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packed columms,

Summary

Partial differential equations with necessary boundary conditions
are derived for the large and small signal behaviour of compositions in
an ideal distillation columm separating a binary mixture. The columm

(1)

considered is symmetrical in all respects (as in Edwards and Guilandoust'g

earlier analyses and computations) but now includes unequal vapour and liquid

capacitances.
This work involves the derivation of a completely analytical

parametric (T.F.M.) in a more general form rather than the special case
of equal vapour and liquid capacitances studied by Edwards. It is
demonstrated how a detailed study into packed columns can be made to relate
to the behaviour of tray columms.
Frequency and time simulations have been successfully programmed
and have produced satisfactory and consistent results.
Multi-pass systems concepts are applied to the time simulations and

investigations of stability phenomena undertaken.

FHrendeient

Ke= vy Bt
- o

Towards an insight into the dynamic behaviour of tray distillation
colums through analysis and simulation of dynamically asymmetric
(5)



Introduction

Parametric transfer functioms for the symmetrical spatially
continuous distillation columms obtained by Edwardgl )introauced negative
gain at high frequency, and positive static gain with non-mimumum-phase
effects for relatively long columns*. It was proved however, that long
tray type columnéz) exhibit positive gains for both high and low
frequency so- non—minimum-phase effects do not occur. This is due to the
fact that when the total vapour and liquid flow, v + I'is suddenly increased
in a packed columm, this causes weaker vapour and richer liquid to be
initially moved towards the accumulator and reboiler ends of the column
respectively resulting a transient reduction in the overall separations

fek

Y-X', even if the final response is positive.

Hk

In tray columns this initial reduction in Y-X' does not occur because
of the continuous equilibrium between vapour and liquid in each tray.
Having two separate capacitances in the vapour and liquid streams which
are coupled by an interphase resistance, the non-minimum-phase effect
occurs only in the packed columms. But in the tray columms such effects
do not happen because there is no interphase resistance due to continuous
equilibrium between vapour and liquid.

For simplicity and for constructing a model in a cogpletely diagonal
form (i.e. dyadic form), as the special case studied by Edwardglz the

vapour and liquid capacitances were taken to be the same making

Hl(vapour capacitance)

Hz(liquid capacitance)

To investigate the behaviour of the dynamics of tray columms through
a study packed columms, C must be variable, because in tray columms the

. . . . +
vapour capacitances are very small compared to the liquid capacitances ,

* short packed columns however have -negative static gain.
+ or, 1f not negligible, the vapour capacitance may be scaled and

lumped with the liquid capacitances due to the absence of inter-
phase resistance.

#%* see list of symbols.
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In the special case model it is impossible to demonstrate the behaviour
of the system with unequal vapour and liquid capacitances (¢ = 1), so
there is an important need to comstruct a model in a more general form
where C can be variable. Unlike the special case constructing such
model involves in many difficulties, but it enjoys the advantage of being
a model of far wider application, where not only can it produce the same
results as the special case, but it also gives more freedom to study the

relations between the two types of column.



1. Large signal model

1.1 Vapour/liquid equilibrium

The compositions (mole fractions of the lighter component in the
binary mixture) of the vapour and liquid in the rectifier section of the
column are represented by X,Y and those in the stripper by X', Y', then
the equilibrium of vapour compositions Ye,(Y”e) for a given liquid

compositions X,(X") will be

ios]
1]

Y (1-X) /{X(1-Y )}
e e

(1)

™
|

Y (1-x")/{x'(1-y' )}
e e

where B is the relative volatility which is constant for an ideal mixture
(i.e. obeying Dalton's and Rayoult's laws). Fig. 1, shows the
equilibrium relationship (1), and straight line approximations for the
stripper and rectifier, an important point is the symmetry of both true
equilibrium and its linear approximation about -45° line.

The equations of the straight line segments are

and
(2)
Ye = X/a +(o-1)/a

where

B>a = 1+, €>0

1.2 Large signal partial differential equations

Fig. 2 illustrates the process and flow rates of the liquid and
vapour through the system . The cross—flow taking place from
liquid to vapour streams is shown in Fig. 3. where a thin cell of
thickness 6h at a height h' = m 6h' is chosen. Choosing the mth

rectifier cell, material balances on the vapour and liquid streams for

the light component give



]

H (Sh'd/dt Y (m) Vv {Y(m—-l)—Y(m)}"'K {Y (m)-Y(m) }én'
v 1 BB

(3)

Hgdh'd/dt X(m) Lr{X(m+1)—X(m)}'Kr{Ye(m)—Y(m)}Sh'

where Ky is a distant coefficient of cross flow, H and HQ are the vapour

u
and liquid capacitances per unit length. Taking 8h' infinitesimal, therefore
can obtain the following partial differential equations.

