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SOFTWA RE IS  BECO M IN G the backbone of modern 
society. Most human activity is either software-enabled 
or managed entirely through software, with examples 
ranging from health care and transportation to 
commerce and manufacturing. All increasingly 

reflect one common requirement—

the ability to adapt continuously in re-

sponse to changes in application objec-

tives and the environment in which the 

software operates. This reflects the vi-

sion of autonomic computing in which 

systems respond to change by evolving 

in a self-managed manner while run-

ning and providing service.4,9,20 

Dependability is another key re-

quirement. As software use increases 

in business-critical and safety-critical 

applications, so, too, does the adverse 
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 key insights

    Human activity increasingly relies 

on software being able to make self-

adaptation decisions on the fly. 

    Offline approaches to verifying 

correctness before software deployment 

must be accompanied by continual 

online verification of the software’s  

self-adaptation decisions. 

    Quantitative verification at runtime 

supports continual re-verification of key 

requirements of self-adaptive software. 
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effect of unreliable or unpredictable 

software. Damaging effects, from loss 

of business to loss of human life, are 

no longer uncommon and must be 

addressed. 

The requirements of adaptiveness 

and dependability are traditionally 

the concern of different research com-

munities, with researchers involved 

in autonomic computing developing 

adaptive software systems for the past 

decade.19,30 In contrast, several math-

ematically based modeling and analy-

sis techniques are used to improve 

software dependability, performance, 

and operating cost (such as energy 

consumption). Techniques include 

model checking10 and quantitative 

verification, a mathematically based 

technique for establishing the correct-

ness, performance, and reliability of 

systems exhibiting stochastic behav-

ior.21 They prevent errors from reach-

ing the software implementation or at 

least remove them when a new version 

of the software is deployed. 

The only way to achieve such de-

pendable software adaptation is to 

unite autonomic computing and 

mathematically based modeling 

and analysis techniques. Quantita-

tive verification and model checking 

must also be used at runtime to pre-

dict and identify requirement viola-

tions, as well as to plan the adaptation 

steps necessary to prevent or recover 

from violations and obtain irrefutable 

proof the reconfigured software com-

plies with its requirements. Software 

tools implementing flexible and low-

overhead variants of both techniques 

must run automatically to support all 

stages of the adaptation process. The 

result is software capable of both self-

adaptation to changes in its operating 

environment and continual verifica-

tion of its requirements compliance. 

Here, we explore this new self-ad-

aptation paradigm, explaining how 

quantitative verification can extend its 

operation to runtime. We then outline 

a range of complementary approaches 

that use formal verification techniques 

in runtime scenarios. Looking ahead, 

we present the main research chal-

lenges that must be addressed to make 

formal verification at runtime efficient 

and effective. 

Reference Framework 

Software evolution has been recog-

nized as a distinctive feature since the 

early 1970s, most notably by Belady 

and Lehman.24 Evolution is perhaps 

the most important feature distin-

guishing software from the other ar-

tifacts produced by humans. To shed 

light on software evolution, we refer to 

Zave’s and Jackson’s seminal work on 

requirements31 in which a clear dis-

tinction was made between the world 

and the machine. The machine is the 

system to be developed through soft-

ware; the environment is the portion 

of the world that is to be affected by 

the machine (see Figure 1). The ulti-

mate purpose of building a machine 

is always found in the world; require-

ments are statements on the desired 

phenomena in the world and should 

not refer to phenomena within the 

machine that concern only implemen-

tation. Some world phenomena are 

shared with the machine, controlled 

either by the world and observed by 

the machine or by the machine and 

observed by the world. A specifica-

tion (for the machine) is a prescriptive 

statement of the relationships among 

Figure 1. The world and the machine. 
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Figure 2. A medical-assistance application with specification S, domain assumptions D, and requirements R that satisfy Equation 1 in the 

main text. 
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The ultimate 
purpose of building 
a machine is always 
found in the world. 

shared phenomena that must be en-

forced by the system to be developed. 

In developing a machine, software 

engineers must first derive a speci-

fication from the requirements and 

so must understand the relevant as-

sumptions to be made about the en-

vironment in which the machine is 

expected to work, namely those affect-

ing achievement of desired results; 

these assumptions are typically called 

domain knowledge; Zave and Jack-

son31 said it this way: “The primary 

role of domain knowledge is to bridge 

the gap between requirements and 

specifications.” 

