems with controllable processing times. It is based on the reduction to optimization
problems over submodular polyhedra and base polyhedra. The main stages of the new
approach can be described as follows.

Stage 1 Derive an algorithm to compute a submodular rank function () of the form (11)
for an arbitrary set .

Stage 2 For each subset of jobs (), 1 ·  · , de…ned by (15), compute parametric
functions () of the form (17). Each () is a function of the parameter  which
represents the range of makespan values. Being a piecewise-linear function of the form
(18), () is given by the set of its break points, slope values and intercepts.

Stage 3 Find the e¢ciency frontier in the space of the makespan max and compression
cost  . The cost function  () is de…ned by Theorem 2, in accordance with either
(16) or (19), as a parametric function of makespan values .

Stage 1 is problem-speci…c. It is implemented by Procedures PsiCompQr0 and PsiCom-
pQrj for problems j()¡() j(max ) and j() ()¡() j(max ), re-
spectively, while Procedures Psi2CompPrj is used for problem  j() ()¡() j(max ).

Stage 2 is problem-independent, but its e¢cient implementation may use speci…c features
of function (). For problem j() ¡ () j(max ), this stage is implemented as
Algorithm AllPsiQr0 in Section 3, and that algorithm can be easily modi…ed for the other
two problems, as described in Sections 4 and 5.

Stage 3 is common for all problems and can be done in a straightforward manner, as
described in Section 2.

Our approach to bicriteria preemptive scheduling problems with controllable processing
times is essentially di¤erent from earlier used approaches based on …nding the break points
of the e¢ciency frontier by tracking the changes in a schedule. Due to the close link with
a problem formulation, any intermediate solution generated by traditional non-submodular
approaches can easily be visualized in the form of a Gantt chart and its feasibility can easily
be veri…ed. Despite this minor advantage, early research in the area shows that the methods
of such nature are not always e¤ective and their justi…cation may be overcomplicated. By
contrast, our new methodology deals with optimization over various polyhedra de…ned by
submodular constraints, and the actual meaning of an intermediate solution may be di¢cult
to interpret in scheduling terms. However, due to the powerful techniques of submodular op-
timization, the solution vector can be obtained essentially in a closed form and the e¢ciency
frontier can be found directly as a parametric function. As a result, the new algorithms are
either faster in comparison with the known methods or solve problems with no prior history
of study.
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