The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Modelling and Characterisation of a Mobile Robot's Operation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/75754/

Monograph:

Iglesias, R., Nehmzow, U., Kyriacou, T et al. (1 more author) (2005) Modelling and
Characterisation of a Mobile Robot's Operation. Research Report. ACSE Research Report
905 . Department of Control Engineering, University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Modelling and Characterisation of a Mobile Robot’s Operation

R Iglesias®, U Nehmzow”, T Kyriacou®, S A Billings

#Dept Computer Science, University of Essex

Department of Automatic Control and Systems Engineering
The University of Sheffield, Sheffield, S1 3JD, UK

Research Report No. 905

September 2005



Modelling and characterisation of a
mobile robot’s operation

Roberto Iglesias?, Ulrich Nehmzow?, Theocharis Kyriacou® and Steve Billings?

'Electronics and Computer Science, University of Santiago de Compostela, Spain.
Dept. of Computer Science, University of Essex, UK.
*Dept. of Automatic Control and Systems Engineering, University of Sheffield, UK.

Abstract. The investigation of robot-environment interaction is the
main aim of the RobotMODIC project at the Universities of Essex and
Sheffield. The methods developed under this project model and char-
acterise all aspects relevant to the robot’s operation: modelling of sen-
sor perception (“environment identification” or simulation), sensor mod-
elling, and task modelling.

In this paper we describe a new procedure to obtain the control code
for a mobile robot: Initially, a robet is controlled by a human operator
who manually guides the robot through a desired sensor-motor task.
The robot’s motion is then “identified” using the NARMAX system
identification technique. The resulting transparent model is then used
to control the movement of the robot. Using a transparent model for
robot control has the advantage that the robot’s motion can be analysed
and characterised quantitatively, resulting in a better understanding of
robot-environment interaction.

i Introduction

There are two independent objectives of robotics research: on the one hand, to
create control programs that are capable of making the rebot carry out useful
tasks in the real world { “robot engineering”) and, on the other hand, to obtain a
theoretical understanding of the design issues involved in making those programs
{“robot science”).

Currently there is a strong tendency to work in the field of mobile robotics
from an engineering point of view. Nevertheless, the development of a control
program written with a specific task in mind almost never produces the desired
behaviour straight away. Instead, iterative refinement is used: a good frst guess
at a feasible control strategy is implemented, then tested in the target envi-
ronment. The drawback of this approach is that even if a solution is achieved
through this process. it represents an “existence proof”: it is proven that a partic-
ular rebot can achieve a particular task under a particular set of environmental
conditions. but this existence proof doesn’t imply that the robot can behave in
ar way anvwhere else.
the behaviour of a robot is influenced by three components:

a simil

Fundamentally

1} the rohot’s hardware, i1) the program it is execufing. and i) the environment



the robot is operating in. This results in a highly complex system whose fun-
damental properties are only partially understood. Our aim is to quantify and
model this robot-environment interaction. This would allow the investigation of,
for instance, i} the effects of modifications of the robot, ii) the effect of modi-
fications of the environment on the overall behaviour of the robot, and iii) the
influence of the robot control program on rebot behaviour.

The development of a theory for robot-environment interaction is one of the
main issues addressed by the RobotMODIC project conducted at the universities
of Essex and Sheffield (see also section 2). The work described in this article,
part of the RobotMODIC process, is mostly concerned with a novel procedure
to program robots through behaviour identification (section 3}, rather than an
empirical trial-an-error process of iterative refinement. The application of this
novel procedure to solve a particular task in mobile rohotics is described in
section 4. As we'll see in section 5, transparent modelling of a robot’s behaviour
allows the analysis of important factors involved in robot environment interaction
and also the formulation of new and testable hypotheses which lead to new
approaches in experimentation and design of robot controllers.

2 The RobotMODIC project

The RobotMODIC project at the universities of Essex and Sheffield investi-
gates the underlying phenomena governing robot-environment interaction. The
project aims to “identify” — in the sense of mathematical modelling - both a
mobile robot’s motor responses to perceptual stimuli (task identification), and
the perceptual properties of the robot’s environment (environment identifica-
tion). Models are represented as either linear or non linear polynomials, and
are obtained using ARMAX (Auto-Regressive Moving Average model with eX-
ogenous inputs), and NARMAX (Non-linear Auto-Regressive Moving Average
model with eXogenous inputs) system 1dentification [1].

