
This is a repository copy of Self-adaptive software needs quantitative verification at
runtime.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/75703/

Version: Published Version

Article:

Calinescu, Radu orcid.org/0000-0002-2678-9260, Ghezzi, Carlo, Kwiatkowska, Marta et
al. (1 more author) (2012) Self-adaptive software needs quantitative verification at runtime.
Communications of the ACM. pp. 69-77. ISSN 0001-0782

https://doi.org/10.1145/2330667.2330686

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

SEPTEMBER 2012 | VOL. 55 | NO. 9 | COMMUNICATIONS OF THE ACM 69

SOFTWA RE IS BECO M IN G the backbone of modern
society. Most human activity is either software-enabled
or managed entirely through software, with examples
ranging from health care and transportation to
commerce and manufacturing. All increasingly

reflect one common requirement—

the ability to adapt continuously in re-

sponse to changes in application objec-

tives and the environment in which the

software operates. This reflects the vi-

sion of autonomic computing in which

systems respond to change by evolving

in a self-managed manner while run-

ning and providing service.4,9,20

Dependability is another key re-

quirement. As software use increases

in business-critical and safety-critical

applications, so, too, does the adverse

Self-Adaptive
Software
Needs
Quantitative
Verification
at Runtime

DOI:10.1145/2330667.2330686

Continually verify self-adaptation decisions
taken by critical software in response to
changes in the operating environment.

BY RADU CALINESCU, CARLO GHEZZI,

MARTA KWIATKOWSKA, AND RAFFAELA MIRANDOLA

 key insights

 Human activity increasingly relies

on software being able to make self-

adaptation decisions on the fly.

 Offline approaches to verifying

correctness before software deployment

must be accompanied by continual

online verification of the software’s

self-adaptation decisions.

 Quantitative verification at runtime

supports continual re-verification of key

requirements of self-adaptive software.

70 COMMUNICATIONS OF THE ACM | SEPTEMBER 2012 | VOL. 55 | NO. 9

contributed articles

effect of unreliable or unpredictable

software. Damaging effects, from loss

of business to loss of human life, are

no longer uncommon and must be

addressed.

The requirements of adaptiveness

and dependability are traditionally

the concern of different research com-

munities, with researchers involved

in autonomic computing developing

adaptive software systems for the past

decade.19,30 In contrast, several math-

ematically based modeling and analy-

sis techniques are used to improve

software dependability, performance,

and operating cost (such as energy

consumption). Techniques include

model checking10 and quantitative

verification, a mathematically based

technique for establishing the correct-

ness, performance, and reliability of

systems exhibiting stochastic behav-

ior.21 They prevent errors from reach-

ing the software implementation or at

least remove them when a new version

of the software is deployed.

The only way to achieve such de-

pendable software adaptation is to

unite autonomic computing and

mathematically based modeling

and analysis techniques. Quantita-

tive verification and model checking

must also be used at runtime to pre-

dict and identify requirement viola-

tions, as well as to plan the adaptation

steps necessary to prevent or recover

from violations and obtain irrefutable

proof the reconfigured software com-

plies with its requirements. Software

tools implementing flexible and low-

overhead variants of both techniques

must run automatically to support all

stages of the adaptation process. The

result is software capable of both self-

adaptation to changes in its operating

environment and continual verifica-

tion of its requirements compliance.

Here, we explore this new self-ad-

aptation paradigm, explaining how

quantitative verification can extend its

operation to runtime. We then outline

a range of complementary approaches

that use formal verification techniques

in runtime scenarios. Looking ahead,

we present the main research chal-

lenges that must be addressed to make

formal verification at runtime efficient

and effective.

Reference Framework

Software evolution has been recog-

nized as a distinctive feature since the

early 1970s, most notably by Belady

and Lehman.24 Evolution is perhaps

the most important feature distin-

guishing software from the other ar-

tifacts produced by humans. To shed

light on software evolution, we refer to

Zave’s and Jackson’s seminal work on

requirements31 in which a clear dis-

tinction was made between the world

and the machine. The machine is the

system to be developed through soft-

ware; the environment is the portion

of the world that is to be affected by

the machine (see Figure 1). The ulti-

mate purpose of building a machine

is always found in the world; require-

ments are statements on the desired

phenomena in the world and should

not refer to phenomena within the

machine that concern only implemen-

tation. Some world phenomena are

shared with the machine, controlled

either by the world and observed by

the machine or by the machine and

observed by the world. A specifica-

tion (for the machine) is a prescriptive

statement of the relationships among

Figure 1. The world and the machine.

