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Abstract

A survey of nonlinear system identification algorithms and
related topics is presented by extracting significant results
from the literature and presenting these in an organised and
systematic way. Algorithms based on the functional expansions
of Wiener and Volterra, the identification of block oriented
and bilinear systems, the selection of input signals, structure
detection, parameter estimation and recent results from catastrophe
theory are included, The limitations, relationships and

applicability of the methods are discussed throughout.



1l Introduction

Most control systems encountered in practice are nonlinear
to some extent and although it may be possible to represent systems
.which are perturbed over a restricted operating range by a linear
model, in general, nonlinear processes can only be adequately
characterized by a nonlinear model, Since a mathematical description
of a process is often a prerequisite to analysis and controller
design the study of system identification techniques has become
an established branch of control theory. However, whereas system
identification techniques for linear systems are now well established
and have been widely applied, the identification of nonlinear
systems has not received such attention or exposure, This can
of course be attributed to the inherent complexity of nonlinear
Systems and the difficulty of deriving identification algorithms
that can be applied to a reasonably large class of nonlinear systems.
The objective of the present study is to survey the available
methods of nonlinear system identification by extracting significant
results from the published literature and presenting these in an
organised and systematic fashion. Wherever possible the limitations,
applicability and relationships between the various algorithms are
discussed, Previous surveys on this topic have concentrated on
particular approaches to the problem , Arnold and Narendra2 considered
the orthogonal expansion methods, Aleksandrovskii and Deich3, and
Hung and Stark6 reviewed the kernel identification algorithms,
Simpson and Power4 investigated correlation techniques and Mehra7
considered parameter estimation algorithms. All these approaches
are considered in the present survey together with numerous alternatives

and related topics which have been developed over the last decade or so0.



The survey begins by considering the functional series of
Volterra and Wiener and the identification algorithms developed
by Wiener, Bose and Barrett. The confusion between the two
approaches studied by Wiener is clarified and the relationship
between the methods is examined. The Lee and Schetzen algorithm
and its derivatives, which have found wide application particularly
to biological systems, is described and the limitations of these
methods which have recently been reported in the literature are
discussed.

Identification of the Volterra kernels is considered by
reviewing the algorithms based on correlation analysis, orthogonal
expansions and frequency domain methods. The selection of input
signals including pseudorandom, constant switching pace symmetric
and compound inputs are studied and the use of dither signals in
the identification of systems containing multiple valued non-
linearities is investigated.

Identification algorithms for block oriented systems, which
can be represented by various interconnections of linear dynamic
and static nonlinear elements, and the advantages and limitations
of these methods compared to the functional series expansions are
examined. Structure detection algorithms, identification of
bilinear systems and parameter estimation methods using both linear
and nonlinear in the parameter models are analysed. Throughout
the advantages and disadvantages of the algorithms are examined
and wherever possible applications of the methods are cited.

Survey articles on the related topics of quasi-linearization,
the analysis of nonlinear systems and polynomic systems theory have

. 1 "
been published by Lawrences, Barrett and Crouch9 respectively.



A comprehensive bibliography on Volterra series techniques,
functional expansions and related subjects has been compiled

8
by Barrett .

24 Functional Series Methods

The study of nonlinear functionals

y(t) = Flu(t); t' < t] (1)

3 10 , ; . .
began in 1887 when Volterra investigated Taylor series expansions
and introduced the representation
n

f"fhn(Tl,Tz...Tn>-H u(t_Ti)dTi =
Q 1=1 n

y(t) =
n

lwi(t) (2)
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which has become widely known as the Volterra series. Frechetl1

considered this representation and generalised the Weierstrass
polynomial approximation theorem to show that every continuous
functional F on a set of functions u which are continuous on a
finite interval (a,b) can be repfesented by the functional series

eqn (2). The functions hi(Tl,T ..Ti) are referred to as the

5
Volterra kernels, The kernels are bounded and continuous in each

1., symmetric in their arguments and for causal systems hi(rl,T v Ty) 2210
i

2
for any %50, Convergence of the Volterra series for both deterministic

i s ’ ; ; 12-14
and stochastic inputs has been studied in the literature :

Identification of nonlinear systems based on the Volterra

representation requires the measurement of the kernels hi(Tl,Tz...Ti).



2.1 Wiener method and related algorithms

Wiener16 was one of the first authors to consider the
identification of nonlinear systems and two distinct approaches
were developed. There appears to be some confusion in the
literature regarding these methods which in the present report
will be referred to as Wiener I and Wiener IIZ. In Wiener I,
Wiener applied Cameron and Martinsl5 idea of representing each
functional term by a Fourier-Hermite series, For the Fourier
or memory portion of the expansion Wiener used Laguerre functions
lp(t) which form a complete orthonormal set on Ej,w). Using
these functions the past of the input can be represented by the

coefficients

V(t) = [ ¢ (Dult-t)dr p=0,1... (3)
D 0 p

This is followed by a Hermite expansion in the Laguerre coefficients

to yield the system output

@ =] (=]

y(t) = lim e ) C
) momi...mnHmo(VO(t))Hm (v, ()

nse m =0 m, =0 m =
c n 1

1

oo H (Vn(t)) (4)
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where Hk(-) denotes the partiallg normalised Hermite polynomials

k,-k/2 ¥ d |, -u?
defined by Hk(u) = (-1) 2 oy — le } and the Wiener coefficients
kT du
; ; : 16,17
G o are determined by computing the time average
m L.
g
Cm o m y\t)Hm (Vq(t))...Hm (Vn(t)) (5)
ol n 0 n

for a white Gaussian input u(t). The synthesis of a nonlinear system



using Wieners method can be visualised as a linear system with

multiple outputs representing the expansion of the past of the

input in terms of Laguerre functions, in cascade with a nonlinear

no-memory system representing the Hermite polynomials followed by

a network of amplifiers and adders representing the coefficients

as illustrated in Fig.l. Although Wiener does not mention Volterra's
; ; 16 . . : ;

work anywhere in his book 1t 1s easy to show that Wiener's

characterization is equivalent to an expansion of the Volterra

typezo.

