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1.1

The modelling of semiflexible conveyor structures for:

coal-face steering investigations

PART I SPATIALLY-DISCRETE MODELS

* *
Edwards, J.B., Wolfenden, R.AT, and Yazdi, A.M.S.R.

Introduction

The power~loader and conveyor

Fig. 1 illustrates diagramatically a short section ef § modern

]
¢

longwall coal-face installation in plan-and side-views. ‘Thé coal-

cutting machine shown is of the popular ranging-drum shearer type.

The machine both cuts the coal from the solid face as it proceeds

the product onto the scraper-chain conveyor. This operation is aided
by the spiral vanes around the rotating drum periphery upon which the
cutting picks are mounted. Because of its dual function, the machine

is described colloguially as a cutter-loader or sometimes a power-loader.

along the face (from left to right in Fig. 1) and simultaneously loads

The scraper-chain conveyor also has more than a single function: It not
only conveys the cut product to the face-end but, because of the robust
construction its structure, it also provides a comparatively smooth track
upon which the power-loader rides, as shown in Fig. 1. The power-loader
actually slides on skids along the side-channels of the conveyor, traction
being provided increasingly nowadays by a rack-and-pinion drive, the
rack being bolted to the conveyor structure.

Between consecutive cuts made along the face, typically 100 to 200m
in length, the conveyor is snaked forward onto the newly-cut floor as
indicated. Horizontal rams attached to and powered from the line of

roof-support units behind the conveyor and not shown in Fig. 1 are used

*
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to advance or push-over the conveyor, and by reversing the jack action,
the roof-supports, lowered one at a time, are then themselves drawn
forward using the conveyor structure as an anchor beam. The conveyor
structure must therefore be extremely robust to withstand the point
loads of several tons imposed on it both horizontally and vertically
and yet sufficiently flexible to allow a short snaking distance and so
minimise the area of newly exposéd roof left unsupported. Because of
these key properties, the conveyor is generally termed, in full, the

armoured-flexible-conveyor , and abbreviated to a.f.c.

Flexibility is also required in the vertical plane as indicated
in exaggerated fashion in the side-elevation of Fig. 1. This is
because of coal-seam undulation and the need to change the cutting hori-
zon within a seam from time to time as coal quality at different levels
in the seam varies. To regulate against seam unudlations or to accom-

plish definite prescribed vertical manoeuvres of the entire installation

within the seam, vertical steering facilities must be provided and this
is one purpose of the ranging boom upon which the cutting drum is mounted.
Control may be manual or auto?atic and in Fig. 1 a nucleonic floor-
sensor of the backscatter typ;}is illustrated for measurement of the

floor-coal thickness left some distance X behind the drum. More conven-

tionally, a roof-sensor is employed since the penetration of fragile roof-

strata can quickly bring about seriocus roof-collapse. Technically the
two problems are little different and floor-control is slightly simpler
to present and is therefore the case considered here. Clearly roof-or
floor-sensor measurements can provide the basic feedback signal for

automatic control of the hydraulically-powered steering boom.



1.2

The steering system model

Fig. 2 shows the behaviour of the power-loader and a.f.c. in

end-elevation (i.e. looking in the so-called along-face direction)

The machine geometry is arranged so that, with the steering boom
centralised, the drum cuts at the level of the front edge of the a.f.c.
but in response to a step created by a boom deflection, the a.f.c.

undergoes a tilt-change in the face-advance direction since the a.f.c.

width, Wc and the drum width, W, are always subject to the inequality

d

Wc > Wd (1)
For simplicity of presentation we shall assume

% = Wd(l + €) (2)
where

0 < g << 1.0 (3)
so that in the development of the process equations we may make the
approximation

W =W_=W (4)
without eliminating the tilt-change effect.

A model for the vertical steering process can be derived from the

application of small-angle geometry to Figs. 1 and 2. If, as indicated
n denotes the cut- (or pass-) number, and £ the distance of the drum

from the left-hand face-end, then the following relationship between

the various heights and tilts of machine and a.f.c are readily deduced:

y(n,2) + z(n,8) = h(n,+R) + Wa(n,L+R)
+ RB(n,8+R) + J(n,L) (5)
where face-advance tilt o, in radians, is given by
a(n,t) = {h(n,2) - h(n-1,0)}/W (6)
and along-face tilt B, also in radians, by
B(n,2) = {h(n,2) - h(n,L+F)}/F . (7)

assuming skids A,B and C are trapped in permanent contact with the a.f.c.



