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Abstract

This paper presents a new model identification method for parsimo-
niously selecting model terms and estimating the corresponding param-
eters of nonlinear dynamical systems. The generalization and prediction
capability of the final identified model with the smallest model size is en-
sured by optimizing the model prediction error over an unseen data set
using parametric bootstrap covariance estimates. The bootstrap estimates
can be thought of as smoothed versions of cross-validation estimates and
do not suffer high variability. The sparseness of the final model is also
improved by performing I, norm regularisation over the model parame-
ters, integrated into the stepwise orthogonal forward regression algorithm
to improve the efficiency of the model selection procedure. The optimal
values of the [; regularisation associated with different model terms is
achieved by optimizing the model evidence in the framework of Bayesian
learning theory in a computationally efficient way. The new identified al-
gorithm which combines the I; regularized orthogonal forward resression
algorithm and the parameteric bootstrap covariance criterion can provide
an efficient and data adaptive identification method for modeling nonlin-
ear dynamical systems. Experimental results demonstrate the efficiency
and practicability of the new procedure.

1 Introduction

A basic principle in practical system identification problems is the parsimonious
principle that the final model should be just large enough to explain the under-
lying dynamics. Model selection is a central and fundamental issue in ensuring
the sparseness in system identification and is especially important in nonlinear
system model building. Selecting a simple model structure with good general-
ization capabilities from a large number of possible model terms is a critically



important problem. Various methods of estimating the generalization or pre-

diction capability of identified models have been studied because of the cloge

relationship with model selection procedures. It is widely accepted that the

measure or estimate of the prediction error/generalizaiton error over an unseen
data set is a good criterion for assessing the final identified model. For example,

when a model of the form
y=Fflyu)+e=9+¢ (1)

is estimated based on training set data of input w and output y, it is important
to assess how well f(-) will predict over future unseen data which is independent
of the training data set. The traditional and widely used method for estimating
the prediction error over an unseen data set is cross-validation. It is well known
that the cross-validation estimate can be nearly unbiased but also highly variable
in some situations. Cross-validation can also be computationally costly.

As alternatives to cross-validation, various methods have been proposed to
improve the efficiency of model selection criteria. As summarized in [1], most
of these selection procedures choose the optimal model f by minimizing the
following model selection criterion with respect to all possible candidate subsets

f, where ¥ and Y are the training data vectors of the output and one step
ahead predicted output respectively.

Y -Y)(¥v -Y) + A\ flo? (2)

These selection criteria are composed of a training error term and a covariance
penalty term. In (2), A is the penalty coefficient that controls the degree of pe-
nality according to different selection criteria and |f] is the dimension or the size
of model f. Most model selection criteria differ only in the choice of the value
of A. This is true for example, in Akaike’s information criterion (AIC) [2] and
its equivalent form in linear regression, for Mallows’s C}, [3] A = 2, while in the
Bayesian information criterion (BIC) [4] which is based on an asymptotic Bayes
factor, A = log(n) (n is the number of data). Modified and generalized forms of
these model selection criteria include the risk inflation criterion (RIC) [5] with
A = 2log(p) (p is the number of candidate regressors) which also has a close rela-

tionship with the covariance inflation criterion [6] with A =4 Zﬂl log(n/5)/|f]
based on permuted versions of the data set, and Stein’s unbiased risk estimate
(SURE) [7].

In many practical situations, the performance of these model selection cri-
teria with fixed covariance penalties A\ varies according to different situations
despite their computational efficiencies. For example, when p is large, these
criteria may yield a large selection bias. Moreover, for a large A, the model
selection criterion may produce an optimal model whose size is small but which
may perform poorly in other situations when the size of the optimal model is
large, and vise versa [1]. Another important feature of these model selection
criteria are the assumptions regarding the probability distribution of the model
residuals. Usually, the distribution of the model residuals is assumed to be



Gaussian, which might be a big disadvantage in some situations especially for
nonlinear systems. It is therefore of great importance to use a data adaptive
model selection criterion to improve the applicability and reduce the selection
bias. Cross-validation yields a nearly unbiased estimation of the model predic-
tion error. However, the low bias of cross-validation is achieved at the cost of
high variance. The bootstrap method which can be thought of as a smoothed
version of cross-validation [8] [9] [10] can substantially reduce the variance of
the estimation of the prediction error and improve the computational efficiency.
Besides providing more accurate point estimation for the prediction errors, the
bootstrap approach has other important advantages. Bootstrap replications can
provide a direct assessment of the variance of a point estimate of the prediction
errors. Furthermore, the bootstrap method is nonparametric and can be applied
to various identification problems including regression problems providing the
model residuals under study are identical and independently distributed (i.i.d.).

