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The modelling of semiflexible conveyor structures
for coal-face steering investigations

PART 2 Spatially Continuous models

*
Edwards J.B.

Introduction

Armoured flexible conveyor (a.f.c) structures used on longwall
coal-faces comprise some 100 - 200 robust steel trays loosely joined
end-to-end to permit vertical floor undulations to be followed, at
least approximately. This allows a degree of vertical steering to be
attempted by control of the height of the floor cut by the cutter-
loader machine which generally rides on thé a.f.c structure. Play in
the joints is also incorporated to permit the a.f.c to be snaked hori-
zontally onto the newly cut floor after each pass of the cutter-loader
and this permits also a degree of lateral steering to be attempted.

The word 'attempted' rather than 'achieved' is used in the cases of

both lateral and vertical steering since successful steering often proves
to be extremely difficult in practice, either manually in the absence of
considerable human skill, or automatically in the absence of highly
intelligent computer controllers.

The vertical steering problem was clearly demonstrated in a
companion papeé‘Lhere it was shown that, contrary to expectation, rigid
trays and hard limits on play, do not appear to stabilise a simple
analogue steering system. In that paper it was shown that the overall
multipass system dynamics may be considered to be a simple loop com-
prising two inter-connected subsystems GS(D), the steering system proper
and GC the a.f.c model, separated by a face-length delay L as indicated .
in Fig. 1. In Fig. 1, h represents the a.f.c height, y the cut-floor
height, & the distance measured from, say, the L.H. face-end, n the cut-,
or pass-number and D = d/df. {Preset controller reference Yr and seam

*
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undulation z(n,%) are omitted from Fig. 1 since, being external
disturbances, thesedo not affect the stability of the system when
modelled linearly: as is our intention here}.

Simplest linear model of the a.f.c

The effect of the vague concept of the a.f.c acting as some form
of floor-smoothing filter can be demonstrated quanti tively by substi-
tution of some reasonably appropriate linear transfer-operator for

Gc' After the elementary rubber-conveyor model, which merely assumes

h(n+l,2) = y(n,%) (1)
so that G_= 1.0 (2)
the simplest reasonable linear model is

{Hx D) I (nt1,2) = y(n,2) ' (3)
giving GC(D) = l/{l—(XCD)Z} (4)
Such a model would respond to a step or impulse in the cut-floor in the
manner shown in Fig. 2 which clearly bears some resemblance to the
behaviour expected from the rigid-tray model, provided a suitable ratio
XC/XP*, in the region of unity, is chosen. Although not derived on a
rigorous physical basis, the model is at least reasonable in as much as
its response is two-sided i.e. the profile h(n+l,2) is lifted either
side the disturbance, as would occur with a real a.f.c. (The behaviour
of the real a.f.c would, of course, only be symmetrical, as shown in

Fig. 2, if the floor-disturbance were applied at the centre or end of

a tray). The model transfer-operator must involve only even-powers of

D to produce the essential characteristic of two-sidedness in its tran-

sient response, as will become clear later and, for this reason, the
transfer-operator GC(D) in equation (4) is the simplest spatially-

dynamic model that could be formulated.

Xp = tray length.



Predicted effect on steering system stability

To demonstrate its effect we couple conveyor model, GC(D), as
specified by equation (4), to the simple steering system GS(D) developed
in the previous paper, Viz:

D+k. Del(X)} (5)

GS(D) = (l+XlD)/{l+Xl 5

where X is the coal-sensor delay, Xl the smoothing lag of the sensor's
filter and kh is the height gain (i.e. sensitivity) of the automatic
controller. Del ( ) denotes the delay operation. Thus, the gain around
the multipass system loop of Fig. 1 at any frequency is |G£(jw)||Gc(jw)|
and to avoid the unlimited buildup of energy in the system over repeated
passes, at any frequency then, as previously stated,

|Gs(jw)|1ec(jw)[ < 1.0 for all o (6)

Here, of course

Gs(jw) (l+xljm)/{l+xljw + k. exp (-Xjw) } (7)

and Gc(jm) 1/{1+Xim2} (8)

so that, for multipass stability:

g ; 2 2
|Gs(jm)[lGC(jm)| = 1+X 0 L

2 2 2 2 2
{1+le + kh + 2kh(coswx - Xlwsinmx)} (l+xcw )