The set of relevant assumptions 

captured by domain knowledge en-

ables software engineers to prove 

(through the machine) they are able 

to achieve the desired requirements. 

Now let R and S be (prescriptive) state-

ments describing the requirements 

and the specification in some formal 

notation, respectively, and let D be 

the (descriptive) formal statements 

specifying the domain assumptions. 

If S and D are satisfied and consistent, 

then a software engineer should be 

able to prove R also holds 

 S, DR. (1) 

Figure 2 outlines how this formal-

ism applies to a simplified version 

of a medical-assistance system from 

Calinescu et al.5 The specification S, 

domain assumptions D, and require-

ments R of the system satisfy Equa-

tion 1. The specification S describes 

a service-based implementation of 

the medical-assistance system, in-

cluding the ability to analyze patient 

data (provided by service s2) or send a 

patient-requested alarm (service s1). 

If service s2 is invoked, the result of 

the analysis determines whether the 

system should change the drugs pre-

scribed to the patient (service s3), send 

an alarm (service s1), or do nothing. 

D describes the domain assumptions 

in terms of failure rates and service 

costs s1, s2, and s3. The requirements R 

for the application include reliability-

related requirements, defining, say, 

the maximum tolerated probability of 

failure for a specific sequence of ser-

vice invocations. 

Domain assumptions play a funda-

mental role in building systems that 

satisfy requirements. Engineers must 

know in advance the workings of the 

environment in which their software 

will be embedded, since the software 

is able to achieve the expected goals 

under only certain assumptions of the 

behavior of the domain described by 

D. Should these assumptions be invali-

dated, the software developed will most 

likely fail to satisfy its requirements. 

Software evolution deals with 

changes affecting the machine, or 

specification S, that then cause chang-

es in the implementation. Software 

evolution is triggered by a violation 

of the correctness criterion in Equa-

tion 1 discovered after the software is 

released. This violation may occur for 

any of three reasons: 
 ˲ The implemented machine does 

not satisfy the specification; 
 ˲ The behavior of the environment 

diverges from the domain assump-

tions D made when the specification 

was devised; and 
 ˲ The requirements R do not cap-

ture the goals software users wish to 

achieve in the world. 

A response to these changes is tra-

ditionally handled by modifying the 

software offline during a maintenance 

phase. The first reason corresponds 

to corrective maintenance. The sec-

ond corresponds to adaptive mainte-

nance; that is, S must be changed to 

satisfy the requirements under the 

newly discovered domain properties. 

And the third corresponds to perfec-

tive maintenance; that is, changes in 

R require that S also changes; for ex-

ample, business goals might evolve 

over time or new features might be 

requested by software users. Because 

maintenance is an offline activity, 

software is returned to the develop-

ment stage where the necessary 

changes are analyzed, prioritized, and 

scheduled. Changes are then handled 

by modifying the application’s specifi-

cation, design, and implementation. 

The evolved system is then verified, 

typically through some kind of regres-

sion testing, and redeployed. 

Offline maintenance does not meet 

the needs of emerging application 

scenarios in which systems must run 

continuously and be capable of adapt-

ing autonomously the moment the 

need for change is detected. Here, we 

are interested in changes in the envi-
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ronment D, using the term “self-adap-

tive software” to indicate that software 

has autonomous capabilities through 

which it tries to satisfy Equation 1 

as changes to D are detected. These 

changes are typically due to one of two 

factors: 
 ˲ High uncertainty about the behav-

ior of the environment when the appli-

cation is developed; and
 ˲ High variability in the behavior of 

the environment as the application 

runs. 

Here, we focus mainly on system 

properties that can be expressed 

quantitatively and require quantita-

tive verification (such as reliability, 

performance, and energy consump-

tion); software must guarantee re-

quirements increasingly expressed in 

terms of these properties and that are 

heavily influenced by the way the en-

vironment behaves, so environmental 

assumptions are increasingly crucial 

to software engineering; for example, 

assumptions concerning user-behav-

ior profiles may affect overall system 

performance. 