In this paper, prediction error estimates using a parametric bootstrap method
[11] is adapted to the orthogonal forward regression algorithm (OFR) [12] as a
model selection criterion to obtain optimal model results in a computationally
effective way. The OFR algorithm is a stepwise orthogonalization procedure of
the candidate regressors which provides a forward selection of the significant
terms from the candidate model terms based on the Error Reduction Ratio
(ERR) criterion. But a practical problem for the OFR algorithm applications
using the ERR criterion is that the number of model terms should be prior deter-
mined. With the assistance of the bootstrap covariance criterion, the smallest
model size can be determined by assessing the estimate of the model predic-
tion error. Therefore, the model identification procedure can be automatically
terminated by the new model selection criterion.

It is well known that non-quadratic regularizers, in particular the [; norm
regularizer which is also termed as a Laplace prior in the Bayesian framework
[13], can yield sparse models that generalize well via parameter shrinkage. For
some complex models involving high-dimensional real world data, I; regularised
regression can also avoid over-fitting problems by adding penalty terms associ-
ated with the model parameters. Similarly, there is another kind of regulariza-
tion which is also widely used, [, norm regularization [14][15]. In the Bayesian
framework, the [5 regularisers are called Gaussian priors. The main disadvan-
tage of Gaussian priors is that they do not control the structural complexity of
the learned function [16][17]. In this paper, ; regularization is integrated into
the OFR algorithm where each regressor is associated with an individual regu-
larizer to give approximately optimal values of the regularizers in the Bayesian
evidence framework. The [; regularization provides another way to improve the
sparseness of the final model.

The paper is arranged as follows. Section 2 describes the bootstrap co-
variance criterion for model selection. In section 3, the OFR. algorithm is first
introduced and the new model identification procedure combined with the boot-
strap covariance criterion is presented. The [, norm regularized OFR. algorithm
is then proposed to improve the sparseness of the final model. Finally, three
numerical examples in different situations are included in section 5 to illustrate



the application of the new identification methods and to demonstrate the ef-
ficiency and feasibility of the new algorithm in modeling nonlinear dynamical

systems.

2 Bootstrap Covariance Criterion

Assume that a nonlinear dynamical system can be described by the following
function
y=fluy)+e=p+te (3)

where e is an identical and independently distributed noise sequence.
Consider a following model which is fitted to y,

y=Fflyu)+e=7+¢ (4)

where the training error of the model f is measured by the squared one step
ahead error over the training data set.

TE = ZTE Z vi —5:)2 (5)

Without any assumptions about the model f, the expectation of the prediction
errors is given by [11],

E{PE;} = E(ys — 12)* + (s — 5)%] = El(yi — 9:)* + 2(8 — pa) (g — a)] (6)
Since TF; = (y; — 7:)%, (6) can also be written as
E{PEI} = E{TE1 + QCO’U(‘QTZ', yi)} (7)

where 2cov(y;,y;) 1s the covariance penalty term added to the training error
TE; to yield an unbiased estimate of the prediction error PE;. As mentioned in
Section 1, the covariance penalty can be estimated in various ways according to
different model selection criteria. In this paper, we use the parametric bootstrap
method to estimate the covariance penalty which is almost unbiased. This
is similar to the cross-validation method but the computational efficiency is
enhanced and the variance of the estimate is also reduced.

