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Abstract: A new adaptive orthogonal least squares (AOLS) algorithm is proposed for mode| subset
selection and nonlinear system identification. Model subset selection, or model structure detection, is a
key step in any identification procedure and consists of detecting and selecting significant model terms

from a redundant candidate model term set to determine a parsimonious final model. In the proposed new
AQLS algorithm, a new indicator called the error-to-signal ratio (ESR) and a new R -like statistic, the

adjustable prediction error sum of squares (Rz -APRESS), are introduced and combined with the widely
used orthogonal least squares algorithms. The new AOLS algorithm integrates the selection of significant
model terms, with the automatic determination of the optimal number of model terms, and the estimation
of the unknown model parameters.

Keywords: information criteria, model subset selection, model structure detection nonlinear system

identification, orthogonal least squares, prediction error sum of squares

1. Introduction

A wide class of input-output nonlinear dynamical systems can be represented by the NARX (Nonlinear

AutoRegressive with eXogenous inputs) model of the form
y(O) = fO(e=1), -, y(t =n ) u(@)ult -1),---,u(t —n,)) +e(r) (1)

where the nonlinear mapping f is often unknown and needs to be identified from given observational data of
the input u(¢) and the output y(¢); 7, and 1, are the maximum input and output lags; e(#) is the modelling

error. The nonlinear mapping f can be constructed using a variety of local or global basis functions including

polynomials, kernel functions, splines, radial basis functions, neural networks and wavelets. Such a NARX
model constructed on the basis of a set of known basis functions with a specified form can often be expressed
using a linear-in-the-parameters form

M

YO =Y 0,8, () +e(t) @

m=1

where ¢, (1) =@, (¢(¢)) are model terms generated in some way from the regression vector @(1)
=yt =1)-, y@E—n), ult),--, u(t—n, 1 g, are unknown parameters, and M is the number of total

potential model terms involved. One of the most popular representations is the polynomial model, where the



candidate model terms ¢, (¢) are of the form xJ! (£)---x (£) , where xj-" B e{yi-1), -, we=n,), uft), -,
u(t—n,)} forj=1, ..., £, with 0 <i; <0 and 0<i, +---+i, </. The order of such a polynomial model is

determined by 7, and 7, , and the nonlinear degree of such a model is referred to as £ .

The linear ARX model, which is a special case of the NARX model, has been extensively studied in the
literature and several approaches have been developed for order and variable selection of the ARX and similar
models. The conventional Akaike information criterion (AIC), Bayesian information criterion (BIC) and final
prediction error (FPE), and the minimum description length (MDL) are among the most commonly used
techmiques for model order selection in linear system models(Akaike 1969, 1970, 1674, Schwartz 1978,
Rissanen 1978, 1983, Wax and Klaith 1985). These criteria were developed fully or partly on the basis of the
maximum likelihood principle with some assumptions on the signals involved. These well-established criteria
can be used to select the model order and significant variables for data sets that can be well characterized by
linear AR and ARX models, where model terms and variables are the same, they are all regressors. These criteria,
however, cannot be used directly for subset selection of nonlinear models, where model terms and variables are

typically distinguished. The distinction between variables and terms is important and can be illustrated using the

simple nonlinear polynomial model below

y=fx,%0,%5)
3 g %4 2 .
= 0o @ X) F0yX, FA3Xy AKX AKXy F QX5 0%, X, + G Xy + AXaXs 3)

. 2
There are only 3 variables: X, X, and X;, but there are 10 terms: a,(a const term), Xy, X5, X5, xlz, X5, x

5 5
XXy, XX and X,y .
The initial linear-in-the-parameters model (2) may involve a great number of candidate model terms

whatever basis functions are employed to approximate the unknown nonlinear mapping [, especially when the
maximum lags 77, and n,are large. Experience shows that in most cases only a small number of significant

model terms are necessary in the final model to represent given observational data. Most candidate model terms
are either redundant or make very little contribution to the system output and can therefore be removed from the
model. An efficient model structure determination approach has been developed based on the forward orthogonal
least squares (OLS) algorithm and the error reduction ratio (ERR) criterion, which was originally introduced to
determine which terms should be included in 2 model (Korenberg et al. 1988, Billings et al., 1989; Chen et al.,
1989). This approach has been extensively studied and widely applied in nonlinear system identification (Chen
et al. 1991, Wang and Mendel 1992, Henrique et al. 2000, Hong and Harris 2001, Yong et al. 2001, Wei and
Billings 2004). The OLS-ERR algorithm provides a powerful tool to effectively select significant model terms
step by step, one at a time, by orthogonalizing the associated regressors in a forward stepwise way based on the
ERR criterion, an index indicating the significance of each model term. Existing OLS algorithms, however, do
not provide information on how many significant model terms should be selected and included in the final
model. An additional separate procedure is therefore often needed to aid the determination of the optimal number
of significant model terms.

A commonly used approach to evaluate the performance of an identified model is to check the extrapolation

ability, or the predictive capability, by applying the identified model to some fresh data, which was not used for

[R]



model estimation. With this motivation, several cross-validation methods have been propased (Allen 1971, 1974,
Stone 1974, Snee 1977, Li 1986, 1987).