H aYat +V 3Y/3h' =K (Y -Y)
v r T 2

(4)
-H adY /3t + L a3y /ah" = K (Y -Y)
2, e r e r e
and for the stripper (h' < 0) can write
-0 " 9x%/8t + L 3X"/oh'= K (X'-X')
2 s s e
(5)
H' o oxX' /ot + av_ 9X" /8h" = K _(X'-X* )
v e s e s e
and
' 2 Y'/a (6)
e
1.3 Condition for symmetry
V = oL
r T
L = oV
s S
K =K =K
s e
I (7)



1
systems p.d.e s reduce to

H, &/% + VoY/on' = K(Ye-Y)

1
(8)
-H. 9Y /9t + VoY /oh' = K(Y =Y)
2 e e e
-H, X' /9t + Vox'/on' = K(x"_x'e)
H, ox® /o + vox' /oh' = K(X'-X' )
1 e e ¢
1.4 Normalising the p.d.e ' s in time and space
Assuming normalised distance h = h' K/V and space T = tK/H2 the
p.d.e 's (8) will simplify to
C 9/9T + Y Ph = Ye—Y
-3 9T ] = =
XL Ye/Bh ¥, ¥
(9)
=3x8t + 3x"/oh = X"-x'
e

c 9x' /9T +9X' /9h = X"-X'
e e e

where c = Hl/HZ(lo), which, unlike Edwards analysis will be retained as

a freely adjustable system parameter throughout this investigation.

1.5 Terminal boundary conditions

1.5.1 Reboiler

If the reboiler liquid is in equilibrium with its vapour, at normalised
distance L2 below the feed where h —L2, can obtain
" dx* (-L,)/dt = L X' (-L,) - (V. +W)Y' (-L,) (11)
e 2 S 2 s 2

but L. =V + W
s s

liminating Y'(-L,) i X' (-
eliminating Y (-L,) in terms of X e( L,)



and using equation (6)

H, dX' (-L,) / dt = L_{X' (L)~ oX! (-Lp} (12)

where Hb is the capacitance of the reboiler.

1.5.2 Accumulator

Here liquid is condensed from vapour at composition Y(Ll), where L1
is normalised length of rectifier, and it is returned to the column at the
flow rate of Ll’ so can write

g dX(Ldet = er(Ll) - (Lr+D)X(L1) (13)
where D is the distillate rate and Ha is the capacitance. For a constant

volume of the accumulator.

Vv =1L +D
g i T

S50
HadX(Ll)/dt = \J}_{Y(LI)—X(Ll)} (14)

and eliminating X(Ll) in terms of Ye(Ll) by using (2), can write

H, o dY (L)/dt =V [a{l—Ye(Ll)}-{l—Y(Ll)}] (15)

1.6 Feed-point boundary conditions

Assuming a thin cell at the feed point, as this tends to zero, so the

cross—flow from liquid to vapour and accumulations terms vanishes, so in

general we can write
7t =
VS Yt (0) + Fv Z Vr Y (0)
(16)

—_ 1
L_X(0) + E Z = L X'(0)

where z,Z are the compositions of the feed vapour and liquid.
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1,7 Steady state solutions of the symmetrical system

1.7.1 Feed conditions for symmetry

From special case equations (7) and from overal mass balance
considerations can obtain

F,=F 4 F (17)
and from (17) and (2), (8), (13), (15) it follows that column must be
run such that

D==F= gl (18)
if the relations for the feed compositions is such that

z =1-12 (19)
i.e. the feed co-ordinate lie on the —45° line which is shown in Fig. 1.
if the feed mixture is in the equilibrium such that

7z = oz (20)

so can obtain

Z = 1 (21)
(1 + a)

this proves that the feed boundary conditions are also symmetrical and now

they can be expressed as

x‘e(o) + {1-Y(0)} = 2/(a+l) (22)

{1-Y'e(0)} + X' (0) = 2/(a+l) (23)

1.7.2 Steady-state solutions

Ignoring all time derivatives solutions for the systems p.d.e' s (8)
subject to the special case (12), (15), (19) and (23) and ignoring all
time derivatives
then setting Q(h) = 1-Y(h)

and Qe(h) E 1—Ye(h)



s0
dQ/dh = Qe"Q
dQe/dh = Qe—Q
dX'"/dh = X'- X%
dx™? /dh = xX'-x'
e e
if
Ly = L2 = L

subject to
QL) = oQ, (1)

X'(-L) = oX' (-L)
e

X*e(o) + Q(0) = 2/(a+l)

Q. (0) + X'(0) = 2/(o+l)
s0

dQ/dh = dQ_/dh L ¢

dx"/dn = dx'_/dh A &
where G 1s constant.

from (26) can write

Qo) - Qe(O) = x"(0) - X'e(O)

and from (24) and (27), (28) it follows that

G =@

sO

dy/oh = Bye/Sh = 3%"/oh = ax‘e/ah = G

because of the symmetry.
Q(h) = X"(-h)
Q,(h) = X'_(-h)