Self-adaptation can also be ex-

plained with reference to autonomic 

computing’s use of a monitor-analyze-

plan-execute, or MAPE, closed control 

loop20 to achieve self-management in 

computer systems. The four stages of 

the MAPE loop are enabled by knowl-

edge combining assumptions D and 

specification S. This knowledge, up-

dated continually through environ-

ment and system monitoring, helps 

analyze whether the user-specified re-

quirements R continue to be satisfied. 

When they are no longer satisfied, ap-

propriate system changes are planned 

and executed automatically. 

Formal verification techniques like 

quantitative verification and model 

checking can provide the support re-

quired to integrate flexibility achieved 

through adaptation with dependabil-

ity for critical software systems across 

the stages of the MAPE loop. We ex-

plore this support in the next section 

for quantitative verification and later 

for a range of related software model-

ing, specification, and analysis tech-

niques. 

Quantitative Verification  

at Runtime 

Quantitative verification is a math-

ematically based technique for ana-

lyzing the correctness, performance, 

and reliability of systems exhibiting 

stochastic behavior.21 Technique us-

ers define a finite mathematical model 

of a system and analyze the model’s 

compliance with system requirements 

that are expressed formally in tempo-

ral logics extended with probabilities 

and costs/rewards; example require-

ments established through this analy-

sis include the probability that a fault 

occurs within a specified time period 

and the expected response time of a 

software system under a given work-

load. Figure 3 outlines the quantitative 

verification of reliability requirements 

using discrete-time Markov chains, or 

DTMCs, to express specification S and 

domain assumptions D, and probabi-

listic computation tree logic, or PCTL, 

to formalize requirements R. Quanti-

tative verification of performance re-

quirements can be performed through 

complementary formalisms (such as 

continuous-time Markov chains, or 

CTMCs, and continuous stochastic 

logic, or CSL), and cost-related require-

ments can be verified through variants 

of these formalisms augmented with 

costs/rewards.21 

Quantitative verification at run-

time can support three stages of the 

software-adaptation process: 

Monitoring. Precise, rigorous mod-

eling of domain assumptions D (see 

Figure 4) is achievable by augmenting 

the software system with a component 

responsible for the continuous updat-

ing of the parameters of a quantitative 

model of the system based on observa-

tions of its behavior; for example, for 

the DTMC in Figure 4, this component 

can update the service failure rates x, 

y, and z in line with the observed ser-

vice behavior through the Bayesian 

learning methods introduced by Cali-

nescu et al.6 and Epifani et al.12 Like-

wise, the parameters of the CTMCs 

typically used to model performance-

related aspects of software systems 

can be updated through Kalman filter 

estimators.32 

Analysis. A quantitative verifica-

tion tool can be invoked automati-

cally to detect (sometimes predict) 

requirement violations. Violation de-

tection depends on the tool verifying 

the formally specified requirements 

R against the quantitative model ob-

tained by combining specification S 

with updated domain assumptions D 

from the monitoring stage. Figure 4 

outlines the formalization of the rela-

tion S, D  R that enables the medical-

assistance system mentioned earlier; 

in it, the specification S is modeled 

as a DTMC, comprising states for all 

possible system configurations (rep-

resented as circles) and state transi-

tions (represented as edges annotated 

with the probabilities of the associat-

ed transitions). The domain assump-

tions D are variables that parameter-

ize the model, reflecting the fact that 

service failure rates and costs may 

vary in real-world systems. Finally, 

the requirements R are expressed in 

probabilistic computation tree logic 

extended with the rewards operator R 

for models annotated with costs. 

When a requirement r ε R is no lon-

ger satisfied by the updated model, 

two scenarios are possible: the obser-

vation that triggered the model update 

was caused by observing system oper-

ations related to r, so the violation of 

requirement r is detected; and the up-

dated model that does not satisfy r was 

obtained by observing system opera-

tions unrelated to this requirement, 

so the violation of requirement r is 

predicted; for example, an observed 

failure of the alarm service from the 

system in Figure 2 might yield an up-

dated model that ceases to satisfy 

requirement R1 from Figures 2 and 

4. The alarm-service invocation that 

failed could have been initiated by ei-

ther of two events: an abnormal result 

from the analysis service, in which the 

analysis detects the violation of R1; or 

a patient request, in which the viola-

tion of R1 is predicted. 