Motivated by the successful applications of the OLS algorithms and cross-validation, this study aims to
develop an adaptive orthogonal least squares (AOLS) scheme that can be used to select not only the significant
model terms but also the optimal number of model terms to arrive at a good balance for the bias-variance trade-
off In the new AOLS algorithm, a new criterion, the error-to-signal ratio (ESR), and a new R*-like cross-
validation statistic, the adjustable prediction error sum of squares {RZ-APRESS), are introduced and combined
with the traditional OLS algorithms. The new AOLS scheme has been developed to achieve the following
objectives: i) to detect significant model terms and put the selected terms in order of significance and
contribution made to the system output; i) to determine the optimal number of model terms to arrive at a good
balance between the bias-variance trade-off and, iii) to estimate the unknown model parameters.

This paper is organized as follows. In Section 2, the basic idea of orthogonal transformation methods for
model term selection is summarised. In Section 3, a new criterion for selecting the optimal number of model
terms is proposed. The new AOLS algorithm is described in detail in Section 4. In Section 5, several examples
are given to illustrate the efficiency of the new AOLS algorithm. In Section 6, several modified information

criteria are proposed. Noise modelling is also discussed in this section. The work is concluded in Section 7.

2. Model term selection and the orthogonal transformation
Consider the term selection problem for the linear-in-the-parameters model (2). Lety =[y(1),--, y(N)]" be a
vector of measured outputs at N time instants, and &,, =[@,, (1),---.8, (N)]” be a vector associated with the mth

candidate model term, where m=1,2, ..., M. From the viewpoint of practical modelling and identification, the

finite dimensional set I = {a,-+*,&,,} is often redundant. The model term selection problem is equivalent to
finding a full dimensional subsetT’, ={f,.---,0,} = {ar, sy YT, where B = & i, €1{1,2,+,M}and

71m

m=1,2, ..., n, so that y can be satisfactorily approximated using a linear combination of f,,---, 5, as below

Y:Qlﬁl+"'+9nﬂn+e (4)
or in a compact matrix form
y=PB+e (5)

where the matrix P =[f,,---,5,] is of full column rank, & = [6,,---,6,] is a parameter vector, ande is an

approximation error. From matrix theory, the full rank matrix P can be orthogonally decomposed as
P=0R (6)

where R is an mxn unit upper triangular matrix and O is an mxn matrix with orthogonal columns

qy,42+ "4, - Substituting (6) into (5), yields

y=(PR™Y(RO) +e=0g+e (7)



where g = [gl,--',gn}]r = R@ is an auxiliary parameter vector. Using the orthogonal property of 0, g, can be
directly calculated from y and Q as g, = (yrgi ) /(qfrgj) for i=1,2, ..., n. The unknown parameter vector
& can then be easily calculated from g and R by substitution using the special structure of R .
Assume that the error ein model (7) is uncorrelated with vectors ﬂj for /=1,2, ..., n, the total sum of squares
of the output from the origin can then be expressed as
yy=>Y glglq. +eTe (®)
i=1

Note that the total sum of squares yTy consists of two parts, the desired output Z; gfg?qi , which can be
explained by the selected regressors (model terms), and the part e’e , which represents the residual sum of
squares. Thus, gi.lqi.qu. is the increment to the desired total sum of squares of the output brought by g, . The ith
error reduction ratio (ERR) introduced by g, (or equally by including /3, ), is defined as

2 T F 2
ERR(1] = 89 8 10005 = D)

%x100% , =12, ..., n, €)]
vy (v v)a g;)

This ratio provides a simple but an effective index to indicate the significance of adding the ith term into the

model. The orthogonalization procedure for model term selection is usually implemented in a stepwise way, one

term at a time. The sum of error reduction ratio (SERR) and error-to-signal ratio (ESR) due to gy,5 G (or

equally due to f3;,-++, /3, ) are defined as

J
SERR[/]= > ERR[] (10)
i=l
e Lglal g, . . :
ESR[j]=——=1-» S22 =1-% ERR[{] = 1-SERR[ ] (11)
yy -1 Y'Y i=1

The selection procedure will be terminated when the ESR of an identified model satisfies some specified
conditions. Several orthogonal transforms including Gram-Schmidt, modified Gram-Schmidt and Householder
rransformations can be applied to implement the orthogonal decomposition (Billings er al. 1989, Chen er al.

1989) and a detailed algorithm will be given in Section 4.

3. The determination of the optimal number of model terms

The determination of the optimal number of model terms is critical in dynamical modelling. Neither an over-
fitting nor an under-fitting model is desirable in practical identification. In practice, however, the true number of
terms is generally unknown and needs to be estimated during model identification. Several approaches have been
developed for model order and variable selection in the literature including the AIC, BIC, MDL (Akaike 1969,
1970, 1974, Schwartz 1978, Rissanen 1983a, 1983b, Wax and Klaith 1985) and many variants (Miller 1990,

Chap. 6). In this study, a R -like statistic, the adjustable prediction error sum of squares ( R* -PRESS) proposed

by Allen (1971, 1974), is modified and will be used to solve the term selection problem.