In these equations h denotes the height of the a.f.c., z the height
of the lower coal/stone interface (parting) and y the thickness of
the coal-floor left by the cutting-drum. J is the deflection of the
cutting-drum, R the length of the boom and F the skid spacing along-
face.
A conventional analogue control law takes the form

Jd(n,g) = kh{yr - ym(n,z)} - kg Wo (n,L+R) (8)
where Jd is the demanded drum deflection applied to the hydraulic servo
driving the steering boom which can be usually modelled sufficiently

accurately by a simple first-order lag relationship:

aJ(n,2) /de =(1/x2}[Jdtn,z) - J(n,8)} (9)
i.e. J(n,) = Jd(n,R)/(l+X2D) (10)
where D = d/dg (11)

and X2, assuming a constant machine speed v, is simply the servo time-
constant multiplied by v.

In control law (8), yr is the constant desired floor-coal-thickness,
ym(n,z) the measurement obtained from the floor-sensor and kh and kg
are the preset height-~and tilt-~gains of the controller. Because of the
measurement delay X and the sensor time—constant+ Xl/v r ¥ is related
to v thus

d ym(n,ﬂ)/dl = (I/Xl){y(n,l-x) - ym(n,l)} (12)
or, in eperational form

ym(n,z) = y(n,%—x)/(l+XlD) (13)

The overall process model structure

The process model is, of course, incomplete without a relationship
describing how the a.f.c. moulds itself to the cut floor i.e. a
relationship between front and rear convéyor edge heights h(n+l,2) and
h(n,%) and the cut-floor heights y(n,2) and y(n-1,%2) upon which the
¥ A substantial time-constant is generally Aecessary to smooth out the

strong random component of the sensor signal arising from the use of
radio isotopes of very low strength in these transducers. This is

essential for reasons of safety and health.



a.f.c. rests after pushover. Such a model will be a two-input two-
output process, since the stiffness of the a.f.c. deck-plate will
cause some interaction between h(n+l,2) and y(n-1,%) and between
h(n,2) and y(n+l,%). Fig. 3 represents the overall system in block-
diagram form and split into two distinct but interconnected subsystems:

(i) the machine-steering process
and (ii) the a.f.c. floor-fitting process

The machine-steering process is fully described by equations (5)
to (8), (l0) and (13) and its internal structure, derived directly from
these equations, is shown in Fig. 4. The development of a model for the
a.f.c. floor-fitting process is the first objective of this and a com-
panion paper. The second objective is to explore the stability and
performance of the composite system.

Investigations of the dynamic behaviour of the system have hitherto
been of three types, these being

(a) simulation studies
(b) analvtical calculation

and (¢) field trials

Field trials are enormously expensive undertakings in industry
generally and in coal mining this problem is particularly accute because
of the very high level of electronic and mechanical engineering which
must be invested in the development of robust instruments, controllers and
data-links for the acquisition of even the simplest data. Such equipment
must not only withstand the arduous coal-face environment, but must be
safe in all respects, Equipment must be flameproof or intrinisically-
safe to avoid any risk of methane ignition and must be highly fault -
tolerant if included in any control loop. Production losses through
failure of prototype equipment can rarely be tolerated and even the

.

measurement of distance, %, travelled is far from being a trivial exercise.
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Simulation and analysis are therefore particularly crucial in coal-face
control studies.

Because of the absence of a sound mathematical model for the a.f.c
fitting process, simulation has hitherto ?fen a tedious exercise requiring
the use of instrumented mechanical models Lor simulation of a.f.c. be-
haviour, with all the attendant problems of geomet;ic scaling. The
exploration of a wide range of control and proceés parameters and
structures has therefore been prohibitive and to alleviate this problem
the authors h;ve addressed themselves to the development of a soundly-
based computer simulation of the conveyor.

In analysis, simple intuitive models of the a.f.c. fitting process
have been adopted, frequently producing alarming results. The simplest
model has been based on the so called 'rubber conveyor' assumption which
permits the a.f.c. to mould itself precisely to the previously-cut floor
i.e.

h(n+l,2) = y(n,%) + z(n,L) (14)
Using this and linear analytic a.f.c. models of somewhat greater
complexity, e.g.

h(n+l,8) = GC(D){Y(H,E) + z(n,R)} (15)

where GC(D) is some rational transfer-operator, stability studies can
4),(5)

be quickly undertaken often by pencil-and-paper methods as illustrated

by the example in the following Section.