Let f be an assumed prediction of y,and y = f(u y)+é where é is a random
residual sequence. Then a large number "B” of the simulated observations and
estimates from ¢ can be generated in the following way.

g—y =3 =fuy) (8)

From the bootstrap replications y* and #*, the covariance penalty cov; =
cov(g;, y;) can be estimated using the foilowmg equation [11]

cov; = Z 5" (y: - y* ) /(B - 1) (9)



where y*;, = >, y;%/B is the mean of the bootstrap replications at point 1.
Thus, the bootstrap covariance criterion can be obtained using the estimate of

the prediction error.
PE=) (u—9)+2) @ (10)
i i

It can easily be concluded that a smaller estimate of the prediction error yields
a better model. Therefore, in terms of generalization error, the model selection
criterion based on the bootstrap covariance estimate can be used to assess the
model performance with different model sizes, where the smallest model size can
consequently be determined. Notice that the bootstrap method dose not require
any assumptions on the model except that the model residual is identical and
independently distributed. The bootstrap criterion is also data-adaptive where
the covariance penalty is directly estimated from the training data. In this
paper, the bootstrap estimate will be applied to the identification algorithm to
choose an adequate model with smaller model terms,

3 Sparse Model Identification

In this section, sparse model identification algorithms are discussed. In section
3.1, the orthogonal forward regression algorithm is first briefly introduced and a
new model selection procedure is proposed by adapting the bootstrap covariance
criterion to the OFR algorithm. Finally, a [; regularization method is exploited
to further improve the sparseness of the final model.

3.1 Orthogonal Forward Regression Algorithm with the
Bootstrap Covariance Criterion

A wide class of nonlinear dynamical systems can be described by the NARX
(Nonlinear AutoRegressive withe eXogenous inputs) model

y(8) = Fly(t = 1), oyt = ny),u(t), .. ult — nu)) +e(t) (11)

where f(.) is an unknown mapping, u(), y(t) and e(t) are the input, output and
noise sequences respectively, and n,, ny are the maximum input and output
lags. The mapping f(-) can be constructed or regressed using a variety of
local or global basis functions including polynomials, neural networks, kernel
functions and wavelets. In this paper the nonlinear polynomial model is used.
In summary, the NARX model can be expressed in a linear-in-the-parameters
form

M,
y(t) = Zgi@k(r) + e(t) (12)
k=1

where @, (t) is the model term in a polynomial form generated from the model
regressors {y(t — 1), ..., y(t — ny), u(t), ..., u(t —n,)}.

on



The OFR algorithm involves a stepwise orthogonalization of the regressors

{or(t)} and & forward selection of the significant terms based on the Error

Reduction Ratio (ERR) criterion [12]. The significant modal terms are selected

step by step by comparing the ERRs of all possible model terms. This algorithm
also computes the optimal least square estimates of the term coefficients © =

{6}

Write (12) in the vector format
Y=30+e (13)

where ® is the regression matrix or the design matrix, © is the coefficient vector
and e is the residual sequence. After orthogonalization, (13) is converted into

Y=Wg+e (14)
where
1 a1z ai,m,
P (15)
0 0 1
and
d=WA AQ =g (16)

In (14), W is the corresponding orthogonal matrix and M denotes the number
of terms in the final model.

The OFR algorithm is an effective and practical learning procedure for iden-
tifving nonlinear models. An important feature of the OFR algorithm is the
capability to select the model terms according to the contribution of each term
to the overall model accuracy and to eliminate redundant terms in a computa-
tionally effective way. However, the OFR. algorithm only involves comparisons
between different model terms in the selection procedure and the optimal model
size can be determined in another auxiliary way. In this paper, the bootstrap
covariance criterion is adapted to OFR algorithm to compare model prediction
capabilities with different model sizes and determine the optimal model size step
by step. The model one step ahead prediction error associated with the selected
model {%9’»}221 can be computed using the following equation

M, a

PE=Y (yz{t) R Zgiwi(t)) +2) " cou(t) (7
& k J

where My is the number of terms in the forward selection procedure, wy is the
selected orthogonal regression vector and the covariance penalty term ), ¢ov(i)
is estimated using the bootstrap method (9). Equation (10) also shows that the
bootstrap covariance criterion also represents the prediction error of the selected

model.