The world

The machineDomain properties

Shared phenomena

Specification

Requirements

Figure 2. A medical-assistance application with specification S, domain assumptions D, and requirements R that satisfy Equation 1 in the

main text.

R

s3

s�

drugService

alarmService

result
?

analysis

s2

S D

Service

s1 0.04

s2 0.0015

change
drug

ok

Service

request

?
patient-requested
alarm

patient
data

analysis

alarm

Failure
rate

s3 0.0012

Cost, |=
2.5

9.3

0.1

R1 : The probability that an invocation

of the analysis service is followed by

an alarm failure is at most P1 = 0.005.

R2 : The probability that a service

failure ever occurs during the lifetime

of the system is at most P2 = 0.14.

R3 : The expected cost of handling

a request does not exceed 10.

. . .

contributed articles

SEPTEMBER 2012 | VOL. 55 | NO. 9 | COMMUNICATIONS OF THE ACM 71

The ultimate
purpose of building
a machine is always
found in the world.

shared phenomena that must be en-

forced by the system to be developed.

In developing a machine, software

engineers must first derive a speci-

fication from the requirements and

so must understand the relevant as-

sumptions to be made about the en-

vironment in which the machine is

expected to work, namely those affect-

ing achievement of desired results;

these assumptions are typically called

domain knowledge; Zave and Jack-

son31 said it this way: “The primary

role of domain knowledge is to bridge

the gap between requirements and

specifications.”

The set of relevant assumptions

captured by domain knowledge en-

ables software engineers to prove

(through the machine) they are able

to achieve the desired requirements.

Now let R and S be (prescriptive) state-

ments describing the requirements

and the specification in some formal

notation, respectively, and let D be

the (descriptive) formal statements

specifying the domain assumptions.

If S and D are satisfied and consistent,

then a software engineer should be

able to prove R also holds

 S, DR. (1)

Figure 2 outlines how this formal-

ism applies to a simplified version

of a medical-assistance system from

Calinescu et al.5 The specification S,

domain assumptions D, and require-

ments R of the system satisfy Equa-

tion 1. The specification S describes

a service-based implementation of

the medical-assistance system, in-

cluding the ability to analyze patient

data (provided by service s2) or send a

patient-requested alarm (service s1).

If service s2 is invoked, the result of

the analysis determines whether the

system should change the drugs pre-

scribed to the patient (service s3), send

an alarm (service s1), or do nothing.

D describes the domain assumptions

in terms of failure rates and service

costs s1, s2, and s3. The requirements R

for the application include reliability-

related requirements, defining, say,

the maximum tolerated probability of

failure for a specific sequence of ser-

vice invocations.

Domain assumptions play a funda-

mental role in building systems that

satisfy requirements. Engineers must

know in advance the workings of the

environment in which their software

will be embedded, since the software

is able to achieve the expected goals

under only certain assumptions of the

behavior of the domain described by

D. Should these assumptions be invali-

dated, the software developed will most

likely fail to satisfy its requirements.

Software evolution deals with

changes affecting the machine, or

specification S, that then cause chang-

es in the implementation. Software

evolution is triggered by a violation

of the correctness criterion in Equa-

tion 1 discovered after the software is

released. This violation may occur for

any of three reasons:
 ˲ The implemented machine does

not satisfy the specification;
 ˲ The behavior of the environment

diverges from the domain assump-

tions D made when the specification

was devised; and
 ˲ The requirements R do not cap-

ture the goals software users wish to

achieve in the world.

A response to these changes is tra-

ditionally handled by modifying the

software offline during a maintenance

phase. The first reason corresponds

to corrective maintenance. The sec-

ond corresponds to adaptive mainte-

nance; that is, S must be changed to

satisfy the requirements under the

newly discovered domain properties.