Example of behaviour prediction by analysis

Suppose for simplicity we neglect hydraulic lag X2 and set kg =1.0
so eliminating the effect of tilt a(n,%+R) on y(n,%), (see Fig. 4).

Suppose also we restrict our attention to so-called fixed-drum machines

where offset R = O and steering is achieved by pitching or rolling the

entire machine body about an underframe trapped to the a.f.c. The effect



of tilt B (n,L+R) is thus removed likewise and the overall system
block-diagram reduces to the form shown in Fig. 5 and the machine
steering model becomes that shown in Fig. 6. For stability studies
external inputs yr and z(n,%) may be disregarded so that for the
steering system we have

y(n,2) = G_(D) h(n,8) ' (16)

where GS(D), in this simple case is given by

1+X_.D
1

G (o = 1+X Dk Del (X) (17

where Del (X) denotes a distance shift X, whilst, for the a.f.c., we
have

h(n+l,2) = GC(D} y(n,%) (18)
Now merely making GS(D} a stable process (by suitable choice of kh and
possibly Xl) will only ensure single-pass stability and for the stabi-
lity of the multipass process we must ensure that signals of any fre-
quency w be attentuated in passing round the loop of Fig. 5. Hence,
for multipass stability

le_Gw)|[e_Gw ]| < 1.0 , alluw (19)
Now if we assume the rubber conveyor model to apply, then from (14),
with z neglected, we deduce

Gc(jw) = 1.0 (20)
so that for stability

|Gs(jm)[ £l.0 , all w (21)
and from (17), in our example

l+xljw
Gs(jm) = (22)

1+xljw + kh exp (-Xjw)

// l+(le)2
(23)

= 2 2 ' _
“&+{Xlw) + kh + 2%1(cos Xw - Xlw sin Xw)

so that

[Gs(jwﬂ



= g =

The spectrum of IGS(jw)| computed from (23) is shown for e, = 0.5 in
Fig. 7 for a range of values of xl/x from which it is deduced that

only for very small values of steering gain k, and prohibitively large

h
ratios Xl/X can condition (21) be satisfied so that if the true a.f.c.
does indeed resemble the conceptual rubber conveyor in its behaviour,
then instability is inevitable with this form of control. Simulation
confirms this prediction as illustrated in Fig. 8 (for which
k., =0.8, k =1.0, X =1.25m, X, = 0.6m, X, = 0,165, R = 0).
h g 1 2

It is fairly readily shown that making R > O, varying kg and
making x2 non-zero offer no cure for the repeated excitation of the

GS(D) resonance, in fact such changes have an adverse effect on multi-

pass stability. Indeed only by recourse to control from a previous pass

measurement so that

ym(n,l) = y(n—l,i)/(l+XlD) (24)
can stability be achieved with the rubber conveyor model. Since the
coal-sensor cannot be sited in the previous pass due to obstruction
by a.f.c or roof-bars, expensive stored-data computer-control is the
only way of implementing equation (24). Pending the development, proving
and exploitation of such a scheme there is therefore great incentive
to explore the nature and effect of GC(D) or, more precisely, the
response of the a.f.c to the undulating floor beneath it. The present
paper is concerned with the development of a rigorous computer simulation
model for the .a.f.c and a companion paper with an acceptable linear
transfer-operator, GC(D) for analytical studies.

Conveyor modelling

Early empirical methods

To avoid the need for scale-models in system simulation, early
attempts at estimating the fit of the a.f.c to, the cut-floor {produced

by computer simulation of GS(Dﬂ involved the skills of a draughtsman.
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He would be supplied with the recorded cut-floor profiles beneath front
and rear edges to which he would attempt to determine a realistic fit,
by eye. The two piecewise-linear a.f.c. edge profiles thus produced
would then be fed as input data to the next run of the simulation of

(%) , _
GS(D). Attempts were made in later investigations to programme the

draughtsman's rules of thumb in an attempt to eliminate this, time-

consuming manual stage of simulation. Some success was achieved but
highly undulating floors produce high interaction across a considerable
number of neighbouring a.f.c. trays so requiring a great deal of
iteration and ultimately producing much uncertainty as to the reliabi-
lity of the elementary fitting logic. Other attempts involved the con-
ceptual sub-division of trays into say, ten or more, semi-independent
sub-sections, the behaviour of which was limited by much empiricism.

