This is a repository copy of On Real Time System Design.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/75725/

Monograph:
Bennett, S. (1980) On Real Time System Design. Research Report. ACSE Research
Report 128 . Department of Control Engineering, University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

/ﬁ
v
J
it
.
A
J

B g 5 (<)
O Ry

a7

ON REAL-TIME SYSTEM DESIGN

by

S. BENNETT"

Research Report No. 128

October 1980

Department of Control Engineering
University of Sheffield,

Mappin Street,

SHEFFIELD S1 3JD

P

Introduction

The past decade has produced a clarificiaiton and refinement of the
techniques for the design of robust computer programs: it has also produced
a greater understanding of the complex nature of the activity of 'computer
programming'. The changes are reflected in the growing use of the term
'software engineering', which also reflects the growing awareness that
software is a 'product' which is manufactured and so].d.l There has
been much interest in techniques for validating programs, mathematical proofs
of correctness, work which has led to a clearer understanding of the
differences between various types of program. Pyle,2 drawing particularly
on the work of Wirth,3 has presented definitions identifying three types
of program design:

sequential programming

multi-programming

real-time programming
These definitions are based on the kind of arguments which would be required
in order to formally validate the programs.

In the classical sequential program, actions are strictly ordered as
a time sequence: the behaviour of the program depends only on the effects
of the individual actions and their order - the timertaken to perform the
actions is not of consequence. Validation therefore requires two kinds of
argument:

(a) that a particular statement defines a stated action.

(b) that the various program structures produce a stated sequence of

events.

A multi-task program differs from the classical sequential program in
that the actions it is required to perform are not necessarily disjoint in
time: several actions may be required to be performed in parallel. However,

sequential relationships between the actions may still be important. The

-2 -
program can be built from a number of parts (processes), which are themselves
purely sequential, but which are executed concurrently and which communicate
through shared variables and synchronization signals. Validation requires
the arguments for sequential programs with some additions, The processes
can be vélidated separately only if the constituent variables of each process
are distinct. If variables are shared then the potential concurrency makes
the effect of the program unpredictable (and hence not capable of verification)
unless th2re is some further rule that governs the sequencing of the several
actions of the processes.

The development of synchronization procedures in high level languages -
ENTRY and ACCEPT in ADA- reflect the acceptance of the requirement of a
sequencing rule. The need for the synchronization of processes has been
knowen to program designers for a long time: the operating system for the
GE CONPAC series of computers, designed in the mid 1960's, provided
procedures for synchronization through its DATA TABLE access mechanisms.

It should be noted that by the use of synchronization the time taken
by the individual actions are not relevant to the validity of the program.

The processes can proceed at any speed, validity depends on the synchromnizing
procedure.

A real-time program differs from the previous types in that in addition
to its actions being not necessarily disjoint in time, the sequence of some
of its actions is not determined by the designer, but by the environment.

They cannot be made to conform to the inter-process synchronization rules.

The program can still be divided into a number of processes, but communication
between the processes cannot necessarily wait for é synchronization signal-
the environment process cannot be delayed. Therefore, in contrast to the
previous two cases the actual time taken by an action is an essential factor

in the process of validation.

- 3 -
Consideration of the type of reasoning necessary for validation is
important not because we are seeking a method of formal proof, but because

we are seeking to understand the factors which need to be considered in

designing a real-time program.

It has been found by experience that the programming of real-time
systems is significantly more difficult than the programming of ordinary
(sequential) systems. One major difficulty has been that the major high-
level languages were designed for sequential programming and hence many
real-time systems were programmed using assembly level languages; the
introduction of CORAL and RTL/2 has provided some improvement, but these are
not truly real-time languages. A second difficulty has been a lack of a
clear understanding of the significant differences between sequential,
multi-process and real-time svstems. These difficulties have led industrial
users into one or more of the following:

(a) the development of extensive libraries of program modules written

in assembly code:; nmew installations make -use existing modules,

(b) wuse of computer manufacturer's interpreters to implement control
programs,
(¢) design of 'in house' interpreter or compiler.