And the third corresponds to perfec-

tive maintenance; that is, changes in

R require that S also changes; for ex-

ample, business goals might evolve

over time or new features might be

requested by software users. Because

maintenance is an offline activity,

software is returned to the develop-

ment stage where the necessary

changes are analyzed, prioritized, and

scheduled. Changes are then handled

by modifying the application’s specifi-

cation, design, and implementation.

The evolved system is then verified,

typically through some kind of regres-

sion testing, and redeployed.

Offline maintenance does not meet

the needs of emerging application

scenarios in which systems must run

continuously and be capable of adapt-

ing autonomously the moment the

need for change is detected. Here, we

are interested in changes in the envi-

72 COMMUNICATIONS OF THE ACM | SEPTEMBER 2012 | VOL. 55 | NO. 9

contributed articles

ronment D, using the term “self-adap-

tive software” to indicate that software

has autonomous capabilities through

which it tries to satisfy Equation 1

as changes to D are detected. These

changes are typically due to one of two

factors:
 ˲ High uncertainty about the behav-

ior of the environment when the appli-

cation is developed; and
 ˲ High variability in the behavior of

the environment as the application

runs.

Here, we focus mainly on system

properties that can be expressed

quantitatively and require quantita-

tive verification (such as reliability,

performance, and energy consump-

tion); software must guarantee re-

quirements increasingly expressed in

terms of these properties and that are

heavily influenced by the way the en-

vironment behaves, so environmental

assumptions are increasingly crucial

to software engineering; for example,

assumptions concerning user-behav-

ior profiles may affect overall system

performance.

Self-adaptation can also be ex-

plained with reference to autonomic

computing’s use of a monitor-analyze-

plan-execute, or MAPE, closed control

loop20 to achieve self-management in

computer systems. The four stages of

the MAPE loop are enabled by knowl-

edge combining assumptions D and

specification S. This knowledge, up-

dated continually through environ-

ment and system monitoring, helps

analyze whether the user-specified re-

quirements R continue to be satisfied.

When they are no longer satisfied, ap-

propriate system changes are planned

and executed automatically.

Formal verification techniques like

quantitative verification and model

checking can provide the support re-

quired to integrate flexibility achieved

through adaptation with dependabil-

ity for critical software systems across

the stages of the MAPE loop. We ex-

plore this support in the next section

for quantitative verification and later

for a range of related software model-

ing, specification, and analysis tech-

niques.

Quantitative Verification

at Runtime

Quantitative verification is a math-

ematically based technique for ana-

lyzing the correctness, performance,

and reliability of systems exhibiting

stochastic behavior.21 Technique us-

ers define a finite mathematical model

of a system and analyze the model’s

compliance with system requirements

that are expressed formally in tempo-

ral logics extended with probabilities

and costs/rewards; example require-

ments established through this analy-

sis include the probability that a fault

occurs within a specified time period

and the expected response time of a

software system under a given work-

load. Figure 3 outlines the quantitative

verification of reliability requirements

using discrete-time Markov chains, or

DTMCs, to express specification S and

domain assumptions D, and probabi-

listic computation tree logic, or PCTL,

to formalize requirements R. Quanti-

tative verification of performance re-

quirements can be performed through

complementary formalisms (such as

continuous-time Markov chains, or

CTMCs, and continuous stochastic

logic, or CSL), and cost-related require-

ments can be verified through variants

of these formalisms augmented with

costs/rewards.21

Quantitative verification at run-

time can support three stages of the

software-adaptation process:

