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PARAMETER ESTIMATION, STRUCTURE DETECTION AND MODEL
VALIDITY TESTS FOR NONLINEAR SYSTEMS

S. A, Billings

Before nonlinear identification routines are applied the ex-
perimenter should attempt to determine if the process under
test exhibits nonlinear characteristics which warrant a non-
linear model!?, Whenever the ianput u(t)+b, u(t) = 6, b # 0
is applied to a system, the system will be linear iff

yp(t) = y(t) where yp(t) and y(t) are the mean levels of

the system output for the inputs b (i.e. u(t) = 0) and u(t)+b
respectively. Alternatively, if the third order moments of
the input are zero and all even order moments exist (i.e.,
sine wave, gaussian, ternary segquence ete) then the process
is linear iff’

6 . .2(c) = E[y'(t+a)(y'(£))*] = 0¥o (1)

v'y
The test will distinguish between additive noise corruption
of the measuremsnts and distortion due to nonlinear effects
providing the input and noise are independent.

If the system is linear then it is finitely realizable
and can be represented by the linear difference eqn model

n n
v u
y(t) = ] (a.y(t-1)) +. ) (bju(t-1)) (2)
= =1
if the Hankel matrix of the system has finite rank. When

the system is nonlinear a similar representation can be
derived by considering the observability of nonlinear systems
and utilizing results from automata theory to yield the non-
linear difference eqn model?.?

y(t) = F [y{tmlj,...y(t—ny),u(tul),...u(t—nu)] (3)

where F¥[°] is some nonlinear function of u(-) and y(-).

The extension to multivariable systems and conditions for the
existence of such a model are rigorously defined elsewhere?:".
The Hammerstein, Wiener, bilinear, Volterra and other well
known nonlinear models can be shown to be special cases of

eqn (3).

A similar representation for nonlinear stochastic systems
can be derived by considering input-output maps based on con-
ditional probability density functions to yield the model 3%
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z{th = F[z(t—l),...z(tmnz),u(t—l),...u(t—nu),
s(twl),...e(t—ng)] + g(t) (4)
where e(t) is the prediction error. This model will be referred

to as a Nonlinear AutoRegressive Eov1ng Average model with
eXogenous inputs or NARMAX model®,*

A NARMAX model with first order dynamics expanded as a
second order polynomial nonlinearity would for example be rep-
resented as

Il

y(t) = Fy[y(t-1),u(t-1)]

il - 2 .
Cly(u—l) + Cgu(t—l) + Clly (t-1) + Cl2y(t~1)u(t—1)

il

+ nguz(t—l) (5)

Assuming that the output measurements are corrupted by additive
noise

z(t) = y(t) + e(t) (6)
gives the input-output model
z{(t) = Clzft—1)+C u(t—1)+C zg(t—l)+6122(t—1)u(t-1)
TC u (t 1)+e(t)-C e(t 1)- QC z(t—l)e(t—l)

+Clle (t—l)—ClQe(t—l)u(t—l) (7)

Because the NARMAX model maps the past input and output into the
present output multiplicative noise terms are induced in the
model even though the noise was additive at the output. In
general the noise may enter the system internally and because the
system is nonlinear it will not always be possible to translate
this to be additive at the output. This situation will again
regult in multiplic Lve noise terms in the NARMAX model with the
added complicaticn the noise source and prediction error will
not in general be egu Since most of the parameter estimation
techniques derived for linear systems assume that the noise 1is
independent of the input, biased estimates result when they are
applied to nonlinear systems egn (4).
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The recursive extended least squares (RELS) algorithm can
however be readily adapted to the NARMAX model, by defining the
following vectors

[2(t-1),u(t-1),22(t-1),2(t-1)u(t-1),u(t-1) ,e(t-1),

Q(t) =
- 2 T
g(t-1) z (t-1),u(t-1)e(t-1),e"(t-1)]
~ _ P ~ ~ T
6 = [c,.C5.-.C]
£(t+1) = z(t+1) - Q(t+1)78(t) (8)
for the model of eqn (7) for example. With these definitions the



standard RELS algorithm® can be applied to yield unbiased parameter
estimates. The development of a recursive maximum likelihood
algorithm (RML) is more involved and requires a complete deriva-
tion by working backwards from known conditions of convergence”®.
The major disadvantage of both these algorithms when applied to
nonlinear systems is the need to include prediction error terms
in the estimation vector. It can be shown that instrumental
variables (RIV) will yield unbiased estimates providing the noise
terms in the NARMAX model can be represented as a purely linear
map® . This restriction can be widened slightly by employing a
new suboptimal least squares (SOLS) routine® based on the model

z(t) = F‘[§(t—1),...§(t_ny),u(t-1),...u(t-nuﬂ+g(t) (9)

where §(tm1) represents the predicted output. The algorithm will
yield unbiased estimates whenever the noise is additive at the
output.

The direct application of a maximum likelihood algorithm is
not possible because in general the prediction errors will not have

a Gaussian distribution. However, by considering the loss func-
tion
N
1 T
J(8) = gy log, det J e(t;8)e(t;8) (10)
- t=1

it can be shown that the prediction error estimates obtained by
minimising egn (10) have very similar asymptotic properties to the
maximum likelihood estimates even when e(t) is non—gaussians. A
prediction error algorithm has been developed for the NARMAX
model based on this result. This together with the RELS, RML,
RIV and S0OLS rout have been augmented with a stepwise regres-
sion algorithm, a lihood ratio test and Akaike tests to detect
the correct model ructure prior to final estimation.

<

Whichever model formulation or identification algorithm is
mplemented it is important to test that the identified model does
adeguately describe the data get!, When the system is nonlinear
the residuals E(k) should be unpredictable from all linear and
nonlinear combinations of past inputs and outputs and this con-
dition will hold iff

6, (1) = 8(1)

EE
¢u£(T) = 0¥ (11)
bppu(T) = Elz(t)z(t-1-1)u(t-1-1)] = 0¥t > 0

Notice that for nonlinear systems the traditional linear tests
() and ¢ _.(-) are not sufficient.
Pee ug® -’

If RIV and SOLS are used the residuals may be coloured and
specific tests which determine if the process model is correct
without testing the whiteness of the residuals are required. It
can be shown that models estimated using RIV or SOLS will be un-

biased iff°®



¢uF(T) = 0MT
£ - ) ( 125y
fbuzgz(’f) = 0¥
Another problem in the identification of nonlinear systems is
the design of input signals. Whenever possible the input should
be selected to excite all the modes and amplitudes of interest
within the systemnm. Pseudo-random seguences are not 1in general

appropriate for nonlinear systems since they exhibit discontinuous
probability density functions and will not yield a persistently
exciting input over the full amplitude range of any input non-
linearities. The design of inputs for nonlinear system identi-
fication is very complex but general rules can be derived from
information theoretiic arguments. These indicate that for a power
or amplitude constraint on the input, the input should be an in-
dependent sequence. In addition the input should have a gaussian
distribution for a power constraint, and & uniform distribution
for an amplitude constraint.

Much work remains to be done to simplify the identification
of nonlinear systems and develop algorithms which can be easily
applied to practical situations. The ideas and algoritnms
presented zbove represent just some of the possible approaches
which may lead to a solution to these problems
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