The R*and the adjustable R* -statistics are respectively defined as

R*=1-NMSE (12)
and
3 ~1
R} =1- N1 \MsE (13)
—n

where N is the data length, » is the number of model terms included in the identified model, NMSE is the

normalised-mean-square-error defined as

SSE 2, y® =307
SST 3" [y(i)- 71

N _
where SST=Z__1[}?(I')—-})]2 denotes the total sum of squared deviations in y from the mean ¥ ,

NMSE = (14)

N " & r
SSE'= Z‘r:[[y(z')gy(i)]2 denotes the sum of the squared errors (residuals), {y(i)};tl is the one-step-ahead
prediction sequence from the identified model with n terms. While for two models with the same number of
model terms, the model with the higher value of R% is preferred, for two models containing different numbers of

mode! terms, the model with the higher R; 1s often preferred (Chatterjee and Hadi 1988).

The prediction error sum of squares (PRESS) proposed by Allen (1971, 1974) provides a useful residual
scaling, which can be used as a form of cross validation by leaving one point out at & time (Myers 1990). The

prediction error sum of squares is defined as
N N
o A el 72
PRESS = ) [y(1) - §_, ()] = ) [5.,(D)] (15)
i=] i=1
where J_,;(7) are one-step-ahead predicted values from a model fitted using a data set consisting of N-1
observational data point pairs, which are obtained by leaving the ith point pair out, £_ (i) are the PRESS
predicted residuals evaluated at the ith point. Let £(7) be the normally defined residuals of a model fitted using
the total NV data points, it can be shown that the relationship between &_, (i) and £(7) is
YO-56) &)
I-BI(PTPY' B, 1-h(i,i)

where 3, and P are defined as in (4). Thus PRESS can be reduced to

g_; (i) = (16)

i=l
This shows that the PRESS statistic can be calculated by fitting only one model using the total N data points, but
N “leave-one-out” matrices are still required. [t can be proved (Miller 1990) that if N >>n , PRESS can be

approximated as

wn



PRESS z(NN } SSE (18)

-n
Statistic (18) gives some indication of the predictive capability of the regression model. This will be used to

define the adjustable R* -PRESS statistic given below

Rsress =il SST

(19)

PRESS _, (_N )'SSE
N-n) SST

Note, however, that sometimes the data length N may be long, say V = 2000 . In this case, the effect of n in the
denominator of (19) is minimal due to the fact that (N /(N — n))? =1+2n/N ~1 forn<<N/2.One way to

avoid the tendency that small »’s are mitigated by a large N is to replace the number n by An, where 4 is an

adjustable coefficient. Experience shows that a typical choice for A is to set A =max{l, pN} with

0.002 < p <0.01. The adjustable R* -PRESS can then be defined as

R .. =1- N | NMsE (20)
P N - n

Note that the R* -APRESS statistic (20) is in formulation similar to the adjustable Rl-statistic givén by (13). In

the next section, the R?_APRESS statistic will be combined with the criterion ESR (error-to-signal ratio) and

will then be incorporated into the orthogonal least squares algorithm.

4. The adaptive orthogonal least squares (AOLS) algorithm

At first sight, the calculation of the R*_APRESS statistic defined by (20) requires an initial calculation of the

value of NMSE, which involves the calculation of the one-step-ahead prediction, ¥ . By noting the definition of

ESR in (11), however, the calculation of NMSE is not necessary. In fact, from (11) and (20), the R>-APRESS

for an identified model with p model terms can be calculated as

3 B N
Rapress[p] _IW(N —/?.p

N-2p)\SST)
e 88T, N Y[ eTe
 USST AN-7p) (88T, ),

2
SST, N
=1- ol — | ESR 21

(SST J[N—/lp} 7] @b

]—NMSE[p]

N5 . . .. .
where SST, = yy= Z;ly"{i} is the total sum of squared deviations iny from the origin, and SST is defined

in (14), and the index or subscript [p] indicates that the associated items are calculated from an identified model



with p terms. Note that ESR[p] (p=1,2, ...) in (21) are available as a by-product of the orthogonalization
procedure.

Assume that there exists a number p, , at which the function prms [p] with respect to p is a maximum. At

the maximum ofR;pTESS [p], the following relationships hold

prress [poj > Razpress [Po . 1] (222)

Ripress [pg]2 R:press [po +1] (22b)

A little rearrangement of (22a) and (22b) gives

2
e R o o
ESR(p,—1) \N=A(p,-1)
ESR(p0+1)S{N—,1(ng+1}] . -~
ESR(p,) N - Ap,
Define two functions
ESR(p+1
X‘(p):m%@:)) 24)
N-Ap+DY
Zz(P):[ﬁ} (25)

From (23a) and (23b), ¥, and y, have the following property: ,(p)< 7,(p) for p<p,, and
11(p)z ¥s(p) for p = p,. The two functions defined by (24) and (25) will be used as an indicator to find the
optimal model term number p, , where the two indicating functions intersect. [n fact, the optimal number p, can
be chosen as the point where y, enters into the 90% confidence interval of y,(-) for the first time. The 90%
confidence interval is defined as ¥, (*) i1.28/-\l‘_]\_f—.