Method (a) involves a large initial investment, but provides a
facility for the rapid production of reliable programs, its major dis-
advantages are the lack of portability and the danger of technological
obsolescence - the programs are specific to a particular range of computers.
In method (b) the initial investment. is transferred to the system
manufacturer (as are the problems of obsolescence), the disadvantages are
speed of operation and lack of flexibility. Justification of method (c)

is difficult: it is a luxury few can afford.*

Structure of real-time programs

The essential feature of real-time programs is that they are designed
to run continuously and hence the natural structural element is the
"infinite" closed loop. This closed loop has, however, to be synchronized
to the external process. The simplest approach to the design is to structure
the program as for a multi-tasking system, with synchronization by means
of the ENTRY - ACCEPT mechanism, but with the added restriction that the
internal processes must always be ready to ACCEPT an ENTRY, i.e. a time
constraint is placed on the performance of the program actions. This is
simply an alternative description of the well known polling action, and
is of course the easiest type of structure to design.

The limitation of this structure is that the time taken to carry out
the longest internal process must not exceed the minimum time between
external events. In a simple control system with no data reduction,operator
communication, or performance logging, this is also the requirement

for the system to work, hence the arrangement as shown in figure 1.

Lo rasann L ‘:
EvEnT e

J ExTELAAL
EVENT

1 -
be Ex

) *T*

CortPurAtion Tirs loeE TIME
= -+ L
te tC tr and tI>O for valid program

In most real-time control systems, however, there are actions to be
performed which do not have to be strictly synchronized to the external

environment e.g. in a feedback control system, control action may be taken

5
every second, but the printing of data for the operator may only be required
every 30 seconds or when requested by the operator. A real-time program,
therefore, can be considered to have two types of process, the CONTROL
processes and the SUPPORT processes. It is a requirement that the CONTROL
processes be strictly synchronized to the EXTERNAL processes, the SUPPORT
processes, however, need only by synchronized to each other and to the
CONTROL process.

[The EXTERNAL procesé or processes may include some software: the inter-
face between the external environment and the internal processes is a
mixture of software and hardware and it is usually easier to make the
boundary a software boundary. Hence the hardware interrupt will not be
considered as connecting with the CONTROL process, but with an EXTERNAL
process. With this approach the technical details of the implementation
of the interrupts are separated from the design consideration for the
CONTROL process.j

A typical arrangement is as shown in figure 2.

e e
'

(OA/ TROL

SwuprorT SurPrPoRT SusPor7| Swlrosi
A g i D

/DL E

- fH -
In terms of the synchronization procedure described above the timing

diagram becomes:

te

te ;I_ | Es _{; Ex

ConrPor i Supror T —I IDLE

Enzey ACeepT
Figure 3.

amd each of the support processes has to be designed to run in less that

t, = t, seconds. This is in fact an unduly restrictive requirement, which
if followed, would lead in mnay cases to unwieldly sub-division of the
support tasks into many processes.

An alternative structure is shown in figure 4.

OnTRO L Sy PPoR T
A;mnqy CT
Ex7x5RNA L A
ﬁ%b<§5$$? e
Acceer | 00 as c
(' N THOL. D
=
ENTRY faccarr
SVACHROA 2 AFmn " SYntrpr Rond 129 Fran)
Accers 4
swy
Figure 4,

In this system as soon as the main control section compilation has been

completed an ACCEPT signal is given to the extermal process. Multi-task

..7.
operation can then proceed with the support processes. The CONTROL processes
have to be designed using a real-time approach i.e. computational time is a
factor to be considered, but the support processes can be designed simply
as a multi-task basis. This structure does, of course, require that
interrupts be used since the ACCEPT from the control program will be in the
form of a permit interrupt signal and it is only through the use of
interrupts that the SUPPORT'processes can be freed from strict time
constraints. Having organised the division in this way, the main body of

the CONTROL process can be designed using sequential programming constructs,

and the SUPPORT processes can be designed using multi-tasking ideas. A
small segment of control section will be required to link the two.

Control-Support Communication

The separation of the program into CONTROL and SUPPORT, sections can
only achieve one of its aims, the prevention of what Pyle has termed
"infection' if communication between the two sections is strictly controlled.
It is possible to achieve communication by means of a shared data block as

shown in figure 5.