For a given candidate set of regressors G = {yx}#, where M is the number
of candidate recressors, the new model identification procedure which combines

s ST, L. O

: )
the OFR d.1uu11u1uu and the bootstt ap covariance criterion can be uu.Equ outlined

as follows.
Stepl: Select the first model term with the highest FRR

I}:IA,J:{].,Q,...,IM} (18}
7 [wk,Y]

wi(t) = wr(t), bp = 19

.'..( ) ; k( ) k {wka'wk] ( )

Iy = arg maxbh? 2 [we, ] = argmax (ERRy) (20)
kel, ~ [¥,Y] kel

[w?, Y] .
'UJ{l) = w;l,c? = m,ﬂ.l,l =1 (21)

Estimate the current model one step ahead prediction error using the bootstrap
method (9) and (10)

PE, = Z(yz(t) — (@) (wl(t))?) + 2 Zcm}(])( ) (22)

Step 7, j = 2,3, ...: Iteratively orthogonalize the remaining regressors one by
one to select the next model term with highest £RR among the remaining

candidate terms.

I‘:Ijvl\l'fl (23)

wilt) = oult Z Bt b - fet] (24)

[; =arg rkneag I [E;}f;’}'yi] =arg ineaf:: (ERRy) (25)
w?—w;j,c?—ibgo—yoi],ak,j:%,k:l,mm,jnl (26)

Estimate the new model prediction error using the bootstrap method

PE}:Z( i 2(: )-I-)ZCO'U]) (27)

i

This procedure is terminated at the M,-th step when the estimate of the new
model prediction error PE; at the j step [; is bigger than PE; ; at the j —1
step. The estimated coeflicients & = {Bk}k M: associated with the selected
terms{iy, }F=2** are computed in the follomng equation

e=A"C, (28)

where A is upper-triangular matrix which is defined in (15)and €' = (c3,¢9, ..., &%, )
is the coefficient vector associated with the orthogonalised terms{w} ﬁ’f -

=1



3.2 [ Regularization Regression

Regularization is performed by introducing a kind of penalty function with
some hyper parameters associated with the model parameters. An important
problem for regularised regression methods is how to find the appropriate values
of the hyper parameters without any subjective work to achieve a better model
approximation. These problems have been extensively studied in [18]. Solutions
include the Discrepancy Principle [19], generalized cross-validation [20] and the
L-curve method[2l]. But these methods are all computationally costly. In
this section, a new method is proposed to find appropriate values of the hyper
parameters in the Bayesian framework, which are defined in terms of the noise
variance and a measurement of smoocthness of the model fit. The Bayesian
method allows values to be objectively assigned to the tuning parameters which
are commonly unknown a priori. A typical advantage of the Bayesian learning
method is that it can quantitatively rank a whole class of models by evaluating
the corresponding evidence and the hyper parameters are consequently tuned
to maximize the evidence.

In this paper, [; regularization is adapted to the OFR algorithm for nonlinear
system identification. The optimal values of the [; regularisers are given using
Bayesian learning theory. This new method has two main advantages, one is that
the effective model term selection procedure of the OFR algorithm is maintained
and the contribution of the individual regularisers to evidence of the regression
model can be evaluated by orthogonalizing the candidate regressors, the other
advantage is that the optimal regularisers can be inferred by maximizing the
evidence in the Bayesian learning framework.

In the Bayesian framework, the optimal estimates of the parameters for
the orthogonal regression model (14) are obtained by maximizing the posterior
probability of the parameters g = (¢1,...,gar,) which is given by
Bla|¥ ] = DV A )P (BIA )

P(Y|A,¢€)

where P(Y|g, A, ¢€) is the likelihood function, P(g|A, ¢) is the priori probability
density with regularisers A = (A1,...,Aar,) and € = 1/02 denoting the smooth-
ness of the fitted regression model and the noise model of data respectively,
P(Y]|\, ¢) is the evidence of the regression model associated with the regularis-
ers A and e.

Here, it is assumed that the residual sequence e is zero mean gaussian noise
with standard deviation o.. Following [22],the likelihood function can therefore

be described as

(29)

N/2 T
PYle A= (5) " o (-5°) (30)

The density function of the parameters g with the [; regularisers can be written

as follows.