X" (-h)

1=-¥(h)

X' (~h)

1- Y (h)
e

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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also
Y(h) = ¥(0) + Gh
Y (h) = Ye(O) + Gh
From (24) and (27)
G =Q-Q, = Q) - q_,(0)
and from (26) amd (31)

2Q(0) = G + 2/(a+l)

BY eliminating Q(0) it will follow that

2Q,(0) = -G + 2/(a+l)
but

Q(L) = q(0) - GL

Q (L) =q,(0) - GL
and from (25) we can get -

Q(0) - GL = aQ,(0) - aGL

Geh = aQe(o) - Q(0)

(32)

(33)

(34)

(35)

(36)

taking (34) and (35) and eliminating QE(O) in between them will produce

G = 2¢/{(a+l) (2eL+a+1)}

substituting for G in (34) and (35) yields
Q(0) = 2(a+eL) /{(o+l) (2eL+a +1)}

Qe(O) = 2(1+e1) /{(a+l) (2eL+a+1)}

and also

v(0) = 1=2(a+el) /{(a+l) (2+c],+a+1)}

ye(O) = 1-2(1+eL) /{ (a+1) (2eL+a+1) }

from (36) we can get
Q(L) = 2a/{(a+l) (2eL+a+1)}
QE(L) = 2/{(a+l) (2eL+a+1)}

Q-Q.= 2e /{(a+l) (2eL+a+l)} =

equations (37) and (42) form the basis for the linear composition

of Fig. 4.

G

(37)

(38)

(39)

(40)
(41)

(42)

profiles
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2. Small signal model

By implicit differentiations of the large signal P.d.e' s(3)
and (4) can obtain small signal P.d.e's for the system.

' - e
Hv 3y o+ Vr Byl + (8Y/5h")v Kr(ye V) (43)

sh

-H. a Bye + Lro Bye + (BYe/Bh')al= Kr(Yé*Y)

I's S e PP

3t 3hl
-H ! ox' + L. 9x' + (3X'/dh')e= K (x'-x' ) (44)
2 e 8§ — S e
ot R

H 'a 3x' /3t +V_ o dx' + (3X"' /3h')av =K (x'-x")
v e s e e n
oh'
small signal perturbations are represented by lower—case letters:
and upper—case symbols are quasi-constants and, by considering the
symmetrical steady-state solutions produces the simplified form

H, 23y +V 3y + K Gv/V = K(J;—y)

1
ot Ih"
-Hy dy, +V 3y, +K GL/V = K(ye-y) (45)
ot 8hr
-H, ax' + Vax'/d8h' + KGL/V = K(x'-x')
3t =
BX 3 2o T 1
H e + V ox + KGov/V = K(x'=x" )
1 — e e
ot —
on '
i
afsh" = (Ka/5h) /V

2.1 Normalised small signal P.d.e's

Normalising small signal P.d.e.S with respect to distance

h = h'K/V and time T = (tk/HQ) the system simplifies to



Ciy *B8y +6w/¥ = y-y
9T oh

“ g5, +up, * aGL/v = A

9T oh

- 3x' + 3x' 4+ GL/V = X’—x”e

aT oh

C 3x" + 9x' + aGv/V = x'-x
e e e
oT oh
where again C = H1/H2

2.3 Inverted U-tube model

Solution for the terminal perturbations are simplified by bending the
process into an inverted U tube, as shown in Fig. 5. The origins of

h,h” will be redefined at the reboiler end rather than at the feed.

This will effect the sign of spatial derivatives in the rectifier section.

The modified equations will become in the form as follows:

Cdy/dt - 8y/dh + Gv/V = Mg (1)
-9y /3t - 3y /oh + aGR/V = y -y (ii)
e e e 47)
-ox' /ot + 9x' /oh + GL/V = x'—x'e (iii)
C 3x" /ot + 5x' /dh + aGv/V = x'-x' (iv)
e e e

taking Laplace transforms of (47) in P with respect to T and in s with

respect to h.

(l+cp-s)y -§e+Gv/vS +y(0) =0 (1)
-(l+p+s); +;+G£/V +Y (0) =0 (ii)

Ne 3 MS eu (48)
—(l+p-s)i’+§*e+G£fVS = %'0) =0 (iii)
(l+cp+s)§‘e—;’+qu/VS - ife(o) =0 (iv)

where subscript = denotes transforms w.r.t.h, T , and ~ w.r.t.T only.
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2.4. Matrix representation of the system

Matrix representation which will lead to the solution for the

terminal composition variations. If input and output vectors are defined as

: y=x" yeux’é‘ » 1 = G V+R‘1 (49)
’ - gt | TF v ek

Lye+X!e -

2.4.1 Terminal boundary conditions

By implicit differentiation of the general large signal boundary

conditions (12), (14) can achieve small purturbations as follows:-

It

H, o dye(o)/dt V {r {0) -a ye(O)}

Hb dx' (0)/dt =L {x"'(0) - ax' (0)}

e s e
replacing the normalised time T = tK/H2 and v, = LS =V for the symmetry
then