EXTEANAL
VYo rss loniriolL. DA7TA SteProR T
B 2
Figure 5.
and this is the way in which many systems have been designed. The behaviour

of such a system is unpredictable, hence the program is not verifiable and
the structure is not desirable. The unpredictable behaviour of the above
system arises because the CONTROL and SUPPORT sections are not synchronized

and hence either may change the data at any time without the knowledge of the

8
other, As an example of the danger that can that can arise from such a
structure consider a section of a chemical plant in which valves are being
opened and closed by a switching sequence specified by a block of data.
A condition could arise in which the SUPPORT section was making a change
to the sequence when an external event initiated operation of the sequence;
the sequence which was performed would be partly the new sequence and partly
the old and the operator would not have a clear idea of what was happening.
It is of course possible, in designing the SUPPORT program, to, minimise
the probability of the occurrence of such an event, but unless the SUPPORT
programmer is allowed to manipulate the permit/inhibit interrupt control
he cannot with certainty prevent such an event. In allowing the SUPPORT
program designer control off the interrupts, his isolation from the real-
time problems has been removed and the probability of infection so increased.

A much safer structure is shown in figure 6 in which two data blocks,

I (]
FRoCESC Fao s Rare DATA Sogemms| Dara
6206& lgbﬂﬂk
[} R 2t
A Ty A .
NTROL e
rPe=SsA4E i
/R0 ceEss, 2

Figure 6.

CONTROL & SUPPORT are provided. The sﬁpport processes are allowed to

read from the CONTROL DATA BLOCK but not to write to it, all communications
involving changes to the COﬁfROL DATA BLOCK have to pass through one process,
the CONTROL MESSAGE PROCESS. In this way the;eris only one boundary, AA,

between the essentially real-time processes and the essentially multi-task
processes. The Sﬁundary BB is simply the division between two processes

in a multi-program environment.

An alternative structure is shown in figure 7.

EXTERNAL Con 7oL '] SuPESRT
fRoCrESe 14 FPocese — DATA DATA |e—wl PocrssEs
N
]
(oI O 2 i Sir PrloR F
rlESSAG E — -+ ATESSAHAGE
/R cESS S CESS
Figure 7

By structuring the system in this manner it can be seen that a natural

division for distributing the real-time system over two computers 1is

between CONTROL and SUPPORT processes. It should, however, be noted that

the adoption of such a structure does not necessarily imply two computers,

it can be implemented in a single computer.

W

- 10 -

Conclusion

In this note an attemﬁt has been made to indicate the general structure
required for a real-time program if full advantage is to be taken of the ideas
of structured programming and synchronization of multi-programs developed over
the last decade. The details of the implementation will, of course, depend
on the application and the computing facilities available, but if the structure
shown in figure 7 is adapted the support processes can be designed as a multi-
program system; ﬁhe control ﬁrocess can be designed as a sequantial program
and the feal—time processes are the EXTERNAL PROCESS HANDLER and the CONTROL
MESSAGE HANDLER: (better known perhaps as the interrupt handler and monitor).

In this way consideration of the more difficult real—timé synchronization is
restricted to a small part of the design.

This structure does not, however, absolve the real-time system designer

from ~the requirement that the real-time system run continuously.

It is assumed in normal programming tﬁat program implementation is perfect -
i.e. a valid program will be executed correctly. If a fault occurs the
program is abandoned. A real-time system must, however, attempt to keep
running, it must be fault tolerant and the designer must attempt to build

into the system as much protection against corruption by faults as possible.

[|=(e) || <

for te [_0, tlj %

6. Conclusions

- 11 -

1 {exp(Czt) - 1}
C

2

In this paper we have generalized the results of Cook (1980a,b) to the case

of nonlinearly perturbed non-linear systems in both the input-output and

Lyapunov approaches to the generation of state bounds. We have presented an

example which shows how the two approaches bring out different aspects of the

problem, although it is difficult to give a direct comparison between the methods

since taking norms in different ways inevitably leads to conservative results.

7

1>

References

V.M. Alekseev.

F. Brauer.

P. Cook (a)

(b)

W. A. Coppel.

S. M. Lozinskii.

An estimate for the perturbations of the solutions of
ordinary differential equations (Russian) Vestnik Moskov.
Univ. Ser. I. Mat. Mek. No.2. (1961), 28-36.

Perturbations of nonlinear systems of differential equations.
J. Math. Analysis App.l4, (1966), 198-206.

On the behaviour of dynamical systems subject to bounded
disturbances, Int. J. Systems Sci., (1980), 11. No.2, 159-170.

Bounds on the states of systems with bounded inputs, 3rd
IMA Conference on Control Theory, University of Sheffield, (1980)

Stability and Asymptotic Behaviour of Differential Equations,
Heath, Boston, 1965.

Error estimates for the numerical integration of ordinary
differential equations, I. Izv. Vyss. Ucebn. Zaved. Mat.
No. 5, 6(1958), 52-90 (Russian).