Far from producing good practical responses however, such programs

generated highly impractical spiky waveforms which became accentuated
with each successive pass. It was eventually realised that a.f.c.
modelling should be attempted on a much sounder basis, undertaken at
Sheffield University and sponsored by the N.C.B., and a description
of this attempt now follows.

The use of general dynamic programming

The a.f.c. will settle on the cut floor to a condition of minimim

energy. The free angular play between the I consecutive trays may there-
fore by regarded as the I control vectors of an energy-minimising optimal
control problem subject to various height-(state-) and angular (control-)

constraints. Now whereas these constraints render true analytic solution

very difficult, they greatly assist numerical solution since they dras-
tically reduce the area of state-space (i.e. range of tray-heights) over
which an optimum need b@ sought. The technique ideally suited to this

type of problem is therefore that of general dynamic programming. The
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realisation of these elementary facts; so obvious with hindsight, has
made possible a complete breakthrough in the problem of a.f.c.
modelling.

To illustrate the method, each a.f.c. tray is, for the moment
regarded as having completely rigid side-channels and a completely
flexible (rubber) deck-plate so that the problem reduces to fitting
two independent-(uncoupled-) chains of stiff rods, eachto a single-line
floor-profile beneath. The free angular movement between 'rods' is
regarded as being hard-limited, in the along-face direction , within
the range *Ay.

Fig. 9 illustrates the variables involved in the fitting problem
and the following equations interrelate these variables. The tray
joint—heights are, working backwards from the R.H. face-end,

h(0), h(l), h(2)...h(i)...h(I) and in terms of our earlier notation,

but dropping pass number n,

Lo P . P | (25)

]

h(i) = h(L-1 Xp) i

where L = the face-length and Xp a tray-length so that
I =L/X (26)
P
Relating consecutive joint-heights and rod-tilts ¥(i) we have that
h(i-1) = h(i) + Xp y (1) (27)
if the angles are small, and the rod height h(f) at any point distant
& from the L.H. end may be expressed in terms of joint-height and rod-

tilt thus

h(2) = h(i) + (L-L+i XP)Y(i), -1 Xp < L« 1,-{i—l)xp (28)
Now the rods must not penetrate the cut floor profile y(%) so that

h(2) 2 y(R) ¢ BB L%E (29)
and furthermore the angular freedom = AK between consecutive rods

must not be exceeded so that

2p30anal (30)

[y 1) -y @E-1] s a8y , 4
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Assuming no yield of either the rods or the cut-floor the chain

of rods will settle to a profile defined by a height sequence h(o),

h(l), h(2)....h(I) such that the total potential energy of the chain

is a minimum subject to the two constraints (29) and (30). Now if

the energy of the ith rod is GEi, this is given by

GEi = mg{h(i) + h(i-1)}/2, =121 (31)
where 2 m is the mass of one tray of the a.f.c., and the total potential

energy of the last i rods is therefore
i
E, = ) OE, (32)

Now for a given h(i), Ei is a function of h(i) and the tilts
*
v(1)...y(i) and the minimum value Ei{h(i)} may therefore be obtained

in principle, by minimising Ei with respect to the sequence of variables

Y(1)...y(1) i.e.

E,{h(1)} = mfn[ﬁi{h<i),y(l),y(z)...y(i)I] (33)
Y(1) ,v(2)...y(1)
Minimising Ei in the manner implied by (33) would be enormously time
consuming however because of the vast field of search involved. Instead,
this multistage design process (an I-stage process for all I rods) may
be reduced to I much simpler single-stage decision processes by utilising

the equation of General Dynamic Programming, viz:

* %
B, {(h(1)} = min [8E {h(1),y(1)} +E,_{n(i-1)}] (34)
1 Y(i) 4 = iy

*
Thus, starting with the rightmost rod (i=1) |, El{ h(1)}

is readily computed for a range of initial heights h(l) by finding, for
each h(l) chosen, that value of y(l) which minimises SEl {calculated

from (27) and (31) with i set to 1.0} subject to the constraint (29).
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*
E {h{o)} may of course be set to zero in (34) for this one-step
o
*
optimisation. A table of El versus h(l) may thus be computed and
*
stored, along with associated values of the optimising tilt vy (1)

for each h(l) chosen.