Whilst Wiener's formulation is very elegant theoretically it
is impractical and difficult to apply because of the excessive
number of coefficients required. If n Laguerre coefficients are
used to describe the past of the input and p coefficients to expand
the system functional in Hermite polynomials then pn coefficients

; : 18 . € 5
are required to characterise the system ., Thus identification of
even a simple system containing a second order nonlinearity would

. . ; 10 5 5
require the evaluation of typically 10 coefficients.

As an alternative to the Hermite polynomials in the Wiener I

1 .. .
method Bose . partitioned the function space of the past of the
input into nonoverlapping cells by introducing gate functions
1 4if v is in the k'th subinterval

Qk(V) =
0 otherwise
Analogous to eqn (4), Bose's representation then becomes

m m

y(t) = 1lim Z

n+ k =1 k. =1 k
o I n
Mmoo

(Il =]

Dt e Y (Vo(t)).Qk (vl(t))
o 1 n 0 1

Q (V_ (1)) (6)
n

1



where the coefficients can be identified as

70, 7_(0)-..q, V_(0)

- (8]
k koeok Qko(vo(t))qk

D (7)
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for any ergodic process with suitable bandwidth as input.
Unfortunately the Bose series is not a true orthogonal series
since terms cannot be added to the series and the coefficients
evaluated without changing the previously obtained coefficient
values, An interesting application of Bose's method has been
reported by Pincock and Atherton21
Barrett22 used the multivariable Hermite functionals

Y] OO ] = 1 WP o] = wws W2 uep uey)] =

u(tl)u(tz)—é(tz—tl%etc), derived from the Hermite polynomials given

by Grad, to represent the system eqn (1) by the functional series

y(t) = z %T-f ...f kn(t;Ti,Tz...Tn)
n=0 —oo
jy»((u)[ﬁ;Tl,Tz-..Tn]dTldT2...dTn (8)

where the kernels can be determined by the averages

. _ (n)
kn(t,Ll,...Tn) = y(tf}(‘ [u,Tl,TZ...Tn] (9)
for a white Gaussian input process. Barretts method is essentially
the same as the Wienmer II algorithm outlined below. The method

can be generalised to coloured Gaussian inputs but the resulting
set of simultaneous integral equations is extremely difficult to

solve.



The Wiener II meth0d16’23 will be described by interpreting

Wiener's differential of a Brownian motion function as a sample
function from a white Gaussian process. Wiener used a Gram-Schmidt

orthogonalisation procedurs to construct a new functional series

[ee}

y(r) = Flu(e;e'<t] = ] [C (k_,u(t)] (10)

n=0

where the functionals {Gn} are orthogonal for a Gaussian white
stimulus. The first few terms of the Wiener functional series

are
o

f ki (Du(t-t)dr

—Co

Gy [k su(o)]

(ee]

szkz,u(t)] = [i kz(Tl,Tz)u(t—Tl)u(t-Tz)dTIdTZ—P {mk2(T1’Tl)dTl

Iif RB(TI,TZ,T3)U(t“Tl)U(t—TZ)U(t—TB)dTldT dt

Gylke,u(o)] 295

2
(1)

- 3P {if RB(TI,Tl,Tz)u(t—Tz)dTldT

where P is the power spectral demsity of the white noise input.
The n'th order Wiener functional is not homogeneous and thus for
instance the linear Wiener kernel does not represent the whole linear
part of the system. In general the Wiener kernels are not equal to
the Volterra kernels and relationships between the two expansions
’ 2

have been studied by Yasuil

Identification of a nonlinear system based on Wiener's series
. . . 6,16
involves the measurement of the kernels kn in eqn (11). Wiener

expanded the kernels in a series of Laguerre functions

kn(Tl,Tz...Tn) = Z iAedlon Z Cm o 2m (Tl)...Rm (")
mow m =0 0 n o n n



where
Bt i, i, Im..f k (rsstoase® JE& . C1.)sssk. (F ddr. sadr
ol mn 7 n~1*2""'n m 17 m " m 1°"" " 'n
(13)
To determine the coefficients Cm m ..m & System A is constructed
o1l "n

in such a manner that its output ya(t) for a white Gaussian input
i u(t in which the kernel of the leadi i -
is Gn[Kn’ ( )] eading term is Kn(rl,rz Tn)

= Qm (Tl)...zm (Tn). This system is connected to the unknown system
o n
B with output yb(t) as illustrated in Fig.2. The average value of

the product of the output can be shown to be

74 (0%, (0 = nle" [ ..f ety Endeoty G dauy. te,

(14)
Since the integral in eqn (14) is in the form of eqn (13) the

coefficient C is given by
m ..0
o""'n
c . R OIAC] -
i T ,.n Tar ™ (15)
o n P

This procedure is repeated for all values of mo..m = 0,1,2...
The coefficients in Wiener's functional series eqn (11) are the
coefficients of the Hermite polynomials such that eqn (10) can be

rewritten as

oo

y(r) = § [6 (k ,u(e)] = § H [k, u(t)] (16)

n' n n-n
n=0 n=0

With this interpretation, and using Laguerre functions as base

functions eqn (16) becomes equal to eqn (4) and the equivalence

of both the Wiener methods is established. The excessive computations

associated with the Wiener I method are therefore retained. This

coupled with the fact that even a linear system is characterized in



a very cumbersome way, the difficulty of incorporating a priori
information and the problems of using the complex identified model

17,25,26

for prediction have resulted in very few applications
Wiener's technique.

