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Abstract

New methods of identifying the transition rule of a Belousov-Zhabotinsky (BZ)
reaction directly from experimental data using cellular automata (CA) models are
investigated. The experimental set-up and new techniques for image pre-processing
to ensure the identification of representative models are discussed including noise
reduction, pixel and colour calibration. Two kinds of models, the Greenberg-
Hasting model (GHM) and the polynomial CA model are studied in detail. It is
shown that the results of identifying a real BZ reacting system are very encouraging
and the predicted patterns compare well with the imaged patterns both visually

and quantitatively.

1 Introduction

The Belousov-Zhabotinsky (BZ) chemical reaction, named after B.P.Belousov who first
discovered the reaction [1] and A.M.Zhabotinsky who continued Belousov's early work
[2], is a famous experiment in excitable media. Excitable media like the BZ reaction rep-
resent an important class of spatio-temporal system, and are spatially extended systems
that support solitary waves that propagate unattenuated over a wide spatial domain.
Examples of excitable media include nerve and muscle tissue in living organisms 3]-

[4], chemical reaction systems [5], ecological processes [7]. and the aggregation of slime
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models [8]. Because of the simplicity of the models and the complexity of the generated
pattern, excitable media have received increasing attention in the field of spatio-temporal
systems because of the possibility of making straightforward analogies between real ex-
citable media systems, partial differential equation models (PDE) (reaction-diffusion
equations) and cellular automata (CA). However, only a few investigations have stud-
ied the inverse problem, that is how to extract mathematical models directly from real
excitable media systems. Solving such problems would fill the gap in the identification
of spatio-temporal systems and would open the possibility of controlling the output of
such real systems.

In the present paper the identification of a model of a real BZ reaction using a CA model
directly from sampled data will be studied. The focus of the paper will be on the prac-
tical aspects of imaging a real BZ reaction and the identification of dynamic models of
this system because there are very few results on these type of problems in the literature.
The study begins with the set-up of the BZ chemical experiment and the acquisition of
the reaction patterns over time. Two methods of identifying the underlying rule based
on the Greenberg-Hasting model (GHM) and a polynomial model realisation of CA are
then introduced to describe the evolution characteristics of the BZ patterns.

The paper is organized as follows. The brief description of excitable media systems using
a CA model is presented in section 2. Section 3 provides an overview of the BZ chemical
experiment set-up and the data acquisition system. Pre-processing, calibration and the
identification and evaluation of the rules to describe the observed patterns are discussed

in section 4. Finally, conclusions are given in section 5.

2 CA Models of Excitable Media

Cellular automata (CA) are a class of spatially and temporally discrete mathematical
systems characterized by local interactions which can be used to model excitable media.
Because of the simple mathematical constructs and distinguishing features, CA have
been widely used to model aspects of advanced computation, evolutionary computation,
and for simulating a wide variety of complex systems in the real world [9], [10], [11] and

12).



A cellular automata is composed of three parts: a neighbourhood, a local transition rule
and a discrete lattice structure. The local transition rule updates all cells synchronously
by assigning to each cell, at a given step, a value that depends only on the neighbour-
hood.

Many CA models have been studied over the years for modelling excitable media, the
most famous of which is the Greenberg-Hasting Model (GHM). The GHM, introduced
by Greenberg and Hasting [13], was initially used to model neuron excitation and re-
covery in a network of neurons based on the excited-refractory-excitable definition, but
currently, it has been expanded and used in modelling most kinds of excitable media,
such as the Belousov-Zhabotinsky system. To assist in solving the inverse problem -
that is to identify a model from observed data, this paper starts by investigating how
the GHM can generate the patterns whose evolution characteristics are similar to those
of the BZ reaction.

The GHM with an output pattern + is a very simple cellular automata that emulates
excitable media [14]. At each time ¢, v € {0,...,N — I}Zd. This means that for each
z € 7%, +(z) has one of N possible values 0, ..., N — 1, which appear as different colours
in computer simulations, so they are usually referred to as colours. Recalling the com-
ponents of CA, each site of a two-dimensional grid of the GHM at time ¢ is assigned a
state 4(z,y), where z and y denote the location in the grid. The GHM evolution can be
cdetermined by three parts: a discrete lattice, a finite neighbourhood R, and a transition
rule. The co-mmonly used lattice types for excitable media are illustrated in Figure 1.
In this paper only the square lattice will be considered. The neighbourhood of a cell is
the set of cells in both the spatial and temporal dimensions that are directly involved in
the evolution of this cell. Typical neighbourhood types of excitable media are shown in
Figure 2. The transition rule of a GHM can be determined by three parameters: the
number N of all available colours; the number E of excited colours; and the threshold
number T of sites needed for excitation. Denoting the cell at position (x,y) at time step
t as c(z;y;t). The state c(z;y; t)(c(z; y:t) € {0,..., N — 1}) is an integer value, where 0
represents an excitable state, 1,..., E' represent the excited states, and £ +1,...,N — 1