P(glA.e) = exp(—Ailgil) (31)



Maximizing the log posterior probability with [; regularisers with respect to g
is equivalent to minimizing the following cost function.

i
Jer(g, Ae) = 569Te + glA] (32)

The optimal values of g; to maximize the log posterior probability is obtained
by setting &log(P(Y|g, A, e)P(g|A, €)/0g; = 0,which yields (refer to Appendix
B)

T
P |w; Y| Ai )
= sgn(w; Y — e o3
o= st ) (e - ) o
where ||v| = >, v} denotes the squared Euclidean norm, (-)4+ is the positive

part operator (defined as (a)y = a, if e > 0, and (a). =0, if a < 0), and
sgn(-) is the sign function. Note that when the absolute value of wlY /|w;||?
is below a threshold, the estimate of g; is exactly zero; otherwise, the estimate
is obtained by subtracting a threshold. This rule is also called a soft threshold
[23].

And using the Gaussian approximation method, the log evidence of the
model with [; regularisers A and e can be approximated as

e M N N
log(P(Y[A,€)) = Zl:log (A)/2 - 5 log(w) — 5 log(27) + £ log(e)
M, ;
- Z(/\HQJ) - %eeTe - % log(det(B)) + % log(2m) (34)
i=1 - -

where g is set to be the optimal value of a posterior probability solution. The
Hessian matrix B = vé(J(BL)(g,A,E}) 'is diagonal when g; # 0 due to the
orthogonalization of the design matrix which can easily be satisfied for practical
regression problems. The corresponding Hessian matrix is given by

B = WTW = diag{ewTus, ..., ewd; war, } (33)

Setting dlog(P(Y|A,€))/0e = 0 yields the computation formula for the optimal

= (N —M,)/eTe (36)
Setting dlog(P(Y|A,€))/d\; = 0 yields the computation formula for the opti-

mal \;
1

|:
For a large sample of data, the optimal estimate of the variance of the residual
usually changes slightly, so the influence of the noise prior on the parameter
g can be ignored. The optimal estimate of the parameter g; with the optimal
regulariser A; can be therefore written as

T
(BL) oy Wi Y 1
g;" " =sgn(w, Y) ( — 38)
will  ellwillalgl / + (

(37)

i




As a summary, the new model identification method which adapts the boot-
strap covariance criterion to the [; regularized OFR algorithm can be briefly

described as follows.

(a) Use the OFR algorithm with bootstrap covariance criterion described in
Section 3.1 to select significant model terms from the candidate terms with the
smallest model size and give an initial least squares estimate of the parameter
g.

(c) Calculate the value of the l; regularisers A and the noise prior € using (37)
and (36) using the paramter g.

(d) Calculate the optimal regularized estimate of the parameter g(8%) using
(38) with the optimal value of [; regularisers.

(e) Remove the corresponding model terms if the associated parameters are zero

after regularization shrinkage.

4 Numerical Examples

In this section, two numerical examples are included to illustrate the new iden-
tification method proposed in this paper. The first example is a nonlinear time
series simulated using a non-polynomial model. The other example concerns the
real sampled data from monthly ozone time series where a nonlinear polynomial

model is fitted.
In this section, model predicted output will be employed to test the predic-
tion capability of the identified models over future unseen data. For an identified

NARX model y(t) = f(u(t = 1),...,u(t — ny), y(t — 1), ..., y(t —ny)) + e(t), the
many step ahead predicted output is defined in the following way.

Y () = Flu(t — 1), u(t = na) g™ (E = 1),y (2 = ny))  (39)

Notice that this is a much more severe test than the common approach of using
one-step-ahead predictions.

4.1 Examplel: A Simulated Nonlinear Time Series

Consider a nonlinear time series given by the following equation

y(t) = (0.8 — 0.5exp(—y?(t — 1)))y(t — 1) — (0.3+
0.9 exp(—y2(t — 1))yt — 2) + 0.Lsin(my(t — 1)) +e(t),t = 1,2,... (40)

where e(t) is the random noise sequence with zero mean and standard deviation
o = 0.1767. The nonlinear time series were numerically simulated for 550 times
from the initial conditions y(0) = y(—1) = 0. The first 500 noisy data were
used for model identification while the remaining 50 data were used to test the
model prediction capabilities.

The new model identification algorithm is applied and the model results are
given in Table(1). Fig.(1) shows the estimates of the prediction error using the
parametric bootstrap method in (9) and (10). It can be seen that when the

10



model size is equal to 4, the prediction error for the identified model reaches
the minimum value. Consequently, four model terms are selected in the final

model. The one-step-ahead predicte

d output and error are plotted in Fig.(2).