H o k/HZV(dye(O)/dT) =y (0) - d?é(o)

(50)
1 22 i - T
Hb K/H2V(dx e(O)/dT) x (0) oxX e(O)
Laplace transforming in P, will give
% -1 5
Y_(0) = o "h (B) y(0) (51)

-~ -1 ~
x' (0) = a h, (P) %' (0)
e b
where

1/(1+TaP)

i

h (P)
a

hb(P) 1/(1+TbP)



and

—
1]

Hak/HZV

3
|

= ku/HZVa

again assuming the symmetry

h (p) = b (») 4 b (P)

from (49) and (50)
£(0) = o« 'n_(B) g(0)

2.4,2 Feed boundary conditions

- 14 -

(52)

(53)

By implicit differention of large-signal (16) boundary conditions

for constant flows and compositions.

VSyT(O) - Vry(O) + {Y"(0) - Y(0)} v

L x(0) - L x'(0) + {X(0) - X' (0)}8

0

substituting x(0), y'(0) by uye(O) and ux'e(O) and substituting steady

state flow conditions for symmetry yields

x' (0) = y(0) - {¥(0) - ¥Y'(O)} w/V

Yo (O = %" 6y 4 1x(0) -

1l

It

X'(0)} &/v

and using steady state solutions (30), (37)

y(0) = X'e(O) - (e/2) Gu/V

x'(0) =y (0) + (c/2) GL/V

putting these equations back in inverted U tube form will give
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y(L) = X"E(L) - (e/2) Gv/v (54)

x'(L) =y (L) + (e/2) GR/V
Adding and subtracting equation (54) will produce
-1 0
a@w) = Cg 9 x@) - (e/2) v (55)
2.4.3 Solutions
Adding and subtracting pairs of equations (48) will produce simple
equations.

from (i) and (ii)
]

o 1. = -1 ~ -1~ =~
(1=s)q + cp(Dy + p( Px -r = =s "y-q(0) (56)
but from (49)
= —x'
Q =V
and q, = y+x
o Fop— ¥
4, a, 2x
=, _ _
X = 9,79 (57)
2
4 t4, =2y, y = 4 tq (58)
2
Using equations (56) and (58)
]- 2 1 = -3
(DY = & (DA DI =cr/2 (DI
L 5 i o
and also from (56) and (57)
_]_ 2oy _ -1 _ [5 - l ._]_ ~
p( PDx =P/2C D(-1 l)i P/2(Z4 1)3
substituting back into (49)
c+l c-1 & = =l=
Q-1 +2/2 (7 1} 4 -r=-s u-q(0) (59)

from (iii) and (v) in (48)



— TG -
~)E + p(CPT* ep(DE v a = s (L DeE©@  (60)
using (49)
.fe - rl+r2
2
Ta = B
2
-1.2 -1 P .
PCy, =B/2 Cp@A Dr =-p/2(] Dr
1,5, 1 = 1 -1
cp(LPx’, = ep/2(_N(-1 Dr = —ep/2(_; D)
substituting into (60)
_ o =) —1 = &
SLs) 1R /207 1O 4 = as (o Di-E0) (61)
from (59)
-1 ] -1~ =
r=((1-)1 +2/2 (£77 DY @+ s lurg (0) (62)

substituting (62) into (61)

14+s+P/2+cp/2 P/2-cp/2 1-s+P/2+cp/2  ecp/2-P/2 3
q
P/2 = cp/2  1+s+P/2+cp/2| |cp/2-P/2 1=-s+cp/2+P /2 -
14s+P/2+cp/2 P/2-cp/2 call o
- _ g i -
P/2-cp/2  1+43+P/24cp/2
(63)

}cr<0)+§ =

1+s+P/24cp/2, P/2-cp/2
HP/Z“Cp/Z 1+s+P/2+cp/2‘J -

" as"l('(l) 9 - F



Trom (64)