< 1.0 for all w ()

Fig. 3 (based on computations of IGS(jw)!|GC(jm)| calculated from the
expression above) illusfrates how increasing the a.f.c decrement
distance Xc would stabilise the system by bringing the resonance peak
below unity, so satisfying condition (9). As might be expected, XC
is relatively ineffective until its value approaches delay distance X
in order of magnitude. These predictions based on frequency domain
calculations are readily confirmed by transieﬁt response simulations

computed in the manner of Section 3.
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Contrasting microscopic-and macroscopic-model predictions

Now in the preceeding paper, simulation based on a detailed,
rigid-tray chain-model predicted the persistence, not the elimination
of multipass instability following the introduction of a.f.c. stiffness.
These contradictory forecasts based on microscopic- and macroscopic-
models are therefore worrying and indicate that, despite our modelling
efforts to date, a much deeper appreciation of a.f.c dynamics is needed.
Since the simple macroscopic model GC(D) calculated from equation (4)
was intuitively - guessed rather than physiecally-derived this should
clearly be our first candidate for re-examination and in the following
Section of the paper we develop = an improved operator GC(D) based on
a sound physical structure rather than behavioural fitting i.e. we
model causes rather than isolated effects, and then examine predicted
effects in the light of experience.

A continuous elastic beam model

The model is based on the idealising assumptions that
(i) the side-channels of the a.f.c structure may be regarded as
a pair of continuous, parallel, uncoupled elastic beams (so that deck-
plate stiffness is again ignored),
(ii) the a.f.c rests on a bed of fine material (fines) overlying a
solid floor and the reaction of the 'fines' is proportional to the

compression of the bed

and(iii) the uncompressed bed if fines, produced by cut- floor degradation or

uncleared cuttings, has a constant depth along the entire face.
Fig. 4 illustrates a beam settling to a height h(g) above the flat
datum into the bed of fines, the uncompressed depth of which is denoted

by the constant d After floor-degradation, the solid floor profile

£
changes from the original height y(2) + z(&) cut by the power-loader

to v(R) + z(R) - ds' where ds is the constant. depth of solid material



degraded in the pushover process. The height above datum of the
uncompressed surface of fine material is therefore y (&) + z(2) - ds * df
=y@) +z() + df(r—l)/r since
ds = df/r (10)

where r is the bulk-density ratio of the solid/fine material. Hence,
the bed compression under the weight of the beam will be y(2) + z(%) +
de(r-1)/r - h(g).

Now if, kf is defined as the bed reaction force p.u. length p.u.

bed-compression (i.e. a parameter closely related to a conceptual

compressibility factor for the fines), then the net upward load F ()

p.u. length exerted on the beam is given by

F{) = kf{Y(E) +z(L) + df(r—l)/r ~h{&}} - w CLL)
where ( is the constant weight p.u. length of the beam. As stated in
assumption (ii), we shall regard kf as a constant. For simplicity
furthermore we assume that

kf df(r-l)/r = w (12)
which implies that on a level floor, the beam would settle back to the
height of the solid floor originally produced by the power loader. In
this way we are merely assuming that floor degradation causes no upward
biassing effect on the a.f.c. BAny such biassing caused by contravention
of equation (12) would have no destabilisng effect however, being only
an external process disturbance and not a dependent process variable.
For stability studies of this linear system therefore, assuming equation
(12) to hold is in no way restrictive.

From elementary beam theory we have that
E I d4 h(R)/d24 = F(L) (13)

where E is Young's Modulas and I the second moment of area of the beam

about its neutral axis so that combining (11),. (12) and (13) we obtain,



E1a’ n@/a’=kivie) +z0) - he)) (14)
For multipass investigations we must of course reinstate argument
n (the pass number) and since the variable h(f) in equation (14)
pertains to the a.f.c profile after the cut floor profile y&) + z(R)
has been produced we obtain

B 1 d4h(n+l,£)/d24 = kf{y(n,2)+z(n,2} - h(n+l,2)} (15)
so that, dropping external disturbance z(n,%) for stability studies

as before, we deduce finally that

(1+ (x D) Jn(m+L,0) = y(n,0) (16)

hEEE x* = B 1/k (17)
c £

or GC(D) =1/{1 + (XCD)4} (18)

in this case. This model is therefore simple, its order of complexity
being only one greater than that of the simplest possible two-sided
dynamic model postulated previously {equation (4)} and has the advantage
that it has been properly deduced from precisely defined premises. We
now examine its behaviour by simulation and analysis.