The new adaptive orthogonal least squares algorithm (AOLS) can now be described below, where a,, - Sy
are the vectors associated with the M candidate model terms.

The ALOS algorithm:

Step 1: Set I, ={L,2,--,M}; s,=y"y; 5, =(y-) (y-¥);
fori=lto M

T p(1)y2
e =— TP g (O B0 20,56t err O] = 0

end for

¢, =argmax{errV[i]}; err[l] = errm['{’!] ;

iel



serr[l]=err[l]; esr[l]=1-serr[l];

gy = (. _ YT‘?; )
T s 1= 4
1 g{‘h
Step j, j=2:
For /=2 to M
=1 ML)
fori fj.
7T
. o a; gy
B = g gl (26)
q ;19 -
EI’I’U) [I] . (yTﬁ!U) )2 . {If (}BU))T ﬁ(j') s t er U)[-] = 27
AT -
end for ( end loop for i)
J,=lag(BOY B <8 I, =I\J; (28)

iel;

¢, =argmax{errV[i]} s err(j]=err[£ ]
F

serr[j]= i err[k]; esr[j]=1—serr[j]
k=1

2
2 ; N Sy -
Rapress [J] =1 _( ] ——EST]:]] >

N=-A) s
- est| f]
2] esr[jﬁlj’
2
: N-J4
/(Z[J]_[N—l{j—l)}
T
; Y q;
g;= J.Sj); A
qu'qJ'
a, =13
for k=1 to j-1
C‘;jq,’c
a, = :
’ f];{gk

end for (end loop for & )
end for (end loop for /)

Remark 1: The AOLS algorithm provides an effective tool for selecting significant model terms in an iterative
stepwise way. Terms are selected step by step, one term at a time. Note that when selecting the jth significant
term (regressor), this only involves the (j-1)th significant term (see Eq (26)). This modified version of the Gram-
Schmidt orthogonal transform is therefore not only effective for selecting significant model terms but is also
much more efficient in computation.

Remark 2: Most numerical ill conditioning can be avoided by eliminating the candidate regressors for which

(ﬂ}j))r/}"m are less than a predetermined threshold & , say 6 =107 with 7 210 (see Eqgs. (27), (28)).



Remark 3: The assumption that the initial candidate regression vector set I' ={a,---,a,} is of full
dimensionality is unnecessary in the iterative forward AOLS algorithm. In fact, if the M vectors P are linearly
dependent, and assuming that the dimension of I'1s n (<M) , the algorithm will stop at the n-th step.

Remark 4: [frequired, the selection procedure can be terminated at step M, (generally M ; << M ), the optimal
number of model terms, at which point the function ijress [m] with respect to m will be a maximum that satisfies
yi(My)z 7,(M,) . The system output can be expressed as a linear combination of the M, selected

significant regressrs

Y=g9,t+ &M, T€ (29)

which is equivalent to

My

YO =D 0,8, (0)+ () (30)

i=l

(AOLS) -6
£

where the parameters & 380,76y, 17 are calculated from the triangular equation Ag=8“"9 with
- ]

g=[g.82.8y,] and

1 ay . Lia,

0 1 e Ay,
A=

0 e 1 Dy 1w,

0 0 e |

The entries @, (1 <i < j < M) are calculated during the orthogonalization procedure.

5. The performance of the new AOLS algorithm—simulation studies
Four examples are provided to illustrate the performance of the new AOLS algorithm. In all the four examples,
the adjustable coefficient A in Eq.(21) was set to A =max{],0.0025/N} . It was assumed that the true model

structure was completely unknown once the models had been simulated and the input-output data were obtained.
In each example, noise models were estimated to ensure unbiased model parameters but the noise model

estimates are not shown to save space (see Section 6.2).

Example 1—a high order linear model

Consider a high order linear system described by the model

x(1) = 0.0627x(r — 1) +0.3068x(f - 2) — 0.0539 x(¢ - 3)

+1.0015u( - 9) +0.6332u(r —10) +&£(7) (31a)
v(t) = x() +n(t) (31b)
where
E)=£(t)+0.3e(t 1)~ 0.6¢(t - 2) (32)
n(t) = e(t)-0.46(t —1)+0.8s(t - 2) (33)



and £(f) was Gaussian white noise with zero mean and standard deviation o . =0.075. By setting the input u(t) as
a random sequence that was uniformly distributed in [-2,2], the model (31) was simulated and 600 input-output
data points were collected. This data set was used for model identification with an assumption that the true
model structure was unknown.

The initial starting model orders for the input and output were deliberately set to n, =10 and n, =20 in this

example. The model term selection procedure started from a candidate polynomial model with a nonlinear

degree ! =2, which contained 528 candidate model terms with the form z"(f)z%(z where
g[' 1 2 3
zif () e {p@-1),--, y-10), (1), -, u(t —20)} for /=1,2, 0<i, <2 and 0<i; +#, <2. The values of

the two indicating functions () and x,(-) are shown in figure 1, which clearly indicates that the optimal
number of model terms is 5. The 5 selected model terms and associated parameters are listed in Table 1, which
clearly shows that both the model structure and the parameters have been correctly estimated. All the nonlinear

model terms have been correctly deleted by the algorithm.