French and But227 have developed an algorithm based on the
expansion of the Wiener kernels in terms of Walsh functions. The
nonlinear system is described in terms of a set of kernels which
contain the dyadic convolution operation and identification is
performed using the fast Walsh-Fourier transform,

The functional series representation and Wiener's ideas have

been studied by several authors notably, Barrettl, Boselg,

Brilliantzs, Flakezg, George3o, HarrisBl, SingletonBz, Yasui24’33
and Zadeh34. Numerous other contributions are contained in the
bibliography compiled by Barrettg. Other integral operators
including the Hammerstein and Uryson operator32 are discussed in
section 4.

An alternative method of measuring the Wiener kernels kn of
a nonlinear system was developed by Lee and SchetzenBS’70 using
correlation techniques and a white Gaussian input process. The

procedure consists of computing multidimensional correlation functions

between the white Gaussian input and the system output to yield

n-1
k (150001 ) = 5%5 {y(t) - mzo Gm[km,u(t)J}u(t—Tl)...u(t—Tn)

17Ty Ty (17N

The second term on the rhs of egn (17) only has a value on the
diagonal and is included to remove impulse functions which would

otherwise appear when Ty T Ty ST The algorithm is illustrated
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schematically in Fig.3.  Although the method removes many of the
difficulties associated with the Wienmer formulation the amount of
computation required can still be excessive. For a single input
system the n'th order kernel must be estimated at ((n+m-1)!)/(n!(m~1)!)

u/At, u is the system memory and At the sampling

pointswhere m
; 36 s i i ; :
interval . Computing time thersfore increases almost exponentially
with the order of the kernel to be evaluated.
The estimation errvor associated with egqn (17) will be more

severe at the diagonal points because of the presence of low order
integral terms and it has been suggested that more accurate kermel
estimates at these points can be obtained by interpolation between
the nondiagonal points rather than direct estimation. The method

. . .. 46 \ , . 36-4
has been widely applied notably to bielogical 4 and structura144’45
systems. Most of the practical applications have however been

o - . 46-48
restricted to quadratic systems and 1t has recently been suggested
that the excessive errors associated with the diagonal kermel
estimates in the continuous time formulation introduce fundamental
difficulties in the identification of third and higher order kernels.
These problems can however be alleviated by using appropriate

2 " 4 49
discrete stochastic inputs. Chol and Warren = have recently
derived a discrete formulation of the Lee and Schetzen algorithm
for discrete input processes in both the time and frequency domain.
. 46-48 5 ; :

Palm and Poggio provide a rigorcus analysis of the Lee and
Schetzen algorithm and have shown that Wiener's original formulation
based on Brownian motion inputs includes a larger class of systems
than the Lee and Schetzen method but the difficulty can easily be
avoided. A comprehensive study of the Lee and Schetzen method
including a full analysis of estimation errors has been given by

-

g s 3
Marmarelis and Marmarelis .
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Krauseso developed an identification method based on the Lee
and Schetzen procedure but using a random impulse train (poisson

process) as input rather than a white Gaussian stimulus. The

method is especially applicable to neuronal synaptic systems but

would be very difficult to apply to an industrial process.

2.2 Volterra series methods

Solution of the identification problem based on the Volterra
series involves measurement of the Volterra kernelsz. To
illustrate the approach consider the identification of a system
which can be described by just the first two Volterra kernels

® ®
y(e) = é hl(Tl)U(t“Tl)dTl + gf hz(Tl,rz)u(t-rl)u(t-Tz)dTlde
(18)

Defining the mean squared error as E{(z(t)—y(t))z} where z(t) is the

measured output and applyingCalculus of Variations yields

2(t) = [hy (ruler)) + [ by (rp st ule=r Jule=t,)dr,dr,
0 0

(19)

z(t)u(t-g) = é hl(Tl)U(t“Tl)u(t'U)dTl

+ éf hz(Tl’T2)u(t"T1)u(t—T2)u(t—G)dTldTZ (20)

z(0u(t-o Jult-o,) = | hy (rpule-1 )ult-0 Ju(t=0,)dr,
0

+ ] hz(TI,TZ)U(t_Tl)u(t“Tz)u(t—ol)u(t“gz)dTlde
0

(21)
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The solution of this set of equations for a genmeral stochastic
input is extremely difficult. Katzenelson and Gould51 describe
an iterative procedure of optimisation and successive substitution.

o D2 . . 53 54

Hsieh™ proposed a gradient technique and Alper and Eykhoff
considered the discrete-time version. If the system input can be
selected to be white Gaussian then the system of integral eqns
reduces to

z(t) = f h, (t,T)dT

0 2

z(t)u(t—cl) = hl(al) (22)

z(Dult-o)ult-o,) = Ea<ol—gz)+2h2(ol,gz)

and the solution is direct providing the mean level z is removed.
For systems which involve higher than second order kermels even this
specialised case offers considerable difficulties. Identification
of the kernels using multidimensional step responses has been
examined by Schetzen61

Another common approach is to approximate the kernels by an
expansion of orthogonal functions

N N

h (t;,...t) =} ¥ ...
a4 T h=0 m=0 i

Il ~12

5 anm..k¢n(Tl) v ¢k(Tn) (23)

Methods of solution for the coefficients a . include gradient

-

type algorithmssj = and pattern recognition techniques

Korenberg62 has considered the identification of differential
systems having a Volterra series expansion using a slowly exponentially
decaying sum of sinusoids as input. The terms of the differential
expansion are determined orthogonally using linear regression and
simple averaging procedures. A method of directly identifying the

p ¥ -at .
Volterra kernels using an input u(t) = e r(t) where r(t) is a
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bounded zero mean independent process was also developed by
KorenbergeB. The identification is orthogonal and the kernels
are obtained by an averaging procedure. Fakhouri64 has
developed an algorithm for the identification of the discrete
Volterra kernels in terms of multidimensional z-transforms using
high order correlation functions and coloured Gaussian inputs.