!—(cp/Z-p/E)uwlh

i

l—(]+p/3+0p/2):_lh+iﬁ

nsing 133) in (A3) yi.olds
~ 7 2
i § =unTmepp Sp—sup N
i 2 2 g=
L sp=scp S —cp -cp-p -
=] (1+S+p/2+cp/2—n pl2~epi2 ? 2
' ot
;p/E—cp/2 l+s+p/2+cp /2%y
i 1+s+p/2+cp/2—3_1 h . p/2-cp/2 - o
)
_ plf2-cp/2 1+s+p/2+cp/._"’—a“1 h : -
L2 2 ]
= s ™—cp -cp-p scp-sp |
- | | *
558 2 2 !
. SCp=sp s —-cp ~cp—pj
1 [ 1+s+p/2+cp/2-a p/2-cp/2 T on+
s |
L p/2 = cp/2 l+s4p/2+cp/2+: :
_1 - j
l+s+p/2+cp/2-a h , p/2-cp/2 | .
| |
-1 q(0) !
p/2-cp/2 l4+s+p/2+cp/2-a hj J
where H = . 1 .
2 Z 2 2
(s"=cp =cp-p) -(sp-scp)
substituting (65) in (62) will give
r 2 2 5
~ 18 =cp -ep-p scpsp -
- -
= h| 2 2 i
'scp-sp s —cp —cp-p |
C M=o (1l+p/2+cp/2)+1s sep/2=pl2 g
s
[ ‘—aep/2+ap /2 1+(1+p/2+sp/2)a-us
s 4
nrl—(1+p/2+cp/2)uplh+5(—xlh “(epl2=p/) Ty )
|



substitating (63) snd (66) in {H3) i Aciiieve the soltaise g {or g

Be.ause of the cowplicated nature of the resulting exprossions, tiis
operation is best left to the cumputer, (In Fdwards stuly, the si- 1, i
of the completely symmetrical system allowed substituilons te be ci:cicd
out analytically). The symmetric systems T.F.M. could be ohtained coumnioi:s -
analytically but the complexity of the resulting expressicns would © ke the-

of little practical use.

3. Time simulation

Two methods to simulate the systems equations based on multipass
process analysis are applied. There was a difficulty in simulating the
system because of the feed at the middle of distillation culumn and the
complicated boundary conditions. But by trying to keep the system as simplc
as possible results were satisfactorily obtained. First attempt was made to
simulate the systems equations (47) in U tube form where tube was bent from

the middle and also the four equations were transformed to two by corbining

(i) and (iii),(ii) and (iv), resulting for the special case C = 1.

oy _ 8¥ = - :
a1 2h +G v ye ¥ (1)
aye aye
- - — +aG/v =y - v (i1)
AT ah Ve
ex' +8x' + GLfv = xT-x' {i3L)
- gx T e
o1 oh
Bx'e ax'
T
e oh + oG /\ x'oxt (v)

adding (i) and (iii) gives

3(y-x") _ 3(y-x")
9T oh

£ 2 (vH) =y =X )= (3% ")
and from (ii) and (v)

3(ye—x'e) _U(ye-—x'e) T ( +9) B el R &
——m - T 3 W) = {yx e )

-

’ * o
This method has produced more accurate results, because there are hal:

the number of equations involved in the simulation i.e. reducing the e i
round-off errors. Apain this method is only for the special casc wi-re C =
and disadvantages of this have already been discussed. For the more oo

* The boundary conditions can be produced from (50), (54) in the same way.

Time responses of the U tube model are shown in Figures 16, 17.
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case, the straight tube approach, sweeping up from the reboiler to the
accumulator and back (involving a switch of equations at the feed point),

was formed to generate more reliable solution. It has been noticed that

by having only one multipass loop (i.e. as for the straight tube model),

makes the simulation easier as well as producingsatisfactory and stable
results. Fig, 3.1 explains more about the simulation. Equations(46) have

been simulated as the straight tube and the multipass process analysis has been
applied to the two different methods of numerical solution.

3.1 Analysis of methods of simulations by multipass system theory

Packed column and heat exchanger p.d.e's take the form

3¢ R0
s T
5T oh O+ 4+
94 3¢
- 2 B
5t = o T T %t

where 7= normalised time. and h = normalised distance.

Numerical scheme

Update ¢2 v=2n+h calculate ¢1 Update ¢1
i e —
v=2n I
!
le ; l
< h N 1-h e v=2n-1
v=2
Pass 2
v=1
Pass 1
o= ! = |
| s T Ty
! )

Figure 3,1
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Two different methods of updating which are discussed later,
were applied and they both produced the satisfactory results. The methods
are different from one another as regards their stability criteria:

3.1.1 Simulation and stability criteria

3.1.1.1 Method 1, Immediate updating

6,(0) = b (= )
AT

approximate time derivative where AT = complete
process update interval.

To a distance base, ¢1(T) = ¢1(v) and distance increment is covered in
interval
AT = 2 process lengths = 2

50 B¢l(h,T) ¢1(v)—¢l(v—2)
ot AT

¢1(h,T) = ¢l(V)

3¢1(h,T) ) ¢1(V)-¢l(v—6h)
oh sh

but¢2(h,T) must be approximated by
¢2(v—2h), where 2m<v<2m+l , m=0,1,.....

during left hand sweeps 2m+l<v<2m+2 m=0,1,....