represent the refractory states. Initializing each cell at time step 0, the GHM updates
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Figure 1: Lattice types of CA for excitable media. (a) square lattice; (b)triangular lattice; (¢) hexagonal

lattice

(a) (b) ()

Figure 2: Neighbourhood structure types of CA for excitable media. (a)von Neumann structure;
(e fe) /

(b)Moore structure; (c) Extended Moore structure(r = 2)

all cells synchronously by

(elz; gyt) +1) mod N 1<e(z;yt) < N
clz;y;t+1) =4 1 e(z;yit) =0 and #(Re@yn) =T (1)

0 else

where (#(R) denotes the number of excited sites in R, and R denotes the neighbourhood
of c(z;y;t)).

Using this simple rule, different complex patterns with rings and spirals, some snapshots
of which are illustrated in Figure 3, can be generated when different initial values or
parameters are used. More information about the lattice, neighbourhood and rules can
be found in [15]. The main aim of this paper is to identify a model to represent the
evolution characteristics of a BZ system using Expression (1) by estimating N, T and
E directly from the observed patterns of the reaction. Furthermore, an algorithm using
a polynomial model to describe the BZ patterns is also presented using recent research

results for the identification of binary CA [16]-[18]
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(a) (b) () (d) ()

Figure 3: Snapshots generated by five different GHM models for simulating excitable media.

3 Experiment Design

3.1 Recipe

The chemical processor was prepared in a thin layer BZ reaction using a recipe adapted
from Field and Winfree [6]:" To 67 ml of water, add 2 ml of concentrated sulfuric acid
and 5 gm of sodium bromate (total 70 ml). To 6ml of this in a glass vessel, add 1 ml of
malonic acid solution (1 g per 10 ml). Add 0.5 mi of sodium bromide solution (1 g in 10
ml) and wait for the bromine color to vanish. Add 1 ml of 25 mM phenanthroline ferrous
sulfate and a drop of Triton X-100 surfactant solution (1 g in 1000 ml) to facilitate
spreading. Miz well, pour into a covered 90 ml Petri dish illuminated from below.”

Once the reaction gets started grey rings and spirals can be seen propagating from
localized regions on a red background. A snapshot of a typical pattern is shown in
Figure 4.(c), where the wave fronts of the observed patterns appear to be quite similar
to those of the simulated patterns using the GHM, especially the pattern shown in Figure

34{e)-

3.2 Data Acquisition

The experimental apparatus of acquisition is illustrated by Figure 4.(a). To acquire the
high quality images a digital camera, which was fixed by a bracket and connected to the
computer directly using the USB socket as shown in Figure 4.(b), was used. Operating at
full speed, the camera could record at roughly 25 fps (frames per second) with 640 x 430
resolution when using video mode and 1 fps when using single frame mode. Because
of the higher image quality of the single frame capture compared with video (the edges

of the patterns, which are quite important for identification of the wave fronts. were



always corrupted by high video compression), and the slow velocity of evolution of the
BZ reaction, single frame mode was adapted in the present study.

To enhance the images of excitation dynamics and to prevent an inverted or reflected
image of the camera in the dish, back lighting was used to illuminate the bottom of the
reaction dish. The experiment should ideally be conducted in a darkened environment,
because the interference of daylight can change the luminance of the acquired images,

which can introduce problems in the following image processing. The images were stored

on the computer from the camera using a USB 2.0 connection.
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Figure 4: (a) Schematic of the data acquisition setup; (b) Photo of acquiring device ; (¢)A snapshat of

an acquired pattern

4 Data Processing and Identification of the Rule

The images were acquired with 640 x 480 pixel resolution where each pixel had a 24bit
colour-scale value. Before identification the acquired raw data must be pre-processed to
reduce noise and must then be mapped onto a lattice based on the three components of
CA | which involves the calibration of the pixel size and the calibration of the number of

colours.