An excellent review of the theory and applications of the
kernel identification methods has been compiled by Hung and
Starké. Interpretation of the identified kernmels has been
analysed by Hung, Stark and Eykhoff65.

Volterra series have been widely applied in the analysis of
communication systems and several authors, Bedrosian and Rice66,
Brilliantzg, Barrettl, ﬁussgang, Ehrman and Graham67, Narayanan6
and Zames69 have contributed to this area. The use of
functionals in nonlinear analysis has also been studied

extensive1y1’7l-75.

2.3 Frequency Domain Techniques

The kernels in the Volterra series eqn (2) can be expressed
. gl i 0 : .
in terms of multidimensional Laplace3 or Fourier transfer functions.
Brillinger76 showed that an asymptotically unbiased estimate of the

isolated n'th degree frequency domain transfer function is given by

U...U l’°"_kn)
Sn(,\ crsak § o= oo Bl 5 (24)
il b b B )

uu 1 uu  n

where fuu(l) is the power spectral density of the input and

£ (=

.y..—A_) is the cumulant spectrum of order n+l.
u...uy 1 n
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Feueruerger and Huber et 3178 have also contributed to the theory
and computation of higher order spectra. French and Butz
developed a frequency domain method of measuring the Wiener
kernels, by substituting complex exponential filters in place of
the Laguerre functions and, using an FFT algorithm. The method
is analogous to the Lee and Schetzen algorithm in the time domain
but results in a considerable reduction in the computational
requirement. A schematic diagram of the estimation procedure
for the second degree kernel is illustrated in Fig.4.  Recently
Barker and DavyBO have shown that estimates of the first two
Volterra kernels can be computed using Fourier transform techniques

with a pseudo-random ternary input.

2.4 TInput Signals

In the search for methods of simplifying the measurement
techniques and reducing the number of data points and computations
required to identify either the Volterra or Wiener kernels numerous
authors have investigated quasi-white and pseudo-random inputs as
alternatives to white noise. Almost without exception all the
authors consider the identification of just the first two kernels
and only this case will be studied here. The technique used is
based on computing the first and second degree correlation furdctions
to yield expressions analogous to eqn's (20) and (21). If the
input is antisymmetric the odd order averages tend to zero and

eqn's (20) and (21) reduce to

¢uz(o) - é hl(Tl)u(t—Tl)u(t-U}dTl (25)

¢ 0z 91702 = éf hZ(Tl,Tz)u(t—Tl)u(t~T2)u(t—Ul)u(t—62)

dTldT2 (26)
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Estimates of the kernels hl(c), hz(al,oz) can be obtained directly
for a Gaussian white simulus u(t) since eqn's (25) and (26)
reduce to the form of egn (22) for this input.

Hooper and Gyftopoulos81 first described the practical
measurement of a second order Volterra kernel by cross-correlation
using a ternary m-sequence. Although the identification time
using these inputs was reduced by a factor of 70, compared with
a Gaussian white input, anomalies appeared in the fourth order
autocorrelation functions, eqn (26), which Hooper and Gyftopoulos
could not explain, Similar anomalies were also observed by
Simpson82 in the fourth order autocorrelation function of pseudo-
random inverse repeat sequences, Ream83 investigated these
anomalies, and Barker and Pradisthayon84 showed that the non-zero
values in the higher than second order autocorrelation functions
of m-sequences are due to deterministic characteristics of these
Sequénces. Barker, Obidegwu and Pradisthayon25 noted that some
pseudorandom signals are more suitable than others for the
measurement of the second order Volterra kernel and proposed a
criterion for inmput selectionm. The selection of suitable input
sequences was later studied by Kadri and Lamb86, and Barker et a187’88.
The problem of anomalies can however by completely avoided even for
prbs inputs if the compound input method89 is used. Consider
the identification of a system which can be described by just the
first two terms of the Volterra series eqn (2). For a compound
pseudorandom input u(t) = xl(t)+x2(t) where ¢X-X’(A) = §(A),

ol (A) = 0¥\ unbiased estimates of the syst;mlkernels can be

*1%2
determined by computing



_,]_6_

‘t)XlXZY(O’lyUZ) = h2(01 302) (27)

¢x12(0) = hl(G) (28)
where z(t) = y(t}—%z(t) and éz(t) the output of the second order
kernel is computed from the estimate of eqn (27). The technique
can be applied to estimate the kernels in a general n'th order
Volterra expansion89 but this involves the use of multilevel compound
inputs for n>2. Most authors avoid this problem by treating only
finite second order Volterra systems. However, if the system
kernels are factorablego all the kernels can be identified
sequentially from a single level compound inputgl. For example
if the input to the factorable Volterra system illustrated in Fig.5
is the compound signal u(t) = _E Xj(t) where Qi =0, ¢X_X.(A) = SiS(R)

=i 11
and the xi’s are independent then

k
¢ 4 (o,,0...0) = (y(t)-y (), (t-0,) T x. (t-g)
Xl"'xky' 1 1 i j=p L
= ¢ , (o ¢ )
Xl ..ka I 1
k k k
= (k-DI(18) ) {h, (c.) Th, (o)}
n=1 M 521 1,k 1 5 1,5k
J#FL
(29)
Hence the second degree correlation function ¢ (0 565« )
XX ¥ 1

between the input and output reduces to yield an estimate of the
highest order kernel dynamics. This result holds exactly even
fer a compound prbs input. Estimates of the linear subsystems

hj i(t) can be readily computed using a Marquardt algorithm91
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The linear systems associated with the remaining kermels can be
identified by continuing this procedure.