Simulation method for the beam-model (and alternative analytic models)

Transfer-operator GC(D) defined by equation (18) may be readily

partial-fractioned into the form

o.5(1+xCD//§} 0.5(1 - ch//E)
G (D) = + (19)
2
< X2D2 + ¥2X D+1 X D2 -/2xD+1
C = C c

i

or G (D) G (D) + G _(-D) (20)
c gl c

1

where G (D) = 0.5(1+X D//E')/{xzo2 + 72 X D+ 1} (21)
el c c c

From inspection of (21) we immediately recognise Gcl{D) to be a cascade
of a simple first-order phase-advancer (the numerator) and a second-
order lag (the denominator) of undamped natural frequency, Wy r and

damping ratio, &, given by



= xt (22)

I

£ 1/4f5 = 0.707 (23)

This is in contrast to the second-order model {equation (4)} which may
be partial-fractioned into the form of equation (20) but where Gcl(D)
would be a first~order lag given by

Gcl(D) = O.5/(1+XCD) (24)
Indeed all linear models generating symmetrical two-sided impulse-
responses may be decomposed in the manner of equation (20) and may be
simulated in the following segquence

(2) Pass input data y(n,%) through filter GcliD} and

store output data = hl(n,l).
(b) Reverse,input data sequence to form y(n,2-L) and
pass this through Gcl(D) to form output = hz(n,L-Q),
and store.
(c) Reverse sequence of data hz(n,L—R) to form h2(n,2)
and store.
(d) Form a.f.c profile h(n,2) by setting
h(n,2) = h (n,2) + h2(n,£) (25)
(The data-sequence reversals in steps (b) and (c) are required to effect
the reverse-time derivatives implied by argument -D in the component
transfer-operator Gcl(—D} of equation 20).

Unlike the simple model of equation (4), the beam model is slightly
oscillatory in its step response as indicated by the simulation response
of Fig. 5 and as would be expected analytically since £ < 1.0 {equation
(23) }.

Analytical predictions of the multipass system behaviour using the beam model

The analytic criterion for multipass system stability remains that
previously stated in inequality (6). Retaining the same steering-system

model (5) as used earlier but using equation (18) i.e. the elastic beam



model for Gc(jm) this criterion now becomes

l+X2m2

le_Giw) |6 (jw)] = 1 1
° © {1+x2w2+k2+2k (coswX-X_Wsinwx) } {1+(x m)4}
1 h “h 1 c

< 1.0 for all w (26)

Spectra computed from equation (26) are illustrated in Figs. 6 and 7
for kh = 0.5 with Xl = 0 and 0.5X respectively for various characteristic
distances Xc. From these curves it is clear that stability may be
achieved by increasing Xc(i.e. increasing the effective beam stiffness)
sufficiently. More precisely, as shown in Appendix 1, it is readily
deduced that, provided

X, <X (27)

L

then multipass stability may be expected with some confidence by setting
X > vk /(1-k ) (X+X ) /7 (28)
c m h h 1

if GC(D) is given by
G (D) = 1/{1+(xcn)m} , m=2,4,5...
so that, for the elastic beam model

> Yk 71k
Xc 4 kh/l kh)(X+Xl)/1T (29)

The rules of thumb (28) and (29) are only approximate since they rely
on the assumption that lag Xl has little effect on the resonance-peak
amplitude and may be lumped with delay X for calculation of the
resonant frequency, mr’ of system Gs(jw). Furthermore it is assumed

that the resonant frequency, @ _, of the composite system Gs(jw)Gc(jw)

¥

is such that

which is valid provided the resonance peak of Gs(jm) is fairly sharp com-
pared to the rate of cut-off of Gc(jm). It ig interesting to note that

in the special, but very practical case of kh = 0.5, the critical value



of X obtained with the 4th-order a.f.c model will be the same as that
c
for any other model-order, m, since kh/(l—kh) = 1.0 in this case.