Planning. This stage is carried 

out when the analysis stage finds re-

quirements (such as response time, 

availability, and cost) are or will be 

violated; as discussed earlier, adaptive 

maintenance leading to appropriate 

updates of the specification S is neces-

sary in such circumstances. Quantita-

tive verification can support planning 

by suggesting adaptive maintenance 

steps, execution of which ensures the 

system continues to satisfy its require-

ments despite the changes identified 

in the monitoring phase; for example, 

suppose the medical-assistance sys-

tem in Figure 2 could select its alarm 
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Figure 3. Quantitative verification of reliability requirements. 

Figure 4. Formalization of S,D  R for the medical-assistance application in Figure 2. 
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Service-based systems are software applications built from loosely coupled services from multiple providers; used in various 
application domains, including e-commerce, online banking, and health care, they operate in environments characterized by 
frequent changes. As a result, their effectiveness depends increasingly on their ability to self-adapt. One way to devise self-adaptive 
service-based systems is to dynamically select the services that implement their operations from sets of functionally equivalent 
services associated with different levels of performance, reliability, and cost. 

The figure here outlines a self-adaptive medical-assistance service-based system from Calinescu et al.5 and Epifani et al.12 In the 
upper-left corner are the system’s specification S, domain assumptions D, and requirements R at the initial time instant t1 when 
the requirements are satisfied, or S, D  R. However, as the failure rate of the alarm service used by the system, or s2

1 , is observed to 
increase through Bayesian learning in the monitoring stage of the MAPE autonomic computing loop, the runtime use of quantitative 
verification in the analysis stage establishes that the requirements are violated at time instant t2: S, D′  R does not hold. To remedy 
this violation, the planning stage of the MAPE loop uses quantitative verification to select another service for the alarm operation. 
Accordingly, a new specification S’ is employed to ensure the requirements are again satisfied at time instant t3: S′, D′  R.

Self-Adaptive Service-Based Systems

Quantitative verification at runtime supports self-adaptation in service-based systems. 
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and analysis services dynamically 

from among the services provided by 

multiple third parties. Although func-

tionally equivalent, these services are 

typically characterized by different 

levels of reliability, performance, and 

cost. A quantitative verification tool 

invoked automatically at runtime sup-

ports such dynamic service selection 

by establishing which combinations 

of alarm and analysis services, or 

specifications S, satisfy the require-

ments R at each time instant (see the 

sidebar “Self-Adaptive Service-Based 

Systems”). 

We used the probabilistic mod-

el checker PRISM18 to validate the 

quantitative-verification-at-runtime 

approach described here in domains 

ranging from dynamic power man-

agement7 and data-center resource 

allocation8 to quality-of-service opti-

mization in service-based systems.5,12 

Success in these projects suggests that 

employing quantitative verification in 

runtime scenarios can augment soft-

ware systems with self-adaptation ca-

pabilities in predictable ways. 

Using Markovian models at a care-

fully chosen level of abstraction en-

abled these adaptive systems to op-

erate with acceptable overheads for 

small- and medium-size systems. Scal-

ing to larger systems requires faster 

runtime-verification algorithms; our 

recent research into devising such al-

gorithms, exploiting the fact that the 

system model and verified require-

ments typically undergo only small 

changes from one adaptation step to 

the next, shows great promise.13,22 

Filieri et al.13 showed it is possible 

to pre-compute the probabilities asso-

ciated with reliability-related require-

ments of a software system as symbolic 

expressions parameterized by domain 

assumptions; for example, the “prob-

ability that an invocation of the analy-

sis service is followed by an alarm fail-

ure” associated with requirement R1 

for the system in Figure 4 can be pre-

computed as P1=(1–y)×0.12×x, where 

the parameters x and y represent the 

failure rates of the alarm service and 

the analysis service, respectively. This 

“once-only” pre-computation step is 

complemented by a runtime-verifi-

cation step in which the symbolic ex-

pressions are evaluated for the actual 

values of the system parameters. In 

formal verification for achieving run-

time certification, describing an en-

abling framework, including runtime 

use of “methods related to model 

checking.”29 The range of correctness 

properties (such as safety and reach-

ability) supported by this framework 

complements the reliability- and per-

formance-related properties that can 

be managed through our quantitative 

verification at runtime. 