Recently Marmare1i537’92 has introduced CRNS (constant
switching pace symmetric random signals) as an alternative to
band limited Gaussian white noise and has applied these inputs
to the identification of various biological systems. Although
the autocorrelation functions of these signals exhibit fluctuations
over the whole argument space, Marmarelis has shown that CRNS
result in & more acceptable fourth order autocorrelation function
compared to pseudorandom inputs” .

The generality of the functional series methods and the wide
class of systems which can be characterised by the expansions are
distinct advantages of this approach and several author56’17’25’26’36_45
have applied these methods to hydrological, physiological, structural
and electrical systems. Most of these authors have however
considered the identification of just the first two kernels and
this indicates the major disadvantage of the functional series
approach. For example to obtain a reasonable approximation to
the first order kermel requires the estimation of approximately
40 points. The second order kermel will require the estimation
of (40x40)/2 points, taking account of symmetry, the third order
kernel (40x40x40)/3 etc. Considering that the number Qf input/
output pairs recorded from the process must be well in excess of
the points to be estimated if any reasonable amount of smoothing is
to be obtained then it is easy to see the impracticalities of this
approach irrespective of which algorithm is implemented. Additional
problems include the difficulty of applying the Lee and Schetzen35

method to estimate third order kernels as discussed above, and



the necessity of using multilevel inputs to isolate the non-
orthogonal Volterra kernels when systems containing higher than
second order kernels are considered. Identification of

factorable Volterra systemsgl using compound inputs alleviates

this latter problem but only if independent inputs which are
difficult to generate94 are used. The difficulty of incorporating
a priori information, of interpreting the kermels estimated and
relating the results to the physical system are further dis-

advantages of the functional series methods.

3. Multiple-valued Nonlinearities

The difficult problem of identifying systems which contain
double-valued nonlinearities such as hysteresis have been studied
by only a few authors. It is easy to see that the Volterra
series eqn (2) cannot represent systems in this class since the
characteristic subharmonics associated with memory type nonlinearities
are not generated by the Volterra expansion. Identification of
simple systems in this class has been achieved by superimposing
a dither or high frequency signal on the desired input to quench

95’96. If dither

undesirable jump phenomena and induce continuity
can be injected into the system to change the effective characteristic
of the memory—type nonlinearity tco a single valued function the
identification techniques described above can be épplied under
certain conditions. Alternatively special inputs must be devised
to traverse around the characteristic in some pre-determined

5

9 - . . ; ;
manner ' . Conditions under which dither extinguishes or quenches

jump phenomena have been rigorously studied by Zames and Schneydor
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4, Block Oriented Systems

In an attempt to reduce the computational burden associated
with the functional series methods various authors have considered
the identification of block oriented systems which can be
represented by interconnections of linear dynamic systems
and static nonlinear elements. The basic philosophy underlying
this approach has been to avoid a black box description by
identifying these systems in terms of the individual elements
in a manner which preserves the system structure and provides
valuable information for control, Probably the most studied
system within this class is the cascade system composed of a
linear system followed by a nonlinear element in cascade with
another linear system known as the general model illustrated in
Fig.6. In all the systems considered it is assumed that all the
internal signals, such as x(t) and q(t) in Fig.6 are not accessible

5 99 100
for measurement. Gardiner and Economakos have suggested
methods of identifying the linear kernel associated with this
system by injecting multilevel inputs and isolating the kermel
outputs. Identification of the higher order kernels was considered
101 _— :
by Webb using multilevel single frequency tests and by Sandor

-J— 102 . ;
and Williamson using temsor techniques. Unfortunately these
methods will often result in an excessive experimentation time
which may be prohibitive in an industrial environment.

104 : "

Korenberg expanded the output yz(t) in a Volterra series

and showed that
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$ (o) = C, [ h(a)h, (o-0)da (30)
u2y2 T o 2 1
¢ (6.,0.) =C. [ b (adh (o.-a)h, (o,~a)da
u2u2y2 1°72 2 0 2 171 1¥°2
+ y(t) (01-02) (31)
for a white Gaussian input uz(t). By taking Fourier transforms

of eqgn (30) and (31) Korenberg solved for the gain and phase
characteristics of hl(t) and hz(t) and used these estimates to

graph the nonlinearity. If the nonlinearity is even ¢ v (o) =0,
272

and if it is odd ¢ ~(0,,0,) = 0 and in these cases the
Uy UsYy 1772
higher order correlations uz(t—d)uz(t—l)yz(t) and

uz(t*ol)uz(tﬂgz)u(tﬂl)y9(t) respectively, must be computed.
104 i y ¢ g . i
Korenberg also considered the identification of higher order
cascades using multidimensional correlation functions and an
. ; ; 105 . :
exponentially decaying random input. De Boer investigated
the result of egn (30) and developed an algorithm using a regression
; 106 ; y .
function method based on a Hermite polynomial expansion and
. ; . 107 ;
correlation analysis. Goldberg and Durling used a comnjugate
gradient search to identify the elements in a cascade connection
of a linear subsystem sandwiched between two nonlinear elements.
Other authors have considered subclasses of the general model