The techniques developed under this project represent a step towards a sci-
ence of mobile robotics, because they reveal fundamental properties of the sensor-
motor couplings underlying the robot’s behaviour. In fact, the transparent and
analysable modelling methods (ARMAX and NARMAX), have been already
applied to model and characterise a robot controller [2], to achieve platform
independent programming [3,4], to analyse the relationship between a mobile
robot’s perception, motion and position (1.e. addressing the problem of sensor-
based selt-localisation) [3], and to “translate” one sensor modality into another.
Furthermore, the RobotMODIC procedure has also been applied to model the
sensor perceptions {publication in preparation), in such a way that senerie sim-
ulation programs could be replaced by specific models of rokot-environment
interaction. derived from real-world data obtained in robotics experiments
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Fig. 1. RADIX, THE MAGELLAN PRO ROBOT USED IN OUR EXPERIMENTS. B) EXPERI-
MENTAL SCENARIO FOR THE DOOR TRAVERSAL BEHAVIOUR, THE INITIAL POSITIONS OF
THE ROBOT WERE WITHIN THE SHADED AREA.

3 Task Identification and Robot Training

3.1 Motivation

Qur recent efforts have been oriented towards the development of a novel pro-
cedure to program a robot controller, based on system identification techniques.
Instead of refining an initial approximation of the desired control code through
a process of trial and error, we identify the motion of a manually, “perfectly”
driven robot, and subsequently use the result of the identification process to
achieve autoncmous robot operation.

The process works in two stages: first the robot is driven under manual con-
trol (robot training), demonstrating the behaviour we want to achieve. While the
robot is being moved we log enough information to model the relationship be-
tween the robot’s sensor perceptions and motor responses. After this first stage,
a Non-linear Auto-Regressive Moving Average model with eXogenous inputs
(NARMAX) is estimated (see next section). This model relates robot sensor val-
ues to actuator signals, and it can be analysed and subsequently used to control
the movement of the robot.

There are alternatives to the approach we used here. For instance, artificial
neural networks or genetic programming could be applied to model the robot’s
behaviour, but have the disadvantage that the models produced are opaque.
Through our proposal the behaviour of the robot is modelled throush a poly-
nomial representation that can be analysed to understand the main aspects
involved in robot behaviour. Furthermore, a polynomial model is easily and ac-
curately transferable to any robot platform with a similar sensor confizuration.
As this polynomial can be used to control the rohot’'s movement directly, the
program code is very compact {which is useful for applications where memory

and processing speed matier).



The robot we use for our experiments is a Magellan Pro mobile robot (fig-
ure 1), equipped with front-facing laser, sonar, infrared, tactile and vision sen-
sors. In the experiments reported here we only used the laser, which covers the
semi-circle in front of the robot, and the sixteen omni-directional sonar sensors
of the robot.

3.2 NARMAX Modelling

The NARMAX modelling approach is a parameter estimation methodology for
identifyine both the important model terms and the parameters of unknown
non-linear dynamic systems. For multiple input, single output noiseless systems
this model tales the form:
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were y(n) and u(n) are the sampled output and input signals at time n
respectively, Ny and N, are the regression orders of the output and input re-
spectively and d is the input dimension. f() is a non-linear function and it is
typically taken to be a polynomial or wavelet multi-resolution expansion of the
arguments. The degree | of the polynomial is the highest sum of powers in any
of its terms.

The NARMAX methodology breaks the modelling problem into the following
steps: 1)Structure detection, i1) parameter estimation, ili) model validation, iv)
prediction, and v} analysis. A detailed procedure of how these steps are done is
presented in [1,6,7].

Any data set that we intend to model is first split in two sets (usually of
ecual size). The first, referred to as the estimation data set, is used to calculate
the model parameters. The remaining data set, referred to as the validation set,
is used to test and evaluate the model.

The number of terms of the NARMAX meodel polynomial can be very large
depending on the number of inputs and the values of N,,. N, .and [ Nevertheless
not all the terms are significant contributers to the computation of the output,
in fact often most terms can be safely removed from the model equation without
Liis invroducing any significant errors. [n order te do this, the so-called Errar
Peduction Ratio (ERR) [1] is computed for each term. The ERR of a term
in the model is the percentage reduction in the total mean-squared errar (1.,



the difference between model predicted and true system output) as a result of
including (in the model equation) the term under consideration. The bigzer the
ERR is, the more significant the term. Model terms with ERR under a certain
threshold are removed from the model polynomial.

4 Robot “Programming” Through Task Identification:
Door Traversal

The example presented in this section demonstrates how robot programming
through system identification works in practice. The task we want to solve with
the robot is “door traversal”, under the experimental conditions shown in fizure
1. The trajectories of the robot affer crossing 39 times the same door under
manual control can be seen in figure 2 (a). The translational velocity was kept
constant at 0.07 m/s, so that the human operator only controlled the rotational
velocity at every instant. As we can see this is an episodic task, where each
episode comprises the movement of the robot from the starting position to the
final position once the door has been crossed.