0.85 O s P T N .

-
©
1

0.85 -

o
4¢]
1

Indicating Functions

0.75 |

2 B 10 14 13 22 26 20
Model Term Rumber

=
o)
i)

Figure 1. The indicating functions Il() and ¥, (-) defined by (24) and (25) versus the number of model terms for the linear system
(31). The circled-line ‘o~ indicates ¥/ (+), the stared-line “*-* indicates £ (). and the two dashed lines indicate the 90% confidence

interval of ¥, () ’

TABLE 1
THE SELECTED MODEL TERMS, ESTIMATED PARAMETERS AND
ASSOCIATED ERR VALUES FOR THE MODEL (31)

ERR, x100%

No. Terms ¢, (1) Parameters &,

1 ¥(z-1) 6.09561567e-002  9.31394063e+001
2 u(t-9) 1.00223919e+000  6.57627708e+000
3 1u(t-10) 6.19325151e-001  8.30910081e-002
4 We-2) 3.04174816e-001  3.85142613e-002
5 w(t-3) -4.28406321e-002  9.97412512e-003

10



Example 2—a second order, second degree nonlinear model

Consider a second order nonilinear system described by the mode]

x(t) = —0.605x(t ~1) ~ 0.163x (¢ - 2) + 0.588u(r — 1) — 0.240u(s - 2) + £(:) (342)

¥(0) = x(0) + () v (340)
where

E(t)=e(t)+0.2e(t = 1) - 0.5¢(t - 2) (35)

nt)=e(t)-03e(z-1)+0.6e(r-2) (36)

and &£(2) was Gaussian white noise with zero mean and standard deviation ¢, =0.04. By setting the input u(z) as

a random sequence that was uniformly distributed in [-1,1], the model (34) was simulated and 500 input-output
data points were collected. This data set was used for model identification with an assumption that the true
model structure was unknown.

Although the model order and significant variables can be correctly selected using a variable selection

algorithm (Wei ez al. 2004), the initial model orders for the input and output was deliberately set to 1, =5 and
#,=5 in this example. The model term selection procedure started from a candidate polynomial model with a
nonlinear degree £ =3, which contained 364 candidate model terms with the form :;'(r):‘z(r):; (¢), where
zj.f (O eiy=1),-, y(t=5),u@), -, u(t-5)} for j~1,2,3, 0 < i; <3 and 0<i +1i, +i; 3. The values of

the two indicating functions ¥,(*) and ¥, () are shown in figure 2, which clearly indicates that the optimal

number of model terms is 4. The 4 selected model terms and associated parameters are listed in Table 2, which

clearly shows that both the model structure and the parameters have been correctly estimated.

1.1 T T T . T

Indiceting Functions

=

‘ W

2 4 6 3 10 12 14 16 18 20
Model Term Number

(@]
w

Figure 2. The indicating functions %, () and X (+) defined by (24) and (25) versus the number of madel terms for the nonlinear sysiem

(34). The circled-line ‘o-" indicates }, (-). the stared-line “*-' indicates e (+) , and the two dashed lines indicate the 90% confidence

interval of 7, ().



TABLE 2

THE SELECTED MODEL TERMS, ESTIMATED PARAMETERS AND
ASSOCIATED ERR VALUES FOR THE MODEL (34)

No. Terms ¢, (1)

Parameters &,

ERR, x100%

1 y(e-1) -5.97683257e-001  6.50487433e+001

2 uft-1) 5.91092947e-001  2.91410631e+001

3 ¥(t-2) -1.64778127e001  2.70441508e+000

4 u(1-2) -2.40698404e-001  2.44104449¢+000
TABLE 3

THE SELECTED MODEL TERMS, ESTIMATED PARAMETERS AND ASSOCIATED

ERR VALUES FOR THE MODEL (37)

No. Terms g, (£) Parameters &, ERR, x100%
1 u(r-1) 1.00251598e+000 8.30902332e+001
2 ¥e1) 9.86141811e-002 1.44668436+001
3 yDy(E2)u-2)  9.59277528-004 4.49680879¢-001
4 u(1-2) -5.05326462e-001 1.12701859e+000
5 ¥(t-2) 1.63353923e-001 1.58338992e-001
6 ¥(-2) -1.48927094e-003 2.24371699e-001
7 V(-2) u (t-2) 1.41548044¢-003 2.084890126-002
8 (D u(-2) 2.48017967e-003 1.92876073e-002
9 Y(-1) 5.23491349e-004 1.99220679%-002

Example 3—a rational model

Consider a system described by the nonlinear rational model

0.5x2 (£ — 1)x(t — 2) + 0.2x(t - x> (¢ = 2)

x(t) = 0 Dr e D) +u(t=1)-04u(r—-2) +£(1) (37a)

¥(1) = x(2) + (1) (37b)
where

Ey=e(t)+04e(t-1)+0.82(r-2) (38)

() =e(t)+03e(r-1)+0.6e(t-2) (39)

and £(#) was Gaussian white noise with zero mean and standard deviation o, =0.2. By setting the input u(7) as a
random sequence that was uniformly distributed in [-10,10], the model (37) was simulated and 400 input-output
data points were collected. This data set was used for model identification with an assumption that the true
model structure was unknown.