108,109

referred to as the Wiener model obtained by setting

" 1 .
hz(t) = §(t) in Fig.6jand the Hammerstein model 10 obtained by

setting h.(t) = §(t) in Fig.6. The Hammerstein model represents

1

a realization of the Hammerstein operator

Hh [u(t)] = fh(t,T)F[T,u(r)]dT (32)
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b i 110
and was originally proposed by MNarendra and Gallman g The
input/output relationship for this model is particularly simple

~1
y) = 222 rluqo] (33)

Alz )

and numerous authors have developed identification algorithms by
i 5 : ; i 116=115

extending linear estimation techniques ;

The Uryson model is a realisation of the Uryson integral

operator

U [ue)] =fk[e,r,u(t)]dr (34)

. 116 . .

and was introduced by Gallman who used Hermite polynomials Hi(')
to represent the nonlinearity and reduced the identification
procedure to a multi-input single output problem as illustrated
in Fig.7. The Uryson model consists of several Hammerstein
models in parallel.

Many authors have developed specialised identification

. s . 117
algorithms for other systems within this class; Brown and

; 118 ; _
Simpson and Power considered feedforward systems, Lawrence
120 : 12
and Ecconomakos analysed feedback systems, Godfrey and Briggs
studied processes with direction dependent responses, and Baumgartner
. 122 ; 123 ;

and Rugh , Wysocki and Rugh developed algorithms for the Sm
model.

Recently the separable class of random processes which were

194 . ‘
introduced by Nuttalllz' and studied by Balasubramanian and
25 126

1 127 128
Atherton s, West , Douce and Yuen were used to formulate

a unified identification procedure for most of the system structures
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mentioned abovelzg. To illustrate the procedure consider the
general model in Fig.6. Billings and Fakhouri130’13l have
extended the results of separable processes to show that if ul(t)
is separable with respect to uz(t) (the Gaussian processes, and

sine wave process are separable) and separability is preserved

under linear and double nonlinear transformation then

by y (0 = cFfohZ(e)h1<rl)¢u o (o=8-1,)dedt, (35)
172 12
¢ , (o) = cFFijjhz(e)bl(Tl)hl(Tz)
“r B
u2(t—S“Tl)U2(C'S—TZ)Ulz(t‘O)dTldT2d8 (36)

For the special case when ul(t) = u{t), UZ(t) = u(t)+b where u(t)
is a zero mean white Gaussian process and b is a non-zero mean

level egn's (35) and (36) reduce to

¢uyb(0) = CFGJhl{Tl}hZ(U“Tl)dTl (37)
2
b '(g) = CFFthz(Tl)hl (o=t )d1; (38)
u vy
2
where CFG and CFF” are constants. Equations (35) to (38)130’131

represent a generalisation of Korenbergle3 results eqn's (30) and
(31). The first order correlation functions of eqn's (37) and
(38) exist for all continuous single wvalued nonlinearities and
estimates of the linear subsystems hl(t) and h?(t) can be obtained
independently of F[-] using a multistage least squares algorithm

. . . 130 :
operating directly on these estimates : Because the system is
identified in terms of the individual elements hl(t), hz(t) and

F[+] even systems containing very violent nonlinearities such as
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saturation and deadzone can be readily identified132. Eqn's (37)
and (38) in fact represent estimates of the first two Volterra
kernels showing that under the theory of separable processes all
the terms in the Volterra expansion collapse to the form of eqn's
(37) and (38). The results can be applied to the identification
o y 108 11
of the Hammerstein , Wiener s feedforward 5, feedback133 and
134 : . :

Sm systems , are unbilased in the presence of necise and can be
implemented for Gaussian non-white inputs using typically 4000

o 135
data pairs §

Identification of multiplicative connections of linear dynamic
systems91 have been discussed in section 4 under the heading of
factorable Volterra systems. Haber and Keviczky136 give a
comprehensive summary of many nonlinear model structures.

. . ; ; e 137,138

Applications of the algorithms described above are difficult
to find although most of the authors have considered the
identification of simulated systems. t is interesting to
note however that many of the applications of the functional
series methods have involved the identification of systems which

are block oriented, and which can be represented by simple cascade

connections of linear and nonlinear blocks.

5. Structure Detection

If the algorithms for restricted classes of nonlinear systems
outlined above are to be implemented it is often necessary to
determine the structural form, or type of model representation
which best approximates to the process prior to the identification.
Information regarding the structure of simple cascade systems is

inherent in the identification results based on separable
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129,131

processes eqns (37) and (38). If the system under

investigation is linear then ¢uyé(g) is given by eqn (37) and

b (5) = 0V g. Thus the first degree correlation function
u"yh

yields an estimate of hl(t)*hz(t) and the second degree correlation
function provides a convenient test of linearity. If the first
and second degree correlation functions, eqn (37) and (38) are
equal except for a constant of proportionality the system must

have the structure of the Hammerstein model (hi(t) = 6(t)).