*
A table of E2 versus h(2) may now be computed using (34) since
*
values of El are now known directly oy by interpolation for each h(2)

and Y(2) selected. For each h(2), the full range of vy (2) allowed by

*
the constraints (29) and (30) is explored and the value Y (2) giving
*
minimum 6E2 + El

*
From the E2 versus h(2) table and similar computations based on

*
equation (34), E3 may be found and the whole process repeated incre-

*
(=E2) thus found.

menting i through from 1 to I whereupon tables of EI {h(i)} and
Yz{h(i)} for 1 < 1 < I are obtained. For any selected initial condi-
tion h(I) therefore, by repeated use of the Y: tables and eguation (27)
the optimal height- and tilt-profiles h(I), h(I-1)...h(o) and Y*{I),
Y*(I-l)... Y*(l) may be immediately obtained. The fit will be accurate
to within the resolution of the height and tilt increments chosen and
provided attention is restricted to increments of say 1% of the maximum
floor wave amplitude and 1% of Ay (i.e. 100 increments of height x 200
increments of angle) at each joint, problems of computer storage and
execution time are unimportant. Using a FORTRAN IV program on an Inter-
data 3220 computer,a 1lO-tray, (lOO-sample) 20-pass simulation using a
height range of *15cm in steps of 0.5cm and 60 angular increments, some
8 k-words of storage were found to be necessary (5k-words for data). The
program was written in floating point arithmetic, requiring ten minutes
for the 20-pass simulation. Recourse to fixed-point arithmetic would
obviously have produced a far faster program executiﬁ?. ;

oublined

Fig. 10 flow-charts the sequence of computation%ﬁqualitatively

above for the general ith rod.
/
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Results
*

The two-dimensional fitting routing described above was tested
by subjecting the entire steering system simulation to an initially
disturbed cut floor profile. The coal seam was assumed to be flat,
i.e. z(n,f) = o for all n and o < £ < L and the attempts of the auto-
matic steering to restore the a.f.c to a flat horizon at y(n,%) = O

were observed. Fig. 11 shows the results obtained over a sequence of

14 passes for the following system parameters:

X/X = 0.70 R = 0.0
P
X = Q.5 = =
xl/P 0 W, W, =W
X /X = 0.25 Ay.X = lOcm
2 p ¥ p
kh = 0.50 resolution = 0.25 cm
kg = 1.00 AX/XP = 0.1 (AX = step length)

Traces for the cuts O to 4 illustrate the quality of the a.f.c. fit
produced by the dynamic programming. Accepting the 0.25cm resolution,
the routine is clearly successful and its predictions, as regards
quality of fit, difficult to challenge on empirical grounds. (The gross
inflation of the vertical height scale with respect to the horizontal
scale in Fig. 11 should, of course, be noted: this is the explanation
for the apparent variation in tray-lengths in Fig. 11. 1In practice the
small-angle assumption would not be contravened and, by plotting to
equal scgles, this apparent phenomenon would not appear).

Somewhat harder to accept is the overall system behaviour over a
large number of passes. By cuts five and six)a flatter cutting horizon
has been produced but with subsequent passes significant deterioration
takes place. Regarding lag Xl as a small additional delay, so that the
net system delay beccmes X + Xl (and hence the natural frequency of the

* The fitting problem has here been reduced to a two dimensional problem

in that interaction between the two a.f.c. side channels wvia the
deck-plate has been neglected.
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steering system is l/2(x+xl))so that its natural cycle-distance is
2(X+Xl) = 2.4 tray-lengths in this example. Oscillations of this
frequency are clearly developing by cut 14 (and indeed continue to
grow in amplitude at this frequency thereafter) so that we must con-
clude that piecewise rigidity of the a.f.c. sides is, unfortunately,
not a significant stabilising influence though it does reduce the
rate of growth of oscillations to some extent.

Stiffening the deck-plate

We now consider the effect of a stiff rather than a flexible
deckplate so that front and back a.f.c. heights hf(i) and hb(i) are
no-longer indepéndent. In addition the associated hard constraint

|a(i) - a(i-1)] < da, i =2,3,...1 (35)
on the incremental twist of the a.f.c at its joints must also be
considered. Fig. 12 defines the height- and tilt-variables describing
the position and attitude of the ith tray of the a.f.c. The corner

heights are clearly given by

hf(i) = h(i) + a(i) (w/2) (36)
hb(i) = h(i) - a(i) (W/2) (37)
hf(i-l) = h(i) + xp y(i) + a(i) (W/2) (38)

i-1) = h(i) + X (i) - i) (W/2 39
hb(l ) (1) b v (1) a(i) (w/2) (39)