Monitoring. Precise, rigorous mod-

eling of domain assumptions D (see

Figure 4) is achievable by augmenting

the software system with a component

responsible for the continuous updat-

ing of the parameters of a quantitative

model of the system based on observa-

tions of its behavior; for example, for

the DTMC in Figure 4, this component

can update the service failure rates x,

y, and z in line with the observed ser-

vice behavior through the Bayesian

learning methods introduced by Cali-

nescu et al.6 and Epifani et al.12 Like-

wise, the parameters of the CTMCs

typically used to model performance-

related aspects of software systems

can be updated through Kalman filter

estimators.32

Analysis. A quantitative verifica-

tion tool can be invoked automati-

cally to detect (sometimes predict)

requirement violations. Violation de-

tection depends on the tool verifying

the formally specified requirements

R against the quantitative model ob-

tained by combining specification S

with updated domain assumptions D

from the monitoring stage. Figure 4

outlines the formalization of the rela-

tion S, D  R that enables the medical-

assistance system mentioned earlier;

in it, the specification S is modeled

as a DTMC, comprising states for all

possible system configurations (rep-

resented as circles) and state transi-

tions (represented as edges annotated

with the probabilities of the associat-

ed transitions). The domain assump-

tions D are variables that parameter-

ize the model, reflecting the fact that

service failure rates and costs may

vary in real-world systems. Finally,

the requirements R are expressed in

probabilistic computation tree logic

extended with the rewards operator R

for models annotated with costs.

When a requirement r ε R is no lon-

ger satisfied by the updated model,

two scenarios are possible: the obser-

vation that triggered the model update

was caused by observing system oper-

ations related to r, so the violation of

requirement r is detected; and the up-

dated model that does not satisfy r was

obtained by observing system opera-

tions unrelated to this requirement,

so the violation of requirement r is

predicted; for example, an observed

failure of the alarm service from the

system in Figure 2 might yield an up-

dated model that ceases to satisfy

requirement R1 from Figures 2 and

4. The alarm-service invocation that

failed could have been initiated by ei-

ther of two events: an abnormal result

from the analysis service, in which the

analysis detects the violation of R1; or

a patient request, in which the viola-

tion of R1 is predicted.

Planning. This stage is carried

out when the analysis stage finds re-

quirements (such as response time,

availability, and cost) are or will be

violated; as discussed earlier, adaptive

maintenance leading to appropriate

updates of the specification S is neces-

sary in such circumstances. Quantita-

tive verification can support planning

by suggesting adaptive maintenance

steps, execution of which ensures the

system continues to satisfy its require-

ments despite the changes identified

in the monitoring phase; for example,

suppose the medical-assistance sys-

tem in Figure 2 could select its alarm

contributed articles

SEPTEMBER 2012 | VOL. 55 | NO. 9 | COMMUNICATIONS OF THE ACM 73

Figure 3. Quantitative verification of reliability requirements.

Figure 4. Formalization of S,D  R for the medical-assistance application in Figure 2.

, |=

RS D

x = 0.04

y = 0.0015

{patient-requested
alarm}

z = 0.0012

{alarm service}
{failed alarm}

{failed
drug
service}

{change drug
service}

{result}

{request}

{patient data
analysis} {analysis

service}

{failed
analysis}

0.2

0.8

y

1-x

z

1-y 1-z

0.12

c1 = 2.5

c2 = 9.3

c3 = 0.1

c1

c2

c3

1 x

1

1

1

1

0.43 0.451
{ok}

R1 : “analysis-service” ⇒

P≤0.005 [¬request U failed-alarm]

R2 : P≤0.14 [true U failed-alarm ∨

failed-analysis ∨ failed-drug-service]

R3 : R≤10 [true U ok ∨ alarm-service ∨

change-drug-service ∨ failed-analysis]

. . .

74 COMMUNICATIONS OF THE ACM | SEPTEMBER 2012 | VOL. 55 | NO. 9

contributed articles

Service-based systems are software applications built from loosely coupled services from multiple providers; used in various
application domains, including e-commerce, online banking, and health care, they operate in environments characterized by
frequent changes. As a result, their effectiveness depends increasingly on their ability to self-adapt. One way to devise self-adaptive
service-based systems is to dynamically select the services that implement their operations from sets of functionally equivalent
services associated with different levels of performance, reliability, and cost.