However, if the second degree correlation function is the square
of the first degree correlation function, except for a constant

of proportionality, the system has the structure of a Wiener

model (hz(t) = §(t)). The structure of higher order cascade
systems can be detected using an algorithm by Douce139 illustrated
in Fig.8 for the general model. Douce has shown that if a

linear model é(t) is fitted between u(t) and y(t), Fig.8, the
input u(t) and residual e(t) are uncorrelated126 when the input

is a separable process even though e(t) contains components due

to noise and the distortion in F[{]. The nonlinear distortion
can however be detected by correlating the residual e(t) with a
test signal zl(t) obtained by passing the Gaussian input u(t)
through selected Hermitian polynomials Hi(-). If the correlation
®21e(g) is significant then the coefficients associated with the

Hermitian representation of the nonlinear characteristic can be

measured and the position of the nonlinearity or structure of the

system can be detected by a simple ordering process.
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A measure of the degree of nonlinearity was introduced by

140,141

Rajbman using dispersion functions. The cross~—dispersion

function which is defined in terms of the conditional mean
- _ 2
0,u(troty) = E[{ely(eplute)] - E[y(ep])] (39)

was introduced to measure the nonlinear relationship between signals
which cannot be detected using linear correlation methods.,
Unfortunately dispersion functions are difficult to compute and

similar information can be obtained by evaluating ¢ ” (0)131 as

. . : vy 139
defined in eqn's (36) and (38) or using Douce's algorithm ~,
both of which are much simpler measures of nonlinear effects.

Saridis and Hofstadter142’143

have investigated the
classification of nonlinear stochastic systems using pattern
recognition techniques based on auto and cross covariance functions.
Experimental results indicate that classification of unknown

nonlinear systems with respect to basic structural properties

can be accomplished.

6. Bilinear Systems

Bilinear systems

(8]
X

A§7+ Bxu + Cu
(40)

v dx

have received a great deal of attention recently and algorithms for
the identification of both stochastic and deterministic bilinear
/,
systems have been proposed. Balakrishnanl44 and Bruni,Di Pillo
145 . . . ’ ; ’ :

and Koch derived algorithms using maximum likelihood techniques.

; L " ; G g . : '
Baheti and Mohler e applied correlation analysis in conjunction with

least squares, Baghelli and Guidorzil47 used a simple least squares
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estimator based on an input/output expansion and Karanam,
1 5 . 2
¥rick and Mohler'48 developed an algorithm using Walsh functions.
; 149 . ; . i ;
Baheti, Mohler and Spang % considered the identification of

the first two kernels in the Volterra series expansion of a bilinear

system
y(k) = At Z mlfi)u{k—i) 4 z z wz(i,j)u(k-i)u(k—j)
i= i=1 1=
= il (41)
+ higher order terms
1 iAt At1
w @) == de cdt, (42)
(i-1) At
1 iAt jAt At1
w,(i,3) = 5 f d e TB(i-1)At(j-1)At
N (At) (i-1)At {(j-1)aAt
(43)
AlCt,~t.)
- S
e Eg(tz tl)dtzdtl

where g(=) is the unit step function. Estimates of the first two
kernels were obtained using correlation analysis and a pseudo-

random ternary input

0, () = 5%{ b () (44)
* 9 ..

i = o (i,9) (45)
2 4(ar)y? yuu

Errors in the estimate of the second order kernel eqn (45) were
attributed to the presence of higher order terms but no mention
was made of the anomalies associated with the higher order auto-

: : . 82-88 ’
correlation functions of the ternary input (section 2.4),
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Identification of time invariant bilinear systems with zero
initial conditions and directly observable states was also
considered using the Wiener-Hopf type equation

e At1
() = [ e ° {cult-t))}de,
0

© Atl
+ f {e "Bx(t-t_)u(t-t.)}dt (46)
o - 1 1 1
. 149
and correlation methods : Unfortunately, most of these

algorithms appear to be either very difficult to implement or
apply only to a simplified class of bilinear systemSIBO and

further research is needed in this area.

Ts Parameter Estimation

Parameter estimation methods for nonlinear systems can be
classified according to the model structure and are based on

either linear or nonlinear-in-the-parameter models. The choice

between these two approaches is often dictated by the process under

investigation. If the structural form of the describing
differential equation is known parameter estimation algorithms
can be applied directly to estimate the unknown parameters.
When little a priori information is available and the process is
treated as a black-box the usual approach is to expand the input/
output using a suitable model representation which is usually
selected to be nonlinear in the input and output variables but
linear in the parameters.

A review of estimation methods for nonlinear-in-the-parameter

models
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x = £(u,x,8) (47)
y = h(u,x)
r 7 151 ; :
has been compiled by Seinfeld . Recent developments in this

field include a combined smoothing and parameter estimation
. 152 . :
algorithm which compensates for uncertain model structure
and external disturbances by introducing time varying parameters

into the model, and a recursive algorithm which can include

153
data reuse :

Estimation using linear in the parameter models has been

based largely on the Hammerstein modelllo—115 and discrete

o B3=55 .. ; 2
Volterra series discussed in Sections 2.2 and 4 above.
Other authors have considered polynomic expansions of the system

. . . 154
states. Garg and Boziuk assumed that all the system states
are measured without noise and used a least squares algorithm to
estimate the parameters Cn in the expansion
i

n
£ m

n
y(e) = § x, (£)C_ (48)

1=1 n=n, i

. : 155
Netravali and De Figuerredo assumed that all the system states
are observable and applied a stochastic approximation algorithm
using the expansion

= gl(x ) + u
Xk+1 Xk uk (49)

a1 T Bt Y Vst

where Vi 41 Fepresents additive noise and
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3 i ;
n 3 n 1 1 T
_ 1, 1 2
?(Xk) = Z a; ¥ - ; . z a, .x x4
i.=1 1 1,=1 i =1 172
1 1 2
i i i ;
n i -2 “p—1 1. & 1
* E X Z 31 i z Xk. 1X.k 2X.k 3
i.=1 i.=1 i =1 i =1 172" p
1 2 -
(50)
The input/output description
y(+1) = q[y(@m-1),..y(@N) ,u(mk) .. u(mk-N)] (51)

was considerad by Hsia and Ghandi156 who developed an identification
algorithm assuming that the form of the nonlinear difference
equation expansion, eqn (51), and all moments of the noise
corrupting the system measurements are known a priori. A polynomic
input/output expansion similar to eqn (51) has recently been
introduced by Billings and LeontaritislS7. Assuming no a priori
information is available extended least squares and recursive
maximum likelihood algorithms have been developed to yield unbiased
estimates of the system parameters in the presence of multiplicative
and bilinear noise terms. Methods of detecting the system
structure and selecting significant nonlinear terms in the model