A variable selection algorithm (Wei et al 2004) was applied to the simulation data set and 4 significant
variables were selected as {y(r-1), p(#-2), u(s-1}, u(r-2)}. The 4 significant variables were used to form an initial

candidate polynomial model with a nonlinear degree £ =4, which contains 70 candidate model terms. The values

of the two indicating functions y,(-) and x,(-) are shown in figure 3, which clearly indicates that the optimal



number of model terms is 8 or 9. Although both models with 8 and 9 terms meet the model validity tests based

on the residual correlation analysis (Billings and Voon 1986), it follows that the model with 9 terms possesses

better long term predictive capability according to the adjustable R -statistic given by (13). The identified
model of 9 terms is listed in Table 3.

To inspect the performance of the identified models listed in Table 3, two input signals, u(f)=w(f),
with w(f) a Gaussian white noise sequence of zero mean and standard deviation ¢ =2.5 and

u(t) = 2.55in(20x 27 / 400) + 5sin(30x 277/ 500) were separately used to drive the model (37), where the

noise &(¢) and 7(¢) were set to be zero. The model predicted outputs, 3, () :J}(f/‘mo(tgl), v (t=2),

mpa(
u(t—1), u(t—2)) , were compared with the noise free output from the original model (37) over the

range3 <t <1000 . The data points corresponding to the two input signals over the range from 500 to 600 and
from 400 to 600 are shown in figures 4 and 5, respectively. It is clear from figures 5 and 6 that the identified
model provides excellent approximation for the original model (37) even when driven by input that are totally

different to the input used in the identification.
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Figure 3. The indicating functions () and ¥,(-) defined by (24) and (25) versus the number of model terms for the nonlinear system

(37). The circled-line ‘o-" indicates }, () the stared-line “*-' indicates ,‘{’2(-) , and the two dashed lines indicate the 90% confidence

interval of %, () .
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Figure 4. A comparison between the noise free measurements from the original model (37) and the output from the identified model driven
by a white noise sequence. The solid line indicates the noise free measurements from the original model (37) , the dashed line indicates the
model predicted output from the identified model.
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Figure 5. A comparison between the noise free measurements from the original model (37) and the output from the identified model driven
by a sine wave. The solid line indicates the noise free measurements from the original model (37) , the dashed line indicates the model
predicted output from the identified model.
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Example 4—a MIMO nonlinear model

Consider a system described by the nonlinear rational model

x(t—2)x,(t -1

2 =~-0.5; — | )+ — a
‘CT (E) 1C] (‘t 1) 1+[3(12(Z-—v1)+x22(f—1)]”2 -E"MI(r I) (40 )
; 0.5x,(t—Dx,(r—2) :

(1) ==0.25x,(t-1) + ' 2 0.2u, (- )
x, (1) Sy (f=1) 1-'r_[x,2(r—l)+x22(z—1)]”2 +0.2u,(t-1) (40b)
Y () = x,(2) + wy (1) (40c)
Yo () =x, () + w,y (2) (40d)

where w;(#) and w, () were Gaussian white noise sequences with zero mean and standard deviation &, =0.1

and ¢, = 0.01, respectively. By sefting the two input signals u,(f) and ua(#) as random sequences that were
uniformly distributed in [-1,1], the model (40) was simulated and 1000 input-output data points were collected.
This data set was used for model identification with an assumption that the true model structure was unknown.

A variable selection algorithm (Wei et al. 2004) was applied to the simulation data set and 6 significant
variables were selected as {y(#-1),y,(2-2), y2(2-1), ¥2(£-2), w;(t-1), 11(¢-1)}. The 6 significant variables were used
to form an initial candidate polynomial model with a nonlinear degree £ =3, which contained 84 candidate
model terms. The values of the two indicating functions ¥, (-) and y,(:) for the two subsystems are shown in
figure 6, which clearly indicates that the optimal number of model terms for both the two submodels is 4. The
identified model terms and associated parameters are listed in Table 4.

To inspect the performance of the identified models, two input signals, u,(f)=sin(m/20) ,

u,(f)=cos(m/30) were used to drive both the identified model and the original noise free model (40). The
model predicted outputs were compared with the noise free output from the original model (40) over the
range 3</ <1000, and these are shown in figures 7 and 8. It is clear from figure § that the identified model

provides excellent approximation for the original model (40).