4.1 Pre-processing

The purpose of this step is to reduce noise introduced by experimental devices and
enhance the imaging of the wave fronts, which contain a majority of the evolution char-
acteristics of the excitable state. refractory state and excited state. A pixel with 24bit

colour-scale value can be divided into three parts: the red, green and blue components.



To determine which distribution efficiently characterizes the wave fronts, the pixels on a
horizontal line were sampled, see Figure 5.(a). Figure 5.(b) shows the spatial distribution
of each of the component values, and it is clear in this case that only the blue component
of pixel colour can efficiently distinguish between the wave front and the background.
Figure 5.(c) shows the blue component with the 8bit gray-scale value extracted from
Figure 5.(a), and now most of the noise including the small bubbles on the bottom of
the dish and the light spot in the right corner, have been effectively removed leaving the

wave fronts highly enhanced.

(a) (b) (c)

Figure 5: (a) A snapshot of the sampled image; (b) Values of the red, green and blue components along

the raster shown in (a); (¢) The blue component of the sampled image

4.2 Mapping to a Lattice

A point in a natural scene could be described by a rectangle of size 2 x 2 in a digitized
image, or it could also be described by a rectangle of size 3 x 3 if a larger magnification
was used. For example, in a CA simulation of a pattern a n; x ns lattice size could be
used and if the patterns were captured by a camera the size of the images in the camera
could be my x ms. The main goal of this step is to set up the relationship between the
size of the captured image (e.g my x my) and the size of CA lattice (e.g ny x na).

The calibration of the pixel size can be represented by:

] lattice pattern width =
ke = i : (7}
raw image width

where 0 < k. < 1. If k. is chosen too small, much important information, such as
some thin wave fronts, could disappear and the identification can then never determine

a correct model. If k, is too big this may produce a large candidate neighbourhood. which



could lead to a failure in the identification because of insufficient sampled data (a larger
neighbourhood will require more data to reveal the full complexity). With experience
over several tests, k. = 0.60 ~ 0.98 always seemed to produce a Moore neighbourhood,
which is an ideal neighbourhood to generate a CA model in a real system without losing

important wave fronts.

4.3 Colour Calibration

From section 2, the GHM has a parameter N which defines the total number of colours.
It could be difficult to make a decision regarding how many colours should be used in
the GHM from a pre-processed image. Fortunately, Expression (1) shows the cell in
an excitable state (denoted by 0) transfers to an excited state (denoted by 1) at the
next time step, all the other cells with other states s, say will update to state s, + 1
unconditionally, and this will not be effected by the value of N. Hence, the selection of
N does not have to be accurate. In our experiments, V was always chosen between 5
and 25.

After an appropriate value of N has been specified, the colour calibration procedure can
be summarized by the following steps. Initialization Extract the blue component of the
raw image, each cell of which has an 8bit gray-scale value, and then map the image to a

latticed pattern, which will be denoted by R.

4.3.1 Horizontal Calibration

Extract the pixels on each horizontal line or raster R, of R, where y denotes the vertical
position. An example of R, is illustrated by Figure 6, which shows that each positive
segment denotes a wave front and the remaining gaps represent the background. A
threshold value ¢, was initially selected to distinguish between the wave front and the
background. The pixels with the value above ¢, can be averaged to N colours. The cells
with peak values were set as the excited state and other cells were set as the refractory
state.

The peak values of each positive segment are different, for example p) = 92 and p, = 131
in Figure 6. If a global calibration of colour is used. it could happen that the cell with

value p» would be set as the excited state and the cell with value p, would be set as

o]



the refractory state, which is unreasonable when considering the raw image, shown in
Figure 5.(a). The difference in values between the two peaks may have been caused by
a slightly different back-light or chemical density, but a visual inspection of Figure 5.(a)
suggests that both these pixels should be in the excited state. Therefore, to remove
the interference from the apparatus and the chemical material, a method using a local
calibration of colour will be used in this paper.