8¢2(h,f) ¢2(V)~¢2(vﬁ2)
aT AT

05 (h,T) = ¢, (v)

8¢2(h,T) _ -] ¢2(V)~¢2(v-6h)}
oh §h




-

but ¢1(h,T) must be approximated by

¢l{v-2(1-h)}.

substituting these approximations we obtain

¢l(V)-¢1(v-2)

AT

¢2(V)-¢2(v-2)

sh

¢1(v—6h)-¢1(v) -¢1(V)+¢2(V-2h)+UICV)

¢2(v-6h)-¢2(v) + ¢1{v—2(1—h)}-¢2(v)+U2(v)

AT dh
" -2s -0hs
¢, (1 _ e _ e 1 e -2hs -
VA% = 3T st En T =l
v ~25 —8hs
¢, (1 _ e e 1 _ > =2(1-h)s _
2 13p ~ T s T oEs TN *
; : -1 =1
Now if there are N special cells, 6h = N ,AT=M
5. M(1-e 25y (1-e P8y + 1} =9, 208 4y
1 2 1
b, (e 2yan(1-e %) 4 1) = 2T L g
1 1 2
yielding the block diagram
u, o+ ¢ (V)
1 - i - 1
2 M(1-e 25y (1-e 008y 41y 7
"
e—2hs .
P (1-h)s
1 + -

q)2(1.7)

il oyt Pyaiy T
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The open-loop T.F. is therefore:

—{M(l—e_zs)+N(l"e_6hs)+1}2 gt

_{M(es_es)+N(es_e(l-6h)s)+es}2

[}

—{(M+N+1)eS—Me_S—Ne(l_éh)s}2

- _—
o =f ael-ge o0y o ey

consider (M+N+1—Ne_&hs 4

since M+N+1>N the locus for s = jw will take the form

{(M+N+1)—Ne_6hs} e

SO B N
o\

Radius slowly

modulates _l;,#m%%,‘M+l
between . i
M+2N+1 and M+1

M+2N+1

-ME_S takes the form

‘£

resultant Q{+N+1—Ne_5hs)es—}b_s



squaring
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Im
/ 2M+1
2M+2N+1

i

negating

0.L.T.F.

N

S
>

RN
N

R i@
(MN+1) e e

since Re(s)>0 for -—-mu/2<0<n/2

Re
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therefore as © falls from "/2 to ="/2 so 0.L.T.f. locus also rotates clockwise

yielding counterbalancing encirclements.

Im
A

open loop system should be stable (end effects neglected).

3.1.1.2 Method 2, updating at the end of sweep

set ¢1(h,T)= ¢1(V“2)

a¢1(h,1) = ¢1(v-2)-¢1(v-2—5h)
3h h

similarly with ¢2 & a¢2

L 50
oh
¢1(v)—¢l(v—2) ¢, (v=2-6h)=¢, (v-2)
AT = sh ‘¢1(V'2)+¢2(V"2h)+U1(V)
0o (V=9 (v=2) ¢4 (v=2-8h)=¢, (v-2) +¢, {v-2(1~h) }+¢, (v=2)+U, (v)
AT §h
I{T s } 2 1
¢ {l_e—2s + e—ZS(I_e—éhs) +e—25} _ ¢2 e—2(1—h)s + az
2 AT &h
seil] =~

n
=

if Sh = N , AT



ot 25 —
s — - -6 - ~ "
b: (u(1me 2%y e 28 (1= ) ueTE) = g 070 U
- ) 5 i . A
¢ {M{1-e 25)+Ne 2S(I-e 'hs)+e ZS} = ¢le 2(1-h)s 3 U2
2

therefore in this case inverse 0.L.T.F. =

=25 ~8hs -2s 2s
e e }e

-{M(1~e )¥Ne_2s(

1- )+

- 2
= -{Iﬂes-e—s)+Ne-s—Ne (1+6h)s+e 53

~Shs, 2

= ~{Me -e ® (1-1-N+Ne - 9y}

for stability les| term must dominate le_s[ term
s = jw
M>M-1 , M >2N+1
and  M> |M-~1-2N| M>2N+1
i.e, M>2N+l=th , 2N+1>M
therefore 2M>2N+1 , M<2N+1
and 2N+1 < M

z
i.e, time step < distance step

Hence provided the above condition is satisfied the simulation should be

stable - end effects englected.
Note Multi-pass analysis does nor embrace end effects and these may

cause instability despite the predictions of multi-pass theory. This
point is brought out in the following section.

Typical graphs for both methods of updating the multi pass system theory

are given in Fig. 8 ,10 and Fig. 15 shows the stability phenomena for both

methods.