The figure here outlines a self-adaptive medical-assistance service-based system from Calinescu et al.5 and Epifani et al.12 In the
upper-left corner are the system’s specification S, domain assumptions D, and requirements R at the initial time instant t1 when
the requirements are satisfied, or S, D  R. However, as the failure rate of the alarm service used by the system, or s2

1 , is observed to
increase through Bayesian learning in the monitoring stage of the MAPE autonomic computing loop, the runtime use of quantitative
verification in the analysis stage establishes that the requirements are violated at time instant t2: S, D′  R does not hold. To remedy
this violation, the planning stage of the MAPE loop uses quantitative verification to select another service for the alarm operation.
Accordingly, a new specification S’ is employed to ensure the requirements are again satisfied at time instant t3: S′, D′  R.

Self-Adaptive Service-Based Systems

Quantitative verification at runtime supports self-adaptation in service-based systems.

contributed articles

SEPTEMBER 2012 | VOL. 55 | NO. 9 | COMMUNICATIONS OF THE ACM 75

and analysis services dynamically

from among the services provided by

multiple third parties. Although func-

tionally equivalent, these services are

typically characterized by different

levels of reliability, performance, and

cost. A quantitative verification tool

invoked automatically at runtime sup-

ports such dynamic service selection

by establishing which combinations

of alarm and analysis services, or

specifications S, satisfy the require-

ments R at each time instant (see the

sidebar “Self-Adaptive Service-Based

Systems”).

We used the probabilistic mod-

el checker PRISM18 to validate the

quantitative-verification-at-runtime

approach described here in domains

ranging from dynamic power man-

agement7 and data-center resource

allocation8 to quality-of-service opti-

mization in service-based systems.5,12

Success in these projects suggests that

employing quantitative verification in

runtime scenarios can augment soft-

ware systems with self-adaptation ca-

pabilities in predictable ways.

Using Markovian models at a care-

fully chosen level of abstraction en-

abled these adaptive systems to op-

erate with acceptable overheads for

small- and medium-size systems. Scal-

ing to larger systems requires faster

runtime-verification algorithms; our

recent research into devising such al-

gorithms, exploiting the fact that the

system model and verified require-

ments typically undergo only small

changes from one adaptation step to

the next, shows great promise.13,22

Filieri et al.13 showed it is possible

to pre-compute the probabilities asso-

ciated with reliability-related require-

ments of a software system as symbolic

expressions parameterized by domain

assumptions; for example, the “prob-

ability that an invocation of the analy-

sis service is followed by an alarm fail-

ure” associated with requirement R1

for the system in Figure 4 can be pre-

computed as P1=(1–y)×0.12×x, where

the parameters x and y represent the

failure rates of the alarm service and

the analysis service, respectively. This

“once-only” pre-computation step is

complemented by a runtime-verifi-

cation step in which the symbolic ex-

pressions are evaluated for the actual

values of the system parameters. In

formal verification for achieving run-

time certification, describing an en-

abling framework, including runtime

use of “methods related to model

checking.”29 The range of correctness

properties (such as safety and reach-

ability) supported by this framework

complements the reliability- and per-

formance-related properties that can

be managed through our quantitative

verification at runtime.

Recent advances in using models

at runtime provide additional evi-

dence that runtime use of models is

able to support software adaptation;

for example, Morin et al.26 described a

method for developing adaptive soft-

ware by predefining a set of system

configurations, using aspect-oriented

model reasoning to select the most

suitable configuration at runtime.

Different configurations may be as-

sociated with different quality-of-ser-

vice properties or sets of supported

services, an approach described as a

“dynamic software product line.”26

Similar results have been obtained

through architectural models as a

guide for the software-adaptation

process.14,15 They employ general and

user-defined constraint-verification

techniques to change the architecture

of a software system at a coarse level

(such as by switching between two ver-

sions of a user interface). In contrast,

runtime use of quantitative verifica-

tion also supports fine-grain adapta-

tion of system parameters (such as by

continually adjusting the amount of

CPU allocated to the services of a soft-

ware system).5

The runtime-verification commu-

nity proposes that program-execution

traces obtained through monitoring

be analyzed at runtime to establish

in real time whether the software sat-

isfies or violates correctness require-

ments expressed through various

formalisms, including temporal log-

ics,25,27 state machines,2 regular ex-

pressions,1 rule systems,3 and action-

based contract languages.23 However,

unlike these approaches, quantitative

verification at runtime supports soft-

ware self-adaptation through quan-

titative verification and continuous

monitoring of environment phenom-

ena. Dynamic software composition

(such as based on AI planning tech-

niques28) is another related research

the medical-assistance example, the

runtime verification step consists of

calculating the new value of P1 each

time the domain assumptions about

the parameters x or y change as a re-

sult of runtime monitoring. The over-

heads associated with the pre-compu-

tation step are comparable to those of

standard quantitative verification, but

the overhead to evaluate a set of sym-

bolic expressions in the runtime veri-

fication step is negligible irrespective

of system size.