Recent advances in using models 

at runtime provide additional evi-

dence that runtime use of models is 

able to support software adaptation; 

for example, Morin et al.26 described a 

method for developing adaptive soft-

ware by predefining a set of system 

configurations, using aspect-oriented 

model reasoning to select the most 

suitable configuration at runtime. 

Different configurations may be as-

sociated with different quality-of-ser-

vice properties or sets of supported 

services, an approach described as a 

“dynamic software product line.”26 

Similar results have been obtained 

through architectural models as a 

guide for the software-adaptation 

process.14,15 They employ general and 

user-defined constraint-verification 

techniques to change the architecture 

of a software system at a coarse level 

(such as by switching between two ver-

sions of a user interface). In contrast, 

runtime use of quantitative verifica-

tion also supports fine-grain adapta-

tion of system parameters (such as by 

continually adjusting the amount of 

CPU allocated to the services of a soft-

ware system).5 

The runtime-verification commu-

nity proposes that program-execution 

traces obtained through monitoring 

be analyzed at runtime to establish 

in real time whether the software sat-

isfies or violates correctness require-

ments expressed through various 

formalisms, including temporal log-

ics,25,27 state machines,2 regular ex-

pressions,1 rule systems,3 and action-

based contract languages.23 However, 

unlike these approaches, quantitative 

verification at runtime supports soft-

ware self-adaptation through quan-

titative verification and continuous 

monitoring of environment phenom-

ena. Dynamic software composition 

(such as based on AI planning tech-

niques28) is another related research 

the medical-assistance example, the 

runtime verification step consists of 

calculating the new value of P1 each 

time the domain assumptions about 

the parameters x or y change as a re-

sult of runtime monitoring. The over-

heads associated with the pre-compu-

tation step are comparable to those of 

standard quantitative verification, but 

the overhead to evaluate a set of sym-

bolic expressions in the runtime veri-

fication step is negligible irrespective 

of system size. 

The approach taken by Kwiat-

kowska et al.22 achieves similar im-

provement through an incremental 

technique for verifying Markov deci-

sion processes (subsuming DTMCs 

discussed earlier) for the case where 

the probability value could vary at 

runtime. This approach exploits the 

fact that small changes in the mod-

el being verified often affect only a 

small subset of its strongly connected 

components, or SCCs. By reusing the 

verification results associated with 

the SCCs unaffected by change from 

one adaptation step to the next, the 

approach substantially reduces the 

computation cost of re-verifying the 

requirement. A symbolic implemen-

tation of the approach by Kwiatowska 

et al.22 was shown to reduce the veri-

fication time by up to two orders of 

magnitude. 

These scalable-verification ap-

proaches enable quantitative verifi-

cation at runtime to develop larger 

adaptive software systems than was 

previously possible. 

Related Work 

For the past decade, several research 

communities have contributed to-

ward integration of formal verifica-

tion techniques into the runtime-

software-adaptation process, with 

their results complementing our 

own work on quantitative verification 

at runtime; for example, Rushby’s 

work on runtime certification29 em-

phasized the need for runtime con-

figuration, arguing that any software 

reconfiguration at runtime must be 

accompanied by certification of the 

dependability of the new configura-

tion. Building on Crow’s and Rushby’s 

previous research concerning a theory 

of fault detection, identification, and 

reconfiguration,11 Rushby proposed 
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area supporting adaptive reactions 

triggered by requirements violations. 

Research Opportunities 

Adaptive software development is an 

active research area that has produced 

a number of contributions beyond ad 

hoc practices. However, despite them, 

much remains to be done to support 

development of predictable adaptive 

software through a formal, systematic, 

disciplined approach. The remainder 

of the article elaborates on the main 

research areas where significant work 

is required to improve integration of 

formal verification techniques into 

software adaptation; the list is not ex-

haustive but reflects the key challeng-

es encountered or foreseen in our own 

work and that of the research commu-

nities mentioned earlier. 

We expect future software systems 

to be able to use discovery and model 

learning to operate in environments 

populated by active devices and ap-

pliances offering services and to be 

highly dynamic; for example, the con-

text might change due to movement 

in space or to new services being de-

ployed and discovered dynamically. 