. Notes on the results

Both special case and general case methods have been simulated by the author,

A hayra nradiirod aatrddfarfFavayr arnd mrAarcas abomd m=acirl = o
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obtained for systems having parameters identical in many cases, to those used
in this earlier work. The complete agreement for the symmetrical case of these

earlier results with those derived and computed completely independently by the

present author gives confidence in the general assymetric system results presented

here and never previously obtained.
For given parameters the time and frequency responses have produced

the same steady state gain and equal time constants as is demonstrated
below.
q; represents the first element of the composition vectors, and
q(h,p) =G (h,p) U (p)
~ & ~
and U (p) =G (h,p) # dq(h,p)
* *
G* (h,p) = |g; (h,p) g, (h,p)
% %

G*(h,p) = 1/G(h,p)

All of the responses have been explained individually as they follow: ;
-+ -]- 1
\

Fig. 6. Represents behaviours of special and general case models for
the given parameters. By taking C = 1 both models produce

exactly the same results and this validates the general case
model. Frequency range is chosen to be the same for both cases.
Loops due to travelling wave effects are clearly visible, as
would be expected for a comparitively short columns such as

this (note L = 2.8)

Fig. 7. Inverse Nyquist Loci for the short columns with its m.v. first
order lag3 approximations constant frequency increments are
marked on the Locis and they almost match with those on the m.v.
first order lag approximations. Also it is shown on the inverse
Nyquist Loci that the number of frequency increments on each loop
are nearly equal to one another and = theoratically, L=2.8 as would

be expected, these demonstrates the validity of the m.v. first order

Tlaog and *he botrtar lac dalasr armrnvrmabrt ame am srmlT e ~oderd o
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To find the time constant consider the T.f. for the first order lag

G(jw) = K
1+j0T
tan wT = 45
wT = 1
T = 1
w

by drawing a 45° line with axis can find the frqeuency corresponding
to the point where the 45° line crosses the inverse nyquist loci, and so

can find the time constant from the graph, the frequency is found to be 2,

so T =3 = 0.5, the steady state value is simply the value of gI(O,O)

and from the graph glul(0,0) = 1.8 and gl(0,0) = 0.55. These values

compare favourably with those step responses of Fig. 9.

Fig. 8, Time response of the short column parameters are chosen to be
the same as for Fig., 7. Two different methods of updating used
to simulate the system by the multi-pass approach are shown to have
the same initial rate of rise and equal steady state values.
Time constant A 0.6
Steady state gain = 0.46
clearly these values almost agree with those of Fig. 7.

Fig. 9. Inverse Nyquist loci for a longer colummn L=5.0 with a m.v. first
order lag approximation. It is shown that the static gain gl(0,0)
is positive whereas over higher frequency range the gain is
negative, so m.v. first order lag approximations is not valid.
(Due to the different signs of elements of matrices Al and A0):
the locus of the m.v. lag clearly does not encitrcle the origon
as does the true locus.

Time constant = 10

g,(0,0) = 1.43



Fig. 10.

- 98 ~
again these values will be compared with those on TFig. 10.
Note smaller loops due to wave attenuations in longer columns.
Time responses of the long column, with parameters same as for
Fig. 9. Two different methods of updating used to simulate the

system by the multi-pass approach are shown to be the same.

Time constant = 10
steady state gain = 1.45

these values are similar with those on Fig. 9.

Figs 11,12 Represents g1_103,jm) with different end capacitances. Large end

Fig.

Fip

Fig.

Figs

Fig.

13

14

15

16,17

18

capacitance would appear to effect only the frequency calibration
of the loci near w = 0, rather then their basic shape, this is clear
from the graph and would be expected since it is known that
boundary conditions affect predominantly steady state behaviour

and not the high frequency.

Time responses of the long columns with different end capacitances,
from the graphs it is clear that the initial rate of rise and the
steady state walue for both responses are the same.

Time responses of the short columns with different end capacitances.
Time responses of the short column. This graph represents
responses achieved from the two different methods of updating.

It is shown how one method can go unstable while the other is

still stable - as anticipated.

Time response of the short colummn obtained from the inverted U

tube model.

Inverse Nyquist loci of plate column, response shows that the

model behaves as first order lag, and non-minimum phase effects

are none existant, The frequency calibration is ciearly almost

linear with vertical distance measured along the locus ,



Fig. 19
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and this validates the m.v. first order approximations for this
model.

Time response of the plate columm. Again the response shows
the system behaves as a first order lag, and the close

agreement of the steady state gain (2.6) with that shown in

Fig. 18 (1/0.37 = 2.7) is reassuring.
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5. Relating the dynamic behaviour of the packed and plate columns and
effect changing L and C.

Differences between the behaviour of packed and plate columms
left some questions to be answered and whether packed columns analysis is
useful in industry, where columns are predominantly of the plate type.

In particular the non-minimum phase effects of packed columns noted in
section (4) Figs.9, 10, are not produced by tray columns. However in this
section it is shown by time domain simulation and by frequency response
analysis that as the length L is increased and as the liquid/vapour
capacitance ratio is increased (for a given total capacitance) so the
non-minimum phase effect diminishes to negligible proportions and the
dynamic response match more and more closely. Under these circumstances
therefore the packed column approach can provide a useful alternative

to the modelling of industrial tray type columnms.