The approach taken by Kwiat-

kowska et al.22 achieves similar im-

provement through an incremental

technique for verifying Markov deci-

sion processes (subsuming DTMCs

discussed earlier) for the case where

the probability value could vary at

runtime. This approach exploits the

fact that small changes in the mod-

el being verified often affect only a

small subset of its strongly connected

components, or SCCs. By reusing the

verification results associated with

the SCCs unaffected by change from

one adaptation step to the next, the

approach substantially reduces the

computation cost of re-verifying the

requirement. A symbolic implemen-

tation of the approach by Kwiatowska

et al.22 was shown to reduce the veri-

fication time by up to two orders of

magnitude.

These scalable-verification ap-

proaches enable quantitative verifi-

cation at runtime to develop larger

adaptive software systems than was

previously possible.

Related Work

For the past decade, several research

communities have contributed to-

ward integration of formal verifica-

tion techniques into the runtime-

software-adaptation process, with

their results complementing our

own work on quantitative verification

at runtime; for example, Rushby’s

work on runtime certification29 em-

phasized the need for runtime con-

figuration, arguing that any software

reconfiguration at runtime must be

accompanied by certification of the

dependability of the new configura-

tion. Building on Crow’s and Rushby’s

previous research concerning a theory

of fault detection, identification, and

reconfiguration,11 Rushby proposed

76 COMMUNICATIONS OF THE ACM | SEPTEMBER 2012 | VOL. 55 | NO. 9

contributed articles

area supporting adaptive reactions

triggered by requirements violations.

Research Opportunities

Adaptive software development is an

active research area that has produced

a number of contributions beyond ad

hoc practices. However, despite them,

much remains to be done to support

development of predictable adaptive

software through a formal, systematic,

disciplined approach. The remainder

of the article elaborates on the main

research areas where significant work

is required to improve integration of

formal verification techniques into

software adaptation; the list is not ex-

haustive but reflects the key challeng-

es encountered or foreseen in our own

work and that of the research commu-

nities mentioned earlier.

We expect future software systems

to be able to use discovery and model

learning to operate in environments

populated by active devices and ap-

pliances offering services and to be

highly dynamic; for example, the con-

text might change due to movement

in space or to new services being de-

ployed and discovered dynamically.

These services (and the components

providing them) might not know each

other but still try to understand what

they can do and possibly cooperate to

achieve common goals. But how can a

component learn what another com-

ponent might offer, given different

levels of visibility into the internals of

the components? And how far can dis-

covery and model learning go in the

case of black-box visibility when only

observations of a component’s exter-

nal behavior are available? Our pre-

liminary work in this area aims to infer

the functional behavior of a (state-

ful) component from observations of

inputs and outputs at the level of its

API.16 This inference applies suitable

learning strategies based largely on an

assumption of regularity in the behav-

ior of components. It has been tested

successfully in the case of Java data

abstractions,17 but further research is

needed to make the approach general

and practical.

Another area of research concerns

integration of formal verification and

self-adaptation, aiming to develop a

repertoire of techniques that provides

timely reaction to detected violations

of the requirements. The strategies

to follow in bringing this integration

closer are very much domain- and

application-dependent; for example,

the techniques for speeding up run-

time quantitative verification are jus-

tified when the time needed by the

traditional variant of the technique

is incompatible with the time needed

for reaction. A catalogue of possible

reaction strategies should be avail-

able at runtime, with one approach in-

volving adaptation within the model-

driven framework. Since models are

“kept alive” at runtime, once the need

for adaptive reactions is identified,

it would be useful for the software to

perform self-adaptation at the model

level, then replay model-driven devel-

opment to derive an implementation

through a chain of automatic trans-

formations. If changes are anticipated

at design time, they may be reified as

variation points in the models; varia-

tions would then be generated dy-

namically to achieve adaptation. In

the more challenging case of unantici-

pated changes, it might still be pos-

sible to devise a number of adaptation

strategies and tactics the software can

attempt at runtime.