These services (and the components 

providing them) might not know each 

other but still try to understand what 

they can do and possibly cooperate to 

achieve common goals. But how can a 

component learn what another com-

ponent might offer, given different 

levels of visibility into the internals of 

the components? And how far can dis-

covery and model learning go in the 

case of black-box visibility when only 

observations of a component’s exter-

nal behavior are available? Our pre-

liminary work in this area aims to infer 

the functional behavior of a (state-

ful) component from observations of 

inputs and outputs at the level of its 

API.16 This inference applies suitable 

learning strategies based largely on an 

assumption of regularity in the behav-

ior of components. It has been tested 

successfully in the case of Java data 

abstractions,17 but further research is 

needed to make the approach general 

and practical. 

Another area of research concerns 

integration of formal verification and 

self-adaptation, aiming to develop a 

repertoire of techniques that provides 

timely reaction to detected violations 

of the requirements. The strategies 

to follow in bringing this integration 

closer are very much domain- and 

application-dependent; for example, 

the techniques for speeding up run-

time quantitative verification are jus-

tified when the time needed by the 

traditional variant of the technique 

is incompatible with the time needed 

for reaction. A catalogue of possible 

reaction strategies should be avail-

able at runtime, with one approach in-

volving adaptation within the model-

driven framework. Since models are 

“kept alive” at runtime, once the need 

for adaptive reactions is identified, 

it would be useful for the software to 

perform self-adaptation at the model 

level, then replay model-driven devel-

opment to derive an implementation 

through a chain of automatic trans-

formations. If changes are anticipated 

at design time, they may be reified as 

variation points in the models; varia-

tions would then be generated dy-

namically to achieve adaptation. In 

the more challenging case of unantici-

pated changes, it might still be pos-

sible to devise a number of adaptation 

strategies and tactics the software can 

attempt at runtime. 

Yet another research area address-

es problems associated with new 

execution platforms (such as cloud 

computing). So far we have assumed 

that changes originate either in the re-

quirements or in the domain assump-

tions, but with cloud computing, the 

infrastructure on which a machine 

works can also change. To exploit the 

full potential of the service paradigm, 

we must complement the traditional 

service-oriented architecture view of 

software-as-a-service with a view of 

the platform and infrastructure run-

ning the software as services, too. Us-

ing a single abstraction to simultane-

ously reason about both the machine 

and the infrastructure may pave the 

way to “holistic” solutions. Self-adap-

tion cannot be seen at only the appli-

cation level; the research community 

must conceive analysis techniques 

and identify solutions to drive self-

adaption of the overall system. Adap-

tations at the application level must 

consider the implications on the low-

er levels (such as component and in-

frastructure); conversely, these levels 

should provide a way for the applica-

These scalable-
verification 
approaches  
enable quantitative 
verification at 
runtime to develop 
larger adaptive 
software systems 
than was previously 
possible. 



contributed articles

SEPTEMBER 2012  |   VOL.  55  |   NO.  9  |   COMMUNICATIONS OF THE ACM     77

tion to execute effectively. Adaptation 

becomes much more of an inter-level 

problem than a set of isolated intra-

level solutions. 

Cloud infrastructures also impose 

a shift from client-side, proprietary 

computing resources to shared re-

sources. Web services forced software 

engineers to address the distributed 

ownership of their applications; the 

cloud is now forcing them to address 

the distributed ownership of the in-

frastructure used to run their applica-

tions. To some extent, problems as-

sociated with distributed ownership 

are already considered by application 

developers using services run and 

shared by others. Clouds complicate 

such problems significantly, with ex-

ecution of one application competing 

against execution of another, turn-

ing self-verification and self-adaption 

into infrastructurewide requirements. 

Conclusion 

We discussed the runtime use of quan-

titative verification and model check-

ing as ways to obtain dependable self-

adaptive software. Our experience on a 

range of projects shows that quantita-

tive verification at runtime can support 

software adaptation by identifying 

and, sometimes, predicting require-

ment violations; supporting rigorous 

planning of the reconfiguration steps 

self-adaptive software employs to re-

cover from such requirement viola-

tions; and providing irrefutable proof 

the selected reconfiguration steps are 

correct. The result is software sup-

porting not only automated changes 

but their continual formal analysis to 

verify that software continues to meet 

requirements as it evolves. 
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