As regards the effect of column length relation noted in section
(2.1) confirm this observation: since h = h'K/V and in particular L = L'K/V
it is clear that as L** , so K>~ , for a given real length L. So increase
in L is equivalent to an increase in evaporations constant K, an increase
of which clearly approaches the continuous equilibrium condition assumed
in tray column models.

In order to relate the behaviour of the two columns together, an
attempt was made to make responses of two columns to settle at the same
steady state response values for given different parameters for each column.
This was done by equating Edwards' analytically derived relation for
zero frequency gain 1,2, for both columns of equal length. Although this
produced quite satisfactory results as comparison of Figs. 10 and 20(a)
of time responses and also comparisons of the graph in Fig.24* of inverse
Nyquist locis reveals, and there now remains only a small non-minimum
phase effect, differences in the slopes of the responses of the two types
of columns persist. The effects of changing C (i.e. the vapour/liquid

capacitance ratio) was therefore studied next and as Fig. 20 shows, reducing

%
Graphs have been normalised for the comparisons.
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C makes the slope of the time response of the packed column approach

the response of the plate column. Fig 21 again shows time responses

of packed and plate columms for a given small C, it is clear that for

a small C both columns produce almost identical responses., Effects of
changing C was also studied on inverse Nyquist loci of the analytical
model defined from P.d.e.’'s(47). TFor C = 1 the model produced satisfactory
results as shown in Fig. 6, but unfortunately varying capacitance ratio C
in P.d.e.'s (47) does not keep the total capacitance of each section (C+1)
constant so that variation in time response slope and locus shape must be
expected from this cause. To investigate the effect of capacitance ratio
at constant total capacitance, p.d.e.'s(47) and subsequent results need
re—expression in terms of A = 1 =C

where A = capacitance ratio at constant total capacitance, so P.d.e.'s

will change to

(1-A) dy/dt - 3y/oh + Gv/V = ¥ ¥ (i) N
~(1+A) Bye/BT - aye/Bh + aGL/V = v,V (ii)
-(1+A) ax'/oT +9x'"/oh + GL/V = x' -x'e (iii)
(1-A) Bx'e/BT + BX'e/Bh + aGv/V = X'—X'e (iv)

To find the analytical model same steps as in section (2.4) were takem,
Fig. 22 shows inverse Nyquist loci of the packed columm for different A,
together with the loci of the plate column, It can be seen that reducing
A over the frequency of-interest makes the response of the packed column
to approach the loci of the plate column. Unlike the special case model,
the general case model has assumed unequal vapour and liquid capacitances
in the column, producing non diagonal (T,F.M.) model even by selecting
output and input vectors noted in section (2.4). So unless the (T.F.M.)
model is diagonal dominant at a frequency of interest the results are not
consistant and can not ignore the interaction terms. Method of Gershgorin

circleéa) has been applied to prove that the (T.F.M.) model is diagonal
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dominant at frequency range of O to 0.1, Fig.23 shows the loci of the
packed column for a small A with Gershgorin circles on it. It is clear

that up to w = 0.1 non of the circles, encircle the origon, so (T.F.M.)

is diagonal dominant up to w = 0.1.

6. Discussions and conclusions

A parametric analytical (T.F.M.) model has been derived for an
asymmetrical binary distillation columns, where all the parameters are
expressed as functions of plant parameters, o, C,L,T. As it is noted in
sections (2) the model has been derived in terms of normalised distance h
and normalised frequency P. In order to convert h to actual distance must
multiply it by V/K and also to convert normalised time to actual, multiply
it by H/K. All symbols are explained in list of symbols. The derivations
of the general case mode{ did not produce a completely diagonal (T.F.M.)
at all frequencies as it was the case for the special case(equal vapour liquid

capacitances model, but the general case modei was found to be diagonal
dominant at low frequencies.

Use of inverted U tube to represent the distillation column has
helped greatly the solutions, specially for terminal composition changes.

In packed columns 8, has negative gain at low and high frequencies,
this is the case for plate columms too. g in shorter packed columns
has negative gain at low and high frequencies, but for relatively longer
packed columns 8, has positive gain at low frequencies and negative gain
at high frequencies producing a non-minimum phase effect. In plate type
columns 8, has always positive gain.

Large terminal capacitance, effects only the calibration of the low
frequency part of the inverse Nyquist loci, therefore it effects the
initial rate of rise of the transient responses,

Wave effects in longer packed columns may be neglected, but non-

minimum phase effects can cause limitations in choosing the maximum controller

gain in order to achieve stable operations.

+ unequal vapour and liquid capacitances
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In long packed columns as columns' vapour capacitance becomes smaller
the behaviour of packed and plate columns become closer to one another in
both time and frequency domain. (Although a small residual non-minimum
phase effect is present with packed type columns even for large L.) It
was originally anticipated that ¢ (i.e. the vapour/liquid capacitance ratio)
alone would be the key parameter in reconsiling the behaviour of the two

column types, but it has become evident that L and ¢ together are crucial.
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