Yet another research area address-

es problems associated with new

execution platforms (such as cloud

computing). So far we have assumed

that changes originate either in the re-

quirements or in the domain assump-

tions, but with cloud computing, the

infrastructure on which a machine

works can also change. To exploit the

full potential of the service paradigm,

we must complement the traditional

service-oriented architecture view of

software-as-a-service with a view of

the platform and infrastructure run-

ning the software as services, too. Us-

ing a single abstraction to simultane-

ously reason about both the machine

and the infrastructure may pave the

way to “holistic” solutions. Self-adap-

tion cannot be seen at only the appli-

cation level; the research community

must conceive analysis techniques

and identify solutions to drive self-

adaption of the overall system. Adap-

tations at the application level must

consider the implications on the low-

er levels (such as component and in-

frastructure); conversely, these levels

should provide a way for the applica-

These scalable-
verification
approaches
enable quantitative
verification at
runtime to develop
larger adaptive
software systems
than was previously
possible.

contributed articles

SEPTEMBER 2012 | VOL. 55 | NO. 9 | COMMUNICATIONS OF THE ACM 77

tion to execute effectively. Adaptation

becomes much more of an inter-level

problem than a set of isolated intra-

level solutions.

Cloud infrastructures also impose

a shift from client-side, proprietary

computing resources to shared re-

sources. Web services forced software

engineers to address the distributed

ownership of their applications; the

cloud is now forcing them to address

the distributed ownership of the in-

frastructure used to run their applica-

tions. To some extent, problems as-

sociated with distributed ownership

are already considered by application

developers using services run and

shared by others. Clouds complicate

such problems significantly, with ex-

ecution of one application competing

against execution of another, turn-

ing self-verification and self-adaption

into infrastructurewide requirements.

Conclusion

We discussed the runtime use of quan-

titative verification and model check-

ing as ways to obtain dependable self-

adaptive software. Our experience on a

range of projects shows that quantita-

tive verification at runtime can support

software adaptation by identifying

and, sometimes, predicting require-

ment violations; supporting rigorous

planning of the reconfiguration steps

self-adaptive software employs to re-

cover from such requirement viola-

tions; and providing irrefutable proof

the selected reconfiguration steps are

correct. The result is software sup-

porting not only automated changes

but their continual formal analysis to

verify that software continues to meet

requirements as it evolves.

Acknowledgments

This research was partially fund-

ed by the European Commission

Programme IDEAS-ERC, Project

227977-SMScom, by the U.K. Engi-

neering and Physical Sciences Re-

search Council Grants EP/F001096/1

and EP/H042644/1, by the European

Commission FP 7 project CONNECT

(IST 231167), and by the ERC Ad-

vanced Grant VERIWARE.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren,
L., Kuzins, S., Lhotak, O., de Moor, O., Sereni, D.,
Sittampalam, G., and Tibble, J. Adding trace

Software Engineering, Volume 6013 of Lecture Notes
in Computer Science. Springer, Berlin/Heidelberg,
2010, 233–247.

18. Hinton, A., Kwiatkowska, M., Norman, G., and
Parker, D. PRISM: A tool for automatic verification
of probabilistic systems. In Proceedings of the 12th
International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, Volume
3920 of Lecture Notes in Computer Science, H.
Hermanns and J. Palsberg, Eds. Springer, Berlin/
Heidelberg, 2006, 441–444.

19. Huebscher, M.C. and McCann, J.A. A survey of
autonomic computing: Degrees, models, and
applications. ACM Computing Surveys 40, 3 (Aug.
2008), 1–28.