: ; ; b : 157
to achieve a parsimonious description have been derived :

: 158-160
The Group Method of Data Handling (GMDH) 5818 has been
developed by Ivakhnenko using the principles of heuristic self-
organisation to solve complex problems with large dimensionality

and short data sequences. A schematic diagram of the method is

illustrated in Fig.9. The method fits a polynomic model



- 30 =

y = f(Xl’XZ’X3’X4) (52)

using a heuristic approach. The data is split into a training
set and a testing set to avoid over fitting and at any stage only
two variables Xj’Xk say, are considered and the coefficients in a

quadratic expansion P, of these variables are estimated using

2
least squares. When all the pairwise combinations of variables
have been considered the outputs Vs of the quadratic filters are
passed through a selection layer. The outputs (yl,y3 and Ve in
Fig.9) which satisfy the selection criterion proceed to the second
layer and the same procedure is repeated until only one output
remains or a predetermined degree of polynomial is reached,
Although the method ignors most of the basic principles of
estimation theory it does considerably reduce the computations
associated with fitting polynomic models and appears to work well
in nonlinear prediction applications.

Data splitting algorithms, cluster analysis, input design,
model validation and the application of results from catastrophe
theory to parameter estimation methods for nonlinear systems have
been investigated by Mehral61_163. Catastrophe theory provides
a library of generic models with polynomialnonlinearities, whose
global bifurcationalbehaviours are well understood and which are
suitable candidates for choosing canonic model structures in the
identification of nonlinear systems. The catastrophe surfaces
also give immediate information regarding the selection of inputsl6
which should be designed to excite the system such that the
nonlinear response predominates. This can be achieved by applying

control inputs to drive the system beyond the jump threshold values

such that a catastrophe in the system response is observed.
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The centre manifold or reduction theorem161’162

provides
guidelines for deciding whether a nonlinear model is required.

The theorem shows that the nonlinear character of the system is

exhibited in terms of those states which have purely imaginary

eigenvalues associated with them. For example, suppose an unknown
system is perturbed around an equilibrium point and the
linearised dynamics are identified. If the 957 confidence
limits around the identified eigenvalues enclose the imaginary
axis then by the centre manifold theorem the addition of non-
linearities in the model is indicated. The applications of
catastrophe theory to the global stability and control analysis
of aircraft at high angles of attack have been studied extensively
by Mehra et a1164.

Applications of parameter estimation methods to systems where
the structural form of the model is known a priori are fairly

151,165,166

numerous In contrast there are only a few applications

of techniques based on linear-in-the-parameter expansions to

systems which are treated as a black—boxl7’167‘

8. Conclusions

Considerable progress has been made in the identification of
nonlinear systems over the last two decades. Properties of the
functional expansions, design of algorithms, selection and
properties of inputs, identification of specific nonlinear model
structures and parameter estimation methods have all been studied.
The choice between these various approaches to nonlinear system

identification will often be dictated by the process, the amount

of a priori information and the purpose of the identification.
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The functional series methods can be applied to a wide class
of processes and work well for systems with "mild" nonlinearities.
Identification of systems which contain higher than second order
kernels is however very difficult because of the excessive amount
of computation required. The difficulty of incorporating a priori
information, and of interpreting the final estimates and relating
them to the physical characteristics of the process are additional
disadvantages. These problems are fundamental to the functional
series methods and represent the price paid for the generality of
this approach.

Although the functional series methods can be applied to block
oriented systems it is often advantageous to use one of the
specially designed algorithms for this class of processes.
Determination of the structure of the process prior to identification
is obviously very important for this class of systems and although
some results are available further research is needed on this
topic. Whilst some of the algorithms for block oriented systems
are very restrictive others can be applied to various model
structures. The methods which decouple the identification of
the linear subsystems from the identification of the nonlinear
elements are particularly attractive because even systems with
very violent nonlinearities can be considered. Moreover, the
structure of the original process is preserved and this provides
a very concise description of the process which can be related to
the characteristics of the system under study and provides valuable
insight and information for control. Although several algorithms
for block oriented systems are available further research is

needed to simplify and extend the current methods.
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If the form of the differential equation which represents
the system is known then estimates of the unknown parameters can

be readily obtained using any of a number of well established

- parameter estimation methods. When there is little or no a priori

information available however, the problem of selecting an input/
output expansion and estimating the unknown parameters must be
investigated. This approach can lead directly back to the
functional series expansions with the only advantage that the
constraints on the input, such as Gaussian white noise, are less
restrictive, The major difficulty is the selection of an
expansion which can represent a broad class of systems but does
not involve an excessive number of terms, The results from
catastrophe theory and expansions based on both the system input
and output may offer some simplification in this area,
Identification of nonlinear systems is a very difficult
problem and no one technique can be recommended as providing an
acceptable solution. All the algorithms considered have their
advantages and disadvantages and each must be judged according to
the problem under investigation. This inevitably leaves the
experimenter with some diffiecult decisions and compromises, and
further research is required to develop improved identification
and structure detection algorithms to reduce the number of data

points and simplify the measurement techniques.
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