Consider the line R, and assume the peak value of the first positive segment is p; and
the threshold value which distinguishes the wave fronts and the background is ;. The

value of the processed cell, denoted by L, ,, can then be calculated by

Bty 4] whenz <z <z
—% + [ LT LT
By = ' (3)

0 else

where z; and z, denote the front and back horizontal positions of the first wave front

segment and v, , denotes the value at the position (z,y) in R,, and I; = P23 represents

1

the calibration of colour of the first positive segment. As a simple example, the raw

| —— Blue component |

Pixel Value
2

—§ T T T T T
a 100 200 300 400 500 600 700

Figure 6: The blue component along the raster shown in Figure 5.(a)

image, shown in Figure 7.(a), will be used to illustrate this method. Inspection of the
blue component of the bottom line in Figure 7.(a), Figure 7.(b), clearly shows two wave
fronts could be extracted if ¢, was set to be around 50. However, from Figure 7.(c), which
illustrates the blue component of the top line in the raw image. two positive segments

would be judged as one positive segment if £, = 50. This would make some cells which



should be set as the excited state to be set as the refractory state in the top and bottom
parts of the wave front (see Figure 8.(a)). In Figure 8.(a)-(d) green cells denote the
excited states, grey cells denote the refractory states and white cells denote the excitable
states. The main aim of #; is to separate the wave fronts and the background, hence
the selection of ¢, depends on the luminance of the captured images. This is one of
the reasons why the experiment should be conducted in a darkened environment, which
should help to keep the luminance of images stable so that and #, can be same through

out the evolution.

(a)
120+ ; —— Blue companant (Botton Line) i 160 . —— 8lue component (Top Line} |
‘i 1404 %
100 - A }
{ i |
| ; | i\ 120 | Ls
20 ! 100 4 H i
3 \l l !!' ‘{ { -
? sa l \ | i § 5 i
= \ [ 8 J
T \ srmafes z a0 !
= I 4 ' k o] i )
13 A ]
20+ A S | .
20 ; | o k 20
i 1 a4
a- [
b T T T ——— -20 T ] T T T T
9 20 40 a0 80 100 2 20 40 50 80 100
% X
(b) (c)

Figure 7: An example of colour calibration. (a) The raw image; (b) The blue component of the bottom

line in (a); (¢} The blue component of the top line in (a).

4.3.2 Vertical Calibration

To enhance the results of the horizontal calibration, a vertical calibration was also imple-

mented. The procedure is the same as the horizontal calibration except now the data are

10



(c) (d)

Figure 8 The results of colour calibration. (a) The processed pattern by horizontal colour calibration:
(b) The processed pattern by vertical colour calibration; (c) The synthesized pattern by (a) and (b): (d)

The final patterns after colour calibration;

extracted vertically. The processed image after vertical calibration is shown in Figure

8.(b).

4.3.3 Synthesize the Patterns and Edge Purging

Synthesized patterns were produced by combining the results from the horizontal and
vertical calibration using the equation (4), where cy(z;y;t) and c¢,(x;y;t) denote the
considered cell values produced by the horizontal and vertical calibration respectively,

and ¢,(x:;y;t) denotes the considered cell value in the synthesized pattern.

1 TpyE) =l lEat)=1
ool t) = exlzyyt) or ey {2 45 t) (1)
maz(cp(z:y;t), cp(z;y51)) else

11



Inspection of the synthesized pattern in Figure 8.(c) shows that the shape of the wave
front is now clearly defined.

The bottom part of Figure 8.(c), which is shown more clearly in Figure 9.(a) shows that
there are several cells below the excited cells which have refractory states following the
diffusion direction of the wave front. This is unreasonable in excitable media because
a cell in an excited or a refractory state will update to a refractory state or excitable
state unconditionally, and therefore the wave front in Figure 8.(c) would not diffuse.
To try and overcome this problem we developed a method to purge the redundant cells
with refractory cells using the movement vector. The movement vector can be calculated
using the techniques in [19]. Figure 9.(c) shows the movement vector of Figure 9.(a), and
indicates that there are some cells at the bottom of the edge with remarkably different
movement vectors, these are probably representative of the gradient between the wave
front and the background. Therefore, the cells with refractory state with a direction
opposite to the diffusion direction of the wave front were reset as excitable states. Figure
9.(b) shows the pattern after edge purging, and Figure 8.(d) illustrates the final CA

pattern after all the calibration and pre-processing.