20. Kephart, J.O. and Chess, D.M. The vision of autonomic
computing. Computer 36, 1 (Jan. 2003), 41–50.

21. Kwiatkowska, M. Quantitative verification: Models,
techniques, and tools. In Proceedings of the Sixth
Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium
Foundations of Software Engineering (Dubrovnik,
Croatia, Sept. 3–7). ACM Press, New York, 2007,
449–458.

22. Kwiatkowska, M., Parker, D., and Qu, H. Incremental
quantitative verification for Markov decision
processes. In Proceedings of the 2011 IEEE/IFIP
International Conference on Dependable Systems
and Networks (Hong Kong, June 27–30). IEEE
Computer Society, Los Alamitos, CA, 2011, 359–370.

23. Kyas, M., Prisacariu, C., and Schneider, G. Run-time
monitoring of electronic contracts. In Proceedings
of the Sixth International Symposium on Automated
Technology for Verification and Analysis (Seoul, Oct.
20–23). Springer-Verlag, Berlin/Heidelberg, 2008,
397–407.

24. Lehman, M.M. and Belady, L.A., Eds. Program
Evolution: Processes of Software Change. Academic
Press Professional, Inc., San Diego, 1985.

25. Leucker, M. and Schallhart, C. A brief account of
runtime verification. Journal of Logic and Algebraic
Programming 78, 5 (May 2009), 293–303.

26. Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., and
Solberg, A. Models@run.time to support dynamic
adaptation. Computer 42, 10 (Oct. 2009), 44–51.

27. Pnueli, A. and Zaks, A. PSL model checking and
runtime verification via testers. In Proceedings of the
14th International Symposium on Formal Methods
(Hamilton, Canada, Aug. 21–27). Springer-Verlag,
Berlin/Heidelberg, 2006, 573–586.

28. Rao, J. and Su, X. A survey of automated Web service
composition methods. In Semantic Web Services and
Web Process Composition, Volume 3387 of Lecture
Notes in Computer Science, J. Cardoso and A. Sheth,
Eds. Springer, Berlin/Heidelberg, 2005, 43–54.

29. Rushby, J.M. Runtime certification. In Proceedings
of the Eighth International Workshop on Runtime
Verification, Volume 5289 of Lecture Notes in
Computer Science, M. Leucker, Ed. (Budapest, Mar.
30). Springer-Verlag, Berlin/Heidelberg, 2008, 21–35.

30. Salehie, M. and Tahvildari, L. Self-adaptive
software: Landscape and research challenges. ACM
Transactions on Autonomous and Adaptive Systems
4, 2 (May 2009), 14:1–14:42.

31. Zave, P. and Jackson, M. Four dark corners of
requirements engineering. Transactions on Software
Engineering and Methodology 6, 1 (Jan. 1997), 1–30.

32. Zheng, T., Woodside, M., and Litoiu, M. Performance
model estimation and tracking using optimal filters.
IEEE Transactions on Software Engineering 34, 3
(May-June 2008), 391–406.

Radu Calinescu (Radu.Calinescu@york.ac.uk) is a
senior lecturer in large-scale complex IT systems in the
Department of Computer Science, University of York, U.K.

Carlo Ghezzi (Carlo.Ghezzi@polimi.it) is a professor
and chair of software engineering in the Dipartimento di
Elettronica e Informazione, Politecnico di Milano, Italy,
and president of Informatics Europe.

Marta Kwiatkowska (Marta.Kwiatkowska@cs.ox.ac.uk)
is a professor of computing systems and fellow of Trinity
College, University of Oxford, U.K.

Raffaela Mirandola (mirandola@elet.polimi.it) is an
associate professor in the Dipartimento di Elettronica e
Informazione, Politecnico di Milano, Italy.

© 2012 ACM 0001-0782/12/09 $15.00

matching with free variables to AspectJ. In
Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications (San Diego,
Oct. 16–20). ACM Press, New York, 2005, 345–364.

2. Barringer, H. and Havelund, K. A Scala DSL for
trace analysis. In FM 2011: Formal Methods,
Volume 6664 of Lecture Notes in Computer
Science, M. Butler and W. Schulte, Eds. Springer,
Berlin/Heidelberg, 2011, 57–72.

3. Barringer, H., Havelund, K., Rydeheard, D., and