Fig. 2. &) RoOBOT TRAJECTORIES UNDER MANUAL CONTROL (39 RUNS, TRAINING
DATA). B) TRAJECTORIES TAKEN UNDER MODEL CONTROL {41 RUNS, TEST DATA). THE
WHITE LINES ON THE FLOOR WERE USED TO AID THE HUMAN OPERATOR IN SELECTING
START LOCATIONS, THEY WERE INVISIBLE TO THE ROBOT.

We then identified the door traversal task, using a NARMAX process, and
obtalned the model given in table 1. In order to avoid making assumptions about
the relevance of specific sensor signals, all ultrasound and laser measurements
were taken into account. The values delivered by the laser scanner were averaged
in twelve sectors of 15 degrees each (laser bins), to obtain a twelve dimensional
vector of laser-distances. These laser bins as well as the 18 sanar sensor values,
were inverted before they were used to obtain the model. so that large readings

indicate close-by objects.



§(t) =0.272 4+ 0.189 + (1/d1 (t)) — 0.587 + (1/da(z)) — 0.088 # (1/dy(t)) — 0.463 = (1/ds(z))
+0.196 % (1/ds(¥)) +0.113 % (1/da(t)) — 1.070 % (1/s0(£)) — 0.115 % (1/512(2))

+0.203 = (1/da(2))* — 0.260 = (1/ds(£))” + 0.183 % (1/59(t))” + 0.134 = (1/(d1 (2) * da(£)))
~0.163+ (1/(d1(t) * da(2))) — 0.637 = (1/(di(2) = ds (1)) — 0.340 % (1/(d1(t) = dalt)))
—0.0815 = (1/(dy(t) * ds(t))) — 0.104 % (1/(d1 () * sa(t))) + 0.075 % (1/(d2(2) * s7(£)))
+0.468 * (1/(da(t) x ds(t))) + 0.046 = (1/(da(t) = 55(£))) + 0.261 % (1/{ds(t) = s12))
+1.584 % (1/(da(2) * ds(£))) + 0.076 « (1/(da(2) * 54(8))) + 0.341 « (1/(de(2) * 512(2)))
—0.837 # (1/(ds(t) * de(t))) + 0.360 % (1/(ds(t) # dr(t))) — 0.787 = (1/(ds(t) = do(2)})
+3.145 % (1/(ds(z) = sa(t))} — 0.084 = (1/(da(t) * s13(t))) — 0.012 % (1/(d7 (t) = 515(£)))
+0.108 * (1/(ds(t) * s3(t))) — 0.048 = (1/(da(z) # ss(t))) — 0.075 + (1/(da(2) * s4(£)))
—0.105 = (1/{d1o(t) * di2(£))) — 0.051 = (1/(dio(t) * s12(t))) + 0.074d % (1/(d11(2) * 51(t)))
—0.036 = (1/(d1a(t) = 57 (1))

Table 1. NARMAX MODEL OF THE ANGULAR VELOCITY # FOR THE DOOR TRAVERSAL
BEHAVIOUR. THE SONAR READINGS ARE REPRESENTED AS s),---,815, AND THE 12
LASER BINS ARE di," -+ ,di3.

Figure 2 (b), shows the trajectories of the robot under NARMAX model
control. Door traversal was performed 41 times. The initial positions of the
robot during testing were located in the same area as those used for training
(see figure 1).

Figure 2 reveals some interesting phenomena: In the first door traversal under
human control, the human operator moved the robot towards the centre of the
door when the robot was still far from the opening. As the human operator
gained experience, he was able to execute more efficient motions, nearer the
door. Figure 2 (b) shows how the NARMAX model controlled the robot in a
manner thai was smooth in all trajectories.

To determine the degree of similarity between the trajectories achieved under
kuman control and those observed under automatic control, we analysed the
trajectories through the door, comparing the z positions the robot occupied
when it was at the centre of the opening. There is a statistically significant
difference between these distributions {U-test, p < 0.053): the model-driven robot
traverses the door more centrally than the human-driven robot.

5 Quantitative Task Characterisation

5.1 Sensitivity Analysis Through Modulation with Noise

This section shows several ways of how NARMAX medels can be used to un-
derstand the main factors invelved in the robot’s operation in the environment.

Once a model is obtained, one would. for instance, want to estimate the
influence of individual sensor readings upen the robot’s glohal behaviour [3]. We
have therefore carried out some initial experiments in order to have an idea of
the sensitivity of cur doer traversal model

To check the sensitivity of our model we selected randomly one of the resting
episodes shown in figure 2. To analyse the sensitivity of the steering velocity with



Fig. 3. MaXmuM CHANCE IN THE ANGULAR VELOCITY WHEN BACH SENSOR IS MOD-
ULATED WITH NOISE ALONG ONE OF THE ROBOT'S TRAJECTORIES SHOWN IN FIGURE
2(B). IN A) THE SENSORS MODULATED ARE THE ULTRASOUND ONES, WHILE IN B) WE
MODIFIED THE LASER BINS.

respect to one particular sensor, we use the model to recalculate the angular
velocity the robot should attain along the trajectory at every instant, ¢, when
the chosen sensor’s readings, s(t), take values which go from 0.4s(¢) to 1.6s(#).
[t is important to notice that only one sensor is modulated, all other sensors
remain unaltered. Figure 3 shows one example of such an analysis.