4.4 Rule Identification
4.4.1 Region Selection

In most recent studies of excitable media the evolution of the pattern is assurmed to be
uniform so that each cell in the pattern has the same transition rule. This may not hold
for a real system because there may be noise introduced by data acquisition which could
make the rule change. This could occur due to aberration at the edges of the image due
to lens distortion or from imprecise timing during sampling etc. Hence, it is necessary
to select an appropriate region of the image which has a uniform or nearly uniform rule
Ideally, the rule of each cell should be calculated before applying region growing, a
popular method in machine vision, to distinguish each region according to different rules.
This method starts by choosing an arbitrary seed pixel which is then compared with
neighbouring pixels according to similarity constraints. The region is then grown from
the seed pixel if the neighbourhood pixels are similar. However. the disadvantage is that

the procedure could result in an incorrect subset region when noise is introduced because

12
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Figure 9: (a) The synthesized pattern without edge purging; (b) The synthesized pattern after edge

purging; (¢) The movement vector of pattern (a).

the growing would stop when the considered neighbouring pixels are noise corrupted and
so do not satisly the similarity constraints. We therefore devised a similar but simpler
method which involves dividing the image into n, squares, and then estimating the
threshold number T in the GHM of each part. To provide a visional representation of
this procedure the raw image was overlapped by a background colour where each colour
represents a different T

The precision of this method depends on the value of n;. The larger ny the more precise
the region splitting, but with more susceptibility to noise. In this paper, n, was chosen
as 64 for a raw image with 640 x 480 pixels. An example is shown in Figure 10, where
the white squares denote the background and the pink squares denote the area with the
primary rule, and the areas with other colours may be corrupted by noise. Therefore,
the framed region selected from the pink area was chosen as the sample region for the
following analysis. There is little information in the literature on calibration and pre-

processing but we have found that the methods we have introduced above are critical

13



Figure 10: An example of region selection

for good pattern analysis and pure identification.

4.4.2 Rule Identification using the GHM

The evolution of a GHM is determined by four parameters: the neighbourhood; the
number N of all available colours; the number E of excited colours: and the threshold
number 7' of sites for excitation. The size of the neighbourhood can be influenced by
the lattice calibration k.. In this paper, the neighbourhood was restricted to a Moore
structure and k. was chosen as 0.95. As related parameters, NV and E were specified
as 13 and 3 respectively in the current experiment according to the discussion in 4.3.
Therefore, T is the only parameter that needs to be estimated in this step.

To demonstrate the algorithm, 30 successive frames with 1fps sample rate were captured
and sampled to provide the data for the identification. Figure 11.(a) and (b) show the 1%
and 30™ frame of the considered region of the raw images respectively, and Figure 11.(c)
and (d) show the images after pre-processing, calibration and region selection. Consider
a snapshot from the selected region at time step ¢; and denote this frame as P(t;). Denote
the cell at position (z,y) in P(t;) as c(x; y; t;), where ¢(z; y; £;) = 0 represents an excitable
state, c(z;y;t:) = 1..., E represent the excited states, and c(z;y;t,) = E+1,.... N — 1
represent the refractory states. As shown in Equation (1), the cell c(x;y;t,) in an excited
state or refractory state will update to c(x;y:t;) + 1 mod N unconditionally. Hence, the
problem of identification of a GHM can be transformed into finding the rule when the
considered cell ¢(xz;y;¢t;) in an excitable state will be updated to an excited state at

the next step time. Exploiting this observation the dimension of frame P(¢,) can be

14



(a) (b) (c) ()

Figure 11: (a) The 1°¢ frame; (b) The 30" frame; (c) The latticed pattern of the 1° frame; (d) The

latticed pattern of the 30" frame.

determined by thresholding and mapping this into a binary frame P;(i;) following the

rule:

1 1<elzjyits) < F
a(zyiti +1) = (5)
0 (E<elzyytd < Njore(zyt)=0

where ¢,(z;y;t;) is the cell at position (z,y) in Py(t;).

Definition 1 Consider a binary pattern generated by expression (5) and denote the cell
at the position (z;y) and at time step t as cy(x;y;t) and ezpress the neighbourhood
of co(z;y;t) as Ricy(z;y;t)}. Assume the number of cells in R{ic,(z;y;t)} is ne, for
ezample, n. = 8 when the neighbourhood is a Moore structure (see Figure 1.(b)). Define
suj) (1€{0,1}, 7 € {0,...,n.}) as a counter. sy increases by 1 if a case 1s found such
that cy(z;y;t 4+ 1) = i and the number of excited cells among the neighbourhood at time

step t s j when cp(x;y;t) = 0.