The many step ahead predicted output is plotted against the unseen test data
in Fig.(3), from which it can be seen the identified model has a very good
prediction capability for the future data set.

Table 1: Terms and parameters of the identified model for the simulated time

series in Example 1

Model terms Estimated param- | Estimated param- | ERR | PE
eters without reg- | eters with [; regu-
ularization larization
y(t—3) -0.0036 -0.0055 0.6392 | 132.25
y(t—2) -1.095 -1.0917 0.0854 | 101.46
ylt—1) 0.6554 0.65366 0.0915 | 68.556
y (et =1yt —2) | 0.33507 0.33375 0.0621 | 44.544
120¢ T T T T T
™MOr o
100+ \ J
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S0+ \ 4
\
80} \ 1
\
70 ® I
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Figure 1: The estimates of the model prediction errors for different model sizes
of the simulated time series.
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Figure 2: One-step-ahead prediction of the simulated time series in Example 1.
Figure (a) indicates the system measurements, Figure (b) indicate the one-step-
ahead predicted outputs for the final model with [y regularization and Figure

(c) indicates the one-step-ahead prediction error.

4.2 Example2: Ozone Concentration Time Series

The ozone concentration has been widely studied because of the close link to the
environment and the effects on human beings. In this example, the monthly time
series of the mean concentration of the ozone layer in Dobson units at Arosa,
Switzerland, from 1930 to 1971 [24] (the ozone data can be found in the following
website http://www-personal.buseco.monash.edu.au/ hyndman/TSDL/) were
identified using the new proposed modelling algorithm. A few sampling points
that are missing in the original data were amended using a linear interpolation
method. The maximum time lag of the candidate model terms was set to be
Actually, it can be easily found from the
sampling curve that the monthly ozone time series have a rough period of 12.
The ozone concentration time series were divided into two groups where
the first 455 samples were used for model identification and the remaining 31
samples were used to test the many step ahead prediction capability of the
identified model. The model identification results are given in Table(2), where
10 model terms are selected using the bootstrap covariance criterion. Fig.(4)
shoyws the estimates of the prediction error associated with different model sizes.

12 and the nonlinear degree to 2.

12



Figure 3: Many step ahead predicted output of the simulated time series in
Example 1. Solid line with squares indicates the system measurements , the
lines with stars and with circles indicate the model predicted outputs for the
final model with [; and without [; regularization respectively.

From Table(2), it can be seen that the differences of the term parameters after
Iy regularization is trivial in this example. Fig.(5) shows the one-step-ahead
predicted output and the training error for the ozone concentration time series.
The model predicted outputs of the identified models in Table(2) are plotted
against the test data in Fig.(6). It can be seen that the identified model has a
fairly good prediction capability for the ozone concentration time series.

5 Conclusions

The problem of identifying sparse models for nonlinear dynamical systems has
been studied. The sparseness of the final model is ensured in two ways using
the new proposed identification algorithm. The optimal model size is initially
determined by the bootstrap covariance criterion with the smallest estimates of
prediction error, which is more computationally efficient than cross validation.
Complexities of the final models can also be reduced in some situations by the
!y norm regularization method using the parameters shrinkage approach.

13



Table 2: Terms and parameters of the identified model for the ozone concentra-

tion time series in Example 2

Model terms Estimated param- | Estimated param- | ERR PE
eters without reg- | eters with [, regu-
ularization larization
y(t —12) 0.7487 0.7838 0.99505 | 2.5471e5
y(t—1) 1.2837 1.181 0.00115 | 1.9532e5
_y(t —10)y(t — 11) | 0.0006 0.0006 0.00094 | 1.4604e5
y(t—2) -0.7613 -0.7269 0.00015 | 1.3794e5
y(t —4)y(t —12) 0.0021 0.0020 0.00008 | 1.3396e5
y(t —2)y(t—9) | 0.0030 0.0029 0.00005 | 1.3215¢5
vt —12) -0.0009 -0.0010 0.00017 | 1.2851e5
ylt =4yt —9) -0.0025 -0.0024 0.00007 | 1.2089e5
y(t =5yt —9) -0.0005 -0.0005 0.00004 | 1.1539e5
y(t —L)y(t —12) | -0.0026 -0.0023 0.0002 | 1.1301e5
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