Simulation results for the elastic beam model

Multipass simulations were conducted by modelling the a.f.c in
the manner described in Section 3. The results obtained are typified
by those shown in Figs. 8 and 9 which illustrate the attempted recovery
of the system from an initial unit-step-disturbance in the cut-floor at
mid face. The system parameters were xl = 0.5 X, kh = 0.5, x2 = 0 in
both cases, Fig. 8 shows the response with beams of insufficient stiff-
ness to ensure stability, i.e. XC = 0.30X while Fig. 9 demonstrates
the stable performance of a system satisfying condition (29) i.e.
X = 0.5 X. The results are in accord with the analytical predictions

c

and the inclusion of a small actuator lag X2 is found in simulation to

have little effect on the critical value of Xc.

Discussion & Conclusions

In the preceeding companion paper it was demonstrated that an
a.f.c composed of truly rigid trays freely linked and supported on a
rigid undulating floor does not appear to stabilise simple analogue
steering systems based on delayed roof or floor-sensor measurements.
This observation is in sharp contrast to the predictions, in the present
paper, of a linear analytic model based on a continous elastic beam
representation of the a.f.c. This has demonstrated that provided a
sufficiently high ratio of effective beam-stiffness to floor-compressibility
can be achieved {see equations (17) and (29)} for given steering system
parameters, then stable steering over repeated passes is
attainable.

The original object of choosing an elastic a.f.c model was to allow
approximate stability-and performance-predictions to be made analytically

rather than by exhaustive simulation, (which i$ expensive in view of the



- 10 -

numerous steering system and a.f.c parameters(kh,kg,x,xl,x2,AY,Aa,xp)
and structures available for variation and the relatively large size
and complexity of the nonlinear a.f.c fitting routine. It was hoped
that elastic yield of the beam and the powdered floor might represent
the free play in the piecewise rigid structure sufficiently closely to
allow the substitution of the simple linear model for the detailed
fitting program, at least for reducing the field of sensible parameter
change. Because of the contfégtion in the predictions, however, this
naive hope would appear to be unrealisable at this point in time. A
number of deductions of practical importance may nevertheles; be made
on the basis of the work reported in these papers.

As regards reconciling the behaviour of the discrete and continuous-
linear, models, it is clear that a measure of agreement will only be
achieved when some elasticity is incorporated into the tray-by-tray
model described in the first paper. Now when all the free play in the
joints is taken up then some elastic bending and twisting at the joints
will occur in practice despite the trays themselves remaining rigid.

It follows logically therefore that we might expect oscillations in

the cut-floor, and hence in the real a.f.c profile, to grow in an
unstable fashion, as predicted by the first paper, until the free play
is taken up and elastic yield begins. (To model this effect the dynamic
programming must now minimise the sum of the total potential-plus-strain
energy instead of potential energy alone, the strain energy per joint
being proportional to the square of the overbending-and/or overtwisting-
angle between the trays in question. Indeed work is now in hand to
incorporate such changes to the a.f.c fitting routine). Once elastic
yvield occurs, at sufficient oscillation amplitude, we may expect the
system to stabilise, i.e. perhaps to limit-cycle, because of the fairly
stiff nature of the angular-—end-stops. We may therefore view our discrete

rigid-tray model as a small-signal model of existing a.f.c structures
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and the elastic-beam model as an approximate large-signal model which

does not reproduce the small-amplitude free-play oscillations. An
evaluation of an equivalent E,I and kf for a given angular joint
stiffness and floor compressibility would, of course, need to be

made and the uncertainty of parameter k_ might pose problems.

£
Rather than being preoccupied with trying to force the models

into agreement by changing the discrete model it may, however, be

more profitable practically to adapt the a.f.c structure itself to

more closely resemble the elastic beam model by perhaps replacing
existing free joints with spring joints of suitable stiffness. The

adjective semiflexible, applied to the conveyor would thus come to

imply elastic flexibility rather than completely free movement within

hard constraints. The stabilising power of an elastic structure has
been convinecingly demonstrated in this second paper and, with hindsight,
its effect is obvious in that such a structure will have a natural ten-
dency to straighten itself (i.e. to spring straight) whereas present
structures do not, so relieving the task of the steering system to a
large extent. The springy conveyor would therefore be a largely self-
regulating process and it is well known in contrel engineering that
such processes are the easiest to stabilise.