TABLE 4
THE SELECTED MODEL TERMS, ESTIMATED PARAMETERS AND
ASSOCIATED ERR VALUES FOR THE MODEL (40)

N Submodel I Submodel I

"% T Terms @, (1) Parameters &, ERR, x100% Terms @, (1) Parameters &, ERR, x100%
1 ui(-1) 1.00021201e+000 | 7.43228544e+001 | ua(r-1) 2.00076326e-001 9.08018786e+001
2 yile-1) -5.00336484e-001 | 2.50339132e+001 | ws(z-1) -2.49135624e-001 | 5.99431358e+000

3 »i(t-2) yo(-1)

6.74439026e-001

6.07735064e-001

nle-1) va1-2)

2.65222930e-001

3.10508291e+000

4 | mil-1) ya(e-1)

1.05823417e-001

1.29427954e-002

wi(t-2) ya(1-2)

1.30978626e-002

6.03751117e-003
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Figure 7. An overlap of the output from the identified submodel [ and the corresponding noise free output from the original model (40) (the

top figure), and the errors (the bottom figure), with the given sinusoidal inputs.
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Figure 8. An overlap of the output from the identified submodel IT and the corresponding noise free output from the original model (40) (the

top figure), and the errors (the bottom figure), with the given sinusoidal inputs.

6. Modifications to classical information criteria and noise modelling

This section will demonstrate that other.criteria may also be used to determine the number of model terms in a

way similar to the use of the R*-APRESS statistic based AOLS algorithm. This section will also give some
mformation on correlated noise modelling when a NARX model cannot provide sufficient description for a

system or a given data set.

6.1 Modified classical information criteria

[t can be seen from the results given in the previous section that the AOLS scheme, which combines the efficient
. 2 5 5e " 3
orthogonal least squares algorithm and a R”-APRESS statistic, provides an effective tool to find not only the

correct model terms but also the correct number of model terms. There are some similarities between the B>-
APRESS statistic and the classical information criteria AIC, BIC and their derivatives. For example, using the

fact that

1
(1-x)*

%1+2,r+3.‘c1+4x3+~-,'.‘cl{l, (41)

The PRESS statistic given by (18) can be approximated when p << N by

T ,
PRESS| p] {Hz]’:‘;”)NMSE[p] =[SSSST? ][1+&]ESR[;}] (42)



This is 2 modified version of the generalized cross-validation (GCV). Other traditional information criteria
including the AIC, BIC, FPE and similar versions can also be incorporated in the AOLS algorithm after some
necessary modifications. One way to modify and improve these information criteria is to relate them to ESR, and
at the same time to drop some insignificant constant terms and then to introduce some necessary penalty terms
into the initial formulation of these criteria. The modified information criteria can then be incorporated in the
AQLS algérithm. Consider the AIC and BIC as an example. The classical AIC and BIC criteria can be modified

as follows:

AIC(p) = log(ESR(p)) + Wi%” 43)
log N

BIC(p) = log(ESR (p)) + (4p + )=

(44)

where A = max {l, pN} with 0.002 £ p £0.01. Similar criteria were used for model selection by Harvich and

Tsai (1995). Note that the BIC given by (44) is similar to the Schwarz-Rissanen information criterion, SIC
(Schwarz 1978, Rissanen 1978). Following the discussion in Section 4, the indicating functions for the modified

AIC and BIC in (43) and (44) can be chosen as

ESR(p +1) ,’

Ziac(@) = ipe(p) = m )
- ‘}FF 21

Xaac(p)=e N 122 (46)
N

VAR (o (p) = 97(1’ Nilog N o

Example 5—a nonlinear time series

Consider the following nonlinear time series

J(£) = (0.8=0.5¢ DYz 1) = (0.3+0.9¢™ D) y(z—2)
+0.1sin(zy(z - 1)) (48)
This model has been used as a benchmark example by several authors (Billings and Chen 1998). In this example,
this model was simulated starting with the initial condition y(-1)=0.25, »(0)=0 and 5000 data points were
sampled. The first 400 data appoints were used for model estimation and the remaining points for model testing.
Significant variables were chosen as {y(z-1), ¥(-2)}, and these were used to construct a polynomial model for
this time series, starting from an initial candidate polynomial model with a nonlinear degree ¢ =6, which

contained 28 candidate model terms. The values of the indicating functions ¥, A;c() , Z181c()

Zaac() and 75 gic () defined by (45), (46) and (47) were calculated and these are shown in figure 9, which

clearly indicates that the optimal number of model terms is 9. The selected model terms are listed in Table 5. The

results identified using the modified AIC and BIC based AOLS algorithm are identical to those produced by the

R?-APRESS statistic based AOLS algorithm for the noise free data generated from the time series (48).
To inspect the performance of the identified model, the first return map reconstructed from the data points

(model predicted outputs) generated by the identified model was compared with the map produced by the noise

18



free data generated from the original model (48). These are shown in figure 10, which clearly shows that the
identified model provides an excellent approximation for the original time series (48). In fact, if the two maps in

figure 10(2) and (b) were put together, they would overlap with each other and are indistinguishable.
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Figure 9. The ¥ a1c (), X1BIC (-), Xaa10 (-) and X2pic (+) defined by (45), (46) and (47) versus the number of model terms for the
time series (48). The circled-line ‘o- indicates ¥ 4 () and Xipic (-), the stared-line “*-' indicates X2 AlC () , the dotted-line
indicates ¥, gie () the two dashed lines indicate the 90% confidence interval of ¥ 41 () , and the two short dashed-line in bald

indicate the 90% confidence interval of ¥ g ().