In the dynamic programming, the pan-centre height h(i) is now
regarded as the state-variable but, unlike the two dimensional problem,
there are now two controls, y(i) (as before) and a(i) (in addition).
Assuming that the tray bridges all undulations between the face-and
goaffside of the cut-floor, height constraint (29) is now replaced by

h (2) >y (2) (40)

iv

and h_(%) Yb(ﬂ} (41)

*
The so called goaf is the area behind the a.f.c and roof supports

from which coal has already been removed and in which the roof is
allowed to cave in as the face advances.
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where yf(ﬁ) and yb(g) are the cut-floor profiles beneath the front
and rear edges.
The potential energy of pan i now becomes

§E, = mg{2h(i) + xpyti)} (42)
so that, at first sight only the control sequence y(1l), y(2)... y(i)
would appear to affect the total energy Ei. However, in minimising
Ei' constraints (35), (40) or (4l) may be impinged so as to limit the
range of Y(i) which may be explored. In fact, associated with each

*
Ei there will exist a floating range of optimal tilts given by

* * &*
al(i) < af(i) < a2(i)
which must be determined for every h(i) selected by twisting the tray
up and down at each vy(i), until one or other of the constraints (35),
(40) or (41) is contravened. These variable upper-and lower-limits
may be denoted by al(i) and uz(i) and their particular values associated
ak _* .* .
with y(i) by al(l) and az(l) . For checking constraint (35) it is
* *
clear that tables of ai(i—l) and Uz(i—l) must have been carried
forward from the optimisation of the i-1 step process (along with tables

* * * *
of Ei and y (i-l)and, similarly, tables of ul(i) and az(i) must be

=1
carried forward for optimising the i+l step process. The additional
search procedures now involved for the i-step process are indicated in
the flowchart of Fig. 13.

Fig. 14 shows the results obtained for a single pass trial of this
three-dimensional fitting routine. The trace shows the a.f.c. centre-
height profile h() now passing through (or strictly between) the
undulating floor peaks upon which hf(l) and hb(l) rest. The result given
is for WAa = 0.25 cm XPAY = 1Ocm. As would be expected, simulations

show that as the constraint Aa is enlarged, the a.f.c centre profile

settles to a generally lower position.
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Discussion and Conclusions

We have shown that General Dynamic Programming provides a sound
basis for simulating the behaviour of face-conveyors modelled as piece-
wise rigid sections with limited free play at the joints. Ignoring
deck-plate rigidity allows some simplification of the model and a
consequent reduction in the size of the program and data-storage area
required and, more importantly, in the execution time of the program.
Results presented for this simplified system used in conjunction with
an automatic steering system simulation predict that the piecewise
rigidity of the a.f.c does not provide an adequate stabilising force

over a large number of passes of the cutting machine. A program for

inclusion of deck-plate stiffness has been developed and shown to produce

good floor fitting. Because of the increased program execution time
necessitated by the additional search operations however, multipass
trials of the enhanced model are likely to be time consuming.

In view of the results obtained from the two-dimensional model
however our faith in piecewise rigidity (of side-channels and/or deck-
plate) as a stabilising influence on steering systems has been consi-
derably weakened. Elastic yeild and floor degradation are factors
which have so far been neglected and which are considered in a compa-
nion paper in the hope that these factors might provide the requisite
damping effects.
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model of a.f.c
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Fig: 10 Flowchart for fitting i'th pan by dynamic programming

Choose h(i) (well above cut floor)

! /

Select y(i) (largest reasonable value)

No Does pan i contact floor? Yes

= Calculate h(i-1)

1 7 N
— Is h(i~1)in range of ° o
previous table? .
Select minimum E. sefl
%*
= E, and store
Yes 1
LI |
Look-up y(i-1) from stored table
*
Store associated ¥Y(i) = Y (i)
. * . l .
— Y(i-1) - v(i) > - by? Entire range of h(i) covered?
No Yes
No
Increase 7Y(i) by Yes
large increment
—~ Decrement h(i)
: * ; Yes
Y(i-1) - v(i) < - &y? : Y J
N Transfer tables if E.
o] * 1
and Y(i) to bulk store
and output
i
Evaluate 6E; and look up E(i-1)
Seh E. = ¢ . * 1
et By T 6Ei + EG-1) Procced to 1+l stage process

{

Decrement X(i)

_— K




Sheet 1

Fig. 11 Multipass simulation resultsproduced by
two dimensional model
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Sheet 2 ‘Fig. 11 (contd.)
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Sheet 3 'Fig. 11 (cont'd)
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Fig. 13 Flowchart for fitting ith pan by three-dimensional

dynamic programming
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