Figures 4 and 5 show how the sensitivity varies along the trajectory of the
robot for those sensors in which, according to figure 3, the model seems to be
more sensitive. In the case of the laser information, figure 3 (b), the sensitivity
seems to be higher for those laser bins which comprise the laser readings in the
interval [457, 105%]. The change in the angular velocity when one of these laser
bins is perturbed is also illustrated in figure 6 (a).

As we can see in all these graphs the perturbation of just one sensor doesn’t
affect the behaviour of the robot, the graphs are mostly flat in all the covered
area, indicating that our NARMAX model of door-traversal is stable and insen-
sitive to ncise. Only when the robot is close to the door a perturbation can alter
the behaviour of the robot significantly. This is reasonable, given that crucial
part of the robot’s operation is motion near the door, when the accuracy of every

sensor matters.

We also applied the Monte Carlo mechanism propesed by [ M. Schol (8] to

estimate the sensitivity of the function given in table 1 with respect to individual
]

el with respect ta the

sensor signals, This confirmed a high sensitivity of the mo
rear sonar sensor 9, and also with respect to the laser bins and sonar sensors

located on the right side of the robot.
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Fig. 4. A) LOCATION OF EACH SONAR SENSOR AND LASER BIN. B) CHANGE IN THE
ANGULAR VELOCITY WHEN THE SONAR 4 IS MODIFIED.

5.2 Sensitivity Analysis Through Partial Derivation

Partial derivatives can also be used for sensitivity analysis. In the case of sonars
4 and 9, for example, we get:

a6 . s 5l o0

S = —O.G'ﬂ)d; 154 “ 40 On’-jdg 131 - '.].)
a6 ) i
5= 1.07T0sg 2 — 0.36659 72 — 3.145d5 a2 (2)
J3Sq

=3

The presence of terms 1.070s~° and 0.366s55 ™ in equation 2, explain why
sonar 9 readines may alter the angular velocity even far away from the door.

To understand these terms, we went back to the training data and checked
the values of this sensor especially far from the door. We then saw that in some
of the trajectories the human operator moved the robot towards the centre of
the door even when it was still far from the opening (figure 2). We therefore
removed the first part of those episodes where this experimental artifact took
place and re-ohtained the NARMAX model. The result was that the sensitivity
on sensor 9 far from the door almost disappeared. This result allows us to make
the hypothesis that it might be better not to consider sensor 9 as part of the
input information in the modelling process.

Regarding sensor 4, we know that the possible change in the angular velocity
due to only this sensor can be locally estimarted as:

B = A%,

(%)

90
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Fig. 5. CHANGE IN ANGULAR VELOCITY WHEN SOMAR 12 IS MODULATED WITH NOISE
{A), AND WHEN SONAR 9 IS MODIFIED (B).

-% | increases very significantly if one of the opposite laser bins, 4 or 9,
(figure 4 (a)), has a reading clearly bigger than the other (figure 6). According
to equation 3) this should cause an important change in the angular velocity.
Only when the two laser bins are similar (the robot is aligned with the centre of

the door), is | %‘% |= 0.

6 Summary and Conclusion

The development of a theory of robot-environment interaction, one of the main
goals of the RobotMODIC project, would allow the formulation of hypothesis
for testing, make predictions, and thus serve as safecuard against unfounded
or weakly supported assumptions. The determination of transparent computer
models of robot-environment interaction, as presented in this paper, is one ele-
ment of such a theory.

In this article, we describe a novel mechanism to program robots through
system identification, rather than an empirical trial-an-error process of iterative
refinement. To achieve sensor-motor tasks, we first operate the robot under hu-
man supervision, making it follow a desired trajectory. Once data is acquired
in this way, we use the NARMAX meodelling approach to obtain a model which
identifies the coupling between sensor perception and motor responses This
model is then used to contrel the robot when it moves autonomously.

As one of the main contributions of this paper, we have shown how a NAR-
MAX model can be used to identify the main factors involved in the robet’s
execution of a particular task. In particular it allows not only the analysis of the

the formulation of new

stability and sensitivity of rebot’s operation, but al
and testable hypotheses which lead to a new stage in the experimentation and

design of a controller.
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Fig. 6. A)CHANGE IN THE ANGULAR VELOCITY WHEN THE LASER BIN 4 18 MODIFIED.
B) REPRESENTATIONS OF THE ABSOLUTE VALUE OF 98/8s, WHEN a4 = 0.33m.
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