A method for estimating T can now be summarized as:
Using the specified neighbourhood and F, a group of data {s;; : i € {0,1}.j €
{0, ....nc}} can be collected, where the definition of s(; ;) is given in Definition 1. Scan

{505} and search for a T', that satisfies
Spr-1 > Sur-1y and spor) < Su7) (6)

The collected s(; ;) from the 30 sampled patterns are shown in Table 1, which shows

that Expression (6) is satisfied when j = 3, so T should be chosen as 3. Finally. the




Table 1: The collected values of s; j) from the 30 sampled BZ patterns

j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=T
1=0 180496 4720 2701 2061 760 107 19 1
g=1 587 937 1519 2922 2230 328 59 20

identified GHM for this example can be represented by:
(c(z;y;t) +1) mod 13 if 1 < e(z;y;t) < 13
clz;iy;t+1) =4 1 else if #(Ro(zys)) = 3 (7)

0 else

4.4.3 Rule Identification using a Polynomial CA Model

According to the recent research in the identification of cellular automata a polynomial

model [16], [17], of the form below, may be used to describe the BZ system

c(z;y;t) = Go+bic(z —apy—bit—1)+ ...+ Onlc(z —ay;z = b3t — 1)

X... X (€ — an;y — byt — 1)) (8)

where c(z — ay;y — bist — 1), ..., ¢(x — an;y — byt — 1) denote the neighbourhood of
the considered cell c(z;y;t), and 6;(i = 0,...,m) represent the unknown parameters.
Compared with previous studies of CA using polynomial models #; in Equation (8) can
be real valued.

The neighbourhood was chosen as the Moore structure, with N = 13 and E = 3. The
identification procedure for the BZ reaction based on Equation (8) can be summarized

as:

1. Collect the input-output cases {z;;y;},7 € {1, ..., M} using the neighbourhood and
E, where M denotes the number of collected cases and n denotes the number of

neighbourhood cells.
ry={clx —apy—bit—1)clz —asy —bo;t —1),....clx — an:y — bnit — 1)}
yi = c(z; ;1)
(9)
2. Apply the Orthogonal Least Squares (OLS) algorithm for CA, first proposed by

Billings in 1988 [20] and recently modified by Mei [21]. to estimate the parameters

16



of Equation (8) using the collected data set {z;;y;}.

3. Because the Moore structure has 8 cells there will be 2% = 256 potential terms in
Equation (8). However, the Error Reduction Ratio (ERR), which is an inherent
parameter of OLS can be used to describe the percentage contribution of each term
to the updated cell. The candidate terms can then be ranked and the terms with
the largest ERR can be included in the model and all other terms can be discarded.
There is always a tradeoff between the model efficiency and the complexity of the
model. In the current experiment, 30 terms produced a good model performance

and predictions.

Following the procedure above the coefficients of all potential terms were estimated and

30 terms with the largest ERR were selected as the final terms, shown in Table 2.

4.4.4 Model Evaluation

We have shown that under normal experimental conditions that it is indeed possible to
identify the evolution of the BZ reaction with CA models. To evaluate the identified
models visually, Figure 13 shows the 12 time step predictions produced by Equation (7)
and Equation (8). Both these clearly demonstrate the diffusion characteristics of the
BZ patterns. To quantitatively access the performance of the obtained CA rules we
can compare the results of the predictions from the identified models to the actual BZ
evolution for a single time step. To achieve this a correlation coefficient, which takes into
account the correct and false cell predictions for the excited state, and the correct and
false cell predictions for other states will be used. The number of times that a cell with
the excited state is predicted correctly can be denoted by e, while incorrect predictions
will be denoted by & The number of times that a cell with other states is predicted
correctly can be denoted by r, with incorrect predictions denoted by 7. The correlation
coefficient. expressed by Equation(10) below, provides a measure of how well the rule

predicted what actually occurred [22].
C er —er (10)
(e +&)(e+ F)(r + &)(r +7)]/? |

If the predicted behavior is always correct, then C' = 1. If the predictions are always

incorrect, then C' = —1. and if the predictions are completely random, then C' = 0.
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Table 2: The selected 30 terms and coefficients of the polynomial model using OLS