1.5 1.5
1} 1 1 1
0.5} — 05} 1
= b { £ o 1
= =
05} 1 05t ;
-1t - -1 ]
@ (b)
A5 : 1.5 -
= 5 2 ] ) 2
y{t) ¥R

Figure 10. The first return map for the time series described by (48). (a) constructed from 4600 points generated by the original model (48)

(b) reconstructed from 4600 data points generated by the identified model.



TABLE S
THE SELECTED MODEL TERMS, ESTIMATED PARAMETERS AND ASSOCIATED
ERR YALUES FOR THE MODEL (48)

No. Terms g, (f)

Parameters 8,

ERR, x100%

»(-2)
¥(t-1)
¥(e-1) ¥(1-2)
Y1) p(-2)
yH-1) ' (e-2)
»(-2)
V(1)
¥i(e2)
Y1) 7(-2)

R I~ L S S U

-1.19591378e+000
6.08163570e-001
8.69722510e-001
-3.02237294e-001
-2.41415155e-003
1.99825511e-002
9.28908169e-003
-1.87355282e-002
-2.08950788e-002

5.70039032e+001
4.06119954e+001
2.34052691e+000
4.16885795e-002
1.51410216e-003
1.38005940e-004
5.86269331e-005
3.07525656e-005
1.75082048e-005

6.2 Noise modelling

In many cases the noise signal e(f) in Eq. (1) may be a correlated or coloured noise sequence. This is likely to

be the case for most real data sets. The NARX model (1) may fail to give a sufficient description due to the bias
in the parameter estimates. In this case, the effects of the noise must be taken into account and some model terms

relating to the noise should be included in the model. This is achieved by extending the regressor vector defined
in (2) o) = [y =1, y@=n,), u(t), -, ult—n,),e(t=1), et - ng)]1r . This results in the

celebrated NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous inputs) model (Leontaritis

and Billings 1985)
&)= flp@e -1, y(t —n, )ul(t), -, ult—n,),e(t—1),e(t —n,)) +(t) (49)

Model (49) is obviously more general than the NARX model (1) and includes as special cases several linear and

nonlinear representations (Pearson 1999). Note that the noise signal e(f) in model (49) is generally unobserved

and is often replaced by the model residual sequence. Letf(-) represent an estimator for the model /(') , the

residuals £(f) can then be estimated as
e(z) = y(1) - 3(1)
=y(t)— j}(y(t =1,y —n, ) u(e), - ult —n,),e( —1),,e(t - n,)) (50)

[n practice, a NARMAX model can be implemented using the new AOLS algorithm as follows:

* Identify a NARX model. Assume M, model terms are included in the NARX model.

e Add noise-related candidate model terms into the NARX model. Assume N, noise-related terms are added.

® C(Calculate the prediction errors £(¢) recursively as

X @)= y(0)- ()

= Y(t) = F I =1),, p(t =, )u(0), -+ ult =1, ), 8% (6 = 1), e SV (e = m )



M, Ny
=y(0)- 2.0 (@) - Y 6" " (0" (1) (51)
i=l

=1
where £ (z— ) =0 for j=12,-,n,, 7,(p(t))for i=1,2,---, M, are the selected model terms during

the kth step, 7\ (@™ (£)) i=1,2,---,N, are the selected noise-related model terms at the kth step.

Typically, this iteration can be terminated in a few steps.
e Form a NARMX model by including all the selected terms associated with the process and noise.

Practical identification experience shows that the bias on the parameter estimates can be virtually eliminated
by including the noise signals e(t —1),---,e(t —,) in the model. Readers are referred to Billings er al. (1989),

Chen et al. (1989), and Billings and Chen (1998) for details about the NARMAX modelling methodology.

7. Conclusions
An efficient fast adaptive orthogonal least squares (AOLS) algorithm has been developed for subset selection

and nonlinear system idéntiﬁcation. In the new AOLS algorithm, a new indicator, the error-to-signal ratio (ESR),
and a new R”-like statistic, the adjustable prediction error sum of squares {Rz -APRESS), have been introduced.
The new AOLS algorithm was developed from a combination of ESR, R*-APRESS and an efficient forward

orthogonal least squares algorithm. Combining ESR with RZ-APRESS, and especially by unifying these into a
fast orthogonal least squares algorithm, has produced the AQLS algorithm, which is multifunctional and can be
used for model term selection, optimal term nl;lmher determination, and parameter estimation. Modified versions
of several classical information criteria have also been given. The new AOLS scheme, accompanied with our
previous results on model term and variable selection methods (Wei er al. 2004), provides an efficient tool which
can be really applied to a wide class of nonlinear system identification problems. The only limitation of the new
ALOS algorithm is that, it requires that the dynamical behaviour of the system under study be approximated
using a nonlinear model of a specified form, which can be expressed using a linear-in-the-parameters
representation with respect to given basis functions including polynomials, radial basis functions, splines, and
wavelets. Several illustrative examples have been described to show the effectiveness of the new AOLS

algorithm for nonlinear system identification.
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