For some time, similarities between longwall coal-cutting systems
and machine—?ools have been used to support the argument for completely
rigid a.f.c'é?)on the basis that.arigid machine bed-frame is a first
essential for the avoidance of chatter (i.e. instability), in metal
cutting. A rigid 200m bed-frame for a coal-face is, of course, an
impossibility and therefore recent attempts towards realising the machine
tool analogy have compromised by lengthening and strengthening individual
machine-support sections but still retaining a degree of freeplay, (so-

called articulationlat the joints between sections. The basic principle

of construction of the original a.f.c structure has therefore not changed
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with these developments. Indeed the concept of a completely rigid
bed-frame along the entire-face and the requirement for vertical
steering, (be it for manoeuvring,  following natural seam undulations
or merely regulating to a flat seam) are completely unreconcilable.

The natural solution, allowing steering to take place and a semi-rigid

full-face bed-frame is to adopt a continuous elastic beam type of con-
struction for the a.f.c., i.e. to build a bridge rather than a string
of pontoons.

It is interesting to also note that there is, in practice, an
increasing tendency at collieries to experiment with existing a.f.c's
by bolting various items of a.f.c furniture (e.g. face-side ramp plates
and goaf-side cable-trays) not to each a.f.c tray individually, but
across the tray-joints, thus eliminating much of the free play and
creating something of a continuous structure as proposed above.
Unfortunately, of course, the stiffness of such structures is not a
controlled-i.e. designed~parameter and bolts tend to shear if snaking
distances are kept short. Nevertheless it is reassuring to note the
convergence of theoretical and practical ideas in this respect.

Finally, on the subject of elasticity, it is worth noting that
machine haulage chains and the conveyor chains themselves provide the
a.f.c with some self-straightening tendency if deviations are not
excessive and the current changeover to rack-and pinion haulages or
the loose-mounting of a.f.c's on larger support structures (mentioned
earlier in this section) 1s clearly a step in the wrong direction as
regards elasticating the a.f.c. This factor naturally points to the
possibility of active tensioning of an a.f.c structure to achieve

literally controlled elasticity. This is, of course, receiving serious

consideration for wider application in bridge construction and may
therefore provide a basis of a.f.c stabilisation also. An investigation

of its feasibility would seem to be worthwhile in future research.
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Appendix 1

Development of rule of thumb for calculation of the critical a.f.c

decrement distance X
IE GS(D) is given by equation (5) then,if Xl = 0,it is clear that

the peak value of [Gs(jm)l occurs at resonant frequency

W, = q/X (Al.1)
and e (jw )| = 1/(1-k ) (Al.2)
s ¥ h
If 02X < X (A1.3)
then lag Xl may be regarded as additional delay, so making
w = m/(X+X]) (Al.4)
1 1

and having little effect on !Gs(jmr)l £ w_ is now given by (Al.4).

If w_q is the resonant frequency of the composite steering and conveyor

system Gs(jw) Gc(jm) then, for critical stability
j G (] = 1.0 Al.5
|6, Gu ) e, Gu )| (A1.5)
and if the resonance peak of Gs(jw) is sharp compared to the rate of

cut-off of Gc(jm) then

w =W (nl.6)
£l r

so that, from (A1.2), (Al.5) and (Al.6), we get that for critical

stability
|6 (Gu )| = 1k, ‘ (Al.7)
Now if G_(d) = 1/{1+(ch)m} m=2,4,6 (A1.8)
l6_(dw )| =6 (u,) = 1/{1+(x v )"} (A1.9)

so that from (Al.7) and (Al.9) we deduce that, for critical stability
m
~ o= sl
(chr) kh/(l kh) (al.10)

and from (Rl.4) therefore

X = /k /(1-k ) (XX ) /7 (A1.11)
c m h h 1.
For reasonable assurance of stability therefore xc must be chosen
[ :
S~
such that uf{éﬁﬁyhﬂ
> vk _/(1-k) (x+X,)/ APpy . -0 Uiy (A1.12)
B ® w p/ (1K) (XX ) /m fff:{} . Vil .
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Fig. 1 Representing the multipass system as two
loop-interconnected subsystems
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FIg. 2 Impulse-and step-responses of simplest
linear dynamic model of a.f.c
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