Term g, ERR
constant 0.31870 0.48391
elmyy—1) 0.17200 0.02910

oz —Liy—1)sc(z—1;y+1) 0.16594 0.01832
clz+1y—1) *clz+Liy+1) 0.23040 0.01242

c(z — Liy) *e(z;y + 1) 0.23187 0.00808

olz 4 1iy) # ez y + 1) 0.31333 0.00479
clx —1;y) —0.09860 0.00311
clz+Liy—1)*xc(c+1;y) 0.07244 0.00160
clz+Liy—1)*c(z+Ly)xc(z;y+1)*clz+1;y+1) —0.19895 0.00135
clz—Ly)rc(z+Liy)*clz— Liy+ 1) *c(z;y+ 1) —0.30327 0.00055
clz;y—1)*c(z — 1;y) 0.14632 0.00044
clz—1lyy—1)*c(z+1;y) 0.25643 0.00038
elz — Liy— 1) *+ela;y— D He(+11) —0.34056 0.00074
ez —Liy+1)*c(z;y+1) 0.02263 0.00039
clx+Liy)kelz—Ly+ 1) *e(z;y+ 1) *clz+1L;y+1) —0.19519 0.00046
clz + Liy+1) —0.08392 0.00043
olz — Ly+1)sclz+ Ly+1) 0.12053 0.00042
clz;y—1)*xc(z+ L;y) 0.13500 0.00038
clziy—Dxc(z+ Liy—1) *c(z+ Liy) *xe(z;y+ 1) —0.18413 0.00034

clr—Ly—1)xc(z—1;y) 0.29123 0.00027
cle—Ly—1)*xclz—1;y) *c(z;y + 1) —0.25805 0.00032
clr—Liy)*clzr— Ly+1) 0.16316 0.00024
cle—Liy—1)*c(z+Ly—1)*xclz— Liy)*clz+1;y) —0.21306 0.00025
elx—Liy—D*celz+1;y—1) 0.15641 0.00028
clr—Ly—1D#*c(ziy—1)*c(z+Ly—1)*clz—1;y) —0.19384 0.00036
cr—liy—1) —0.05866 0.00027
clr—1y—1)% c(l y+ 1) 0.15614 0.00024
clx —Liy)se(z—Ly+ D xe(zy+ 1) scle+Ly+1) —0.24774 000024

)

clr—Ly)sclz+ 1ly+1 0.14923  0.00023

clr—-Liy—D=clz-—Liy =c(z—Liy+1) —0.16295 0.00017
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(e) 10%"

Figure 12: 12 time step ahead predictions produced by the identified GHM model - Equation (7)

Comparing the predictions from the identified GHM and polynomial model to the actual
growth of BZ patterns for 4 step ahead predictions, the correlation ceefficients are shown

in Table 3. Table 3 shows the first 3 step predictions from both models are acceptable

Table 3: The correlation coefficients obtained through comparing the predictions from the identified
GHM and polynomial model to the actual growth of BZ patterns for a 4 step predictions

Model 15t step 2" step 3™ step 4" step

GHM 0.4436  0.3517  0.2096 -0.0269
Polynomial Model 0.4424  0.3503  0.2094 -0.0335

with a steady decline in the accuracy of predictions. The decreasing trend of the corre-
jation coefficient will be due to accumulated prediction inaccuracies and/or noise on the
nonlinear system. The correlation coefficient of the 4* step prediction falls below zero

indicating that the prediction may be suspect. One possible explanation for this appear-
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(d) Snd

Figure 13: 12 time step ahead predictions produced by the identified polynomial model - Equation (3)
and Table 2.

ance is that some new wave fronts are stimulated at this time step in the actual reaction,
which are difficult to predict without any knowledge of the source of stimulation.
The results clearly show that the identified models do capture most of the features of

the reaction patterns, such as the diffusion behavior of the wave fronts.

5 Conclusions

New methods of extracting mathematical models of CA directly from real imaged data
from a BZ reaction has been presented. A procedure which maps the digital image to a
latticed CA pattern has been proposed. New methods of synthesizing the horizontal and
vertical calibration were introduced, together with edge purging procedure to remove the
gradient between the wave fronts and the background. A new region selection approach
was proposed, and procedures for the identification of two CA model types, the GHM and

polynomial model, have been described. A comparison of the predictions with the actual
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patterns both visually and quantitatively shows that the results are very encouraging.
The identified models can reproduce the patterns with similar dynamic features compared
to the actual BZ reaction,

Identification of real reaction systems is often very difficult because of the many factors
involved. Moreover, natural data are will always be slightly corrupted by the imaging
devices during data acquisition. The results in the paper represent preliminary results
and many more experiments need to be conduced and all aspects of the data collection

and modelling of this complex class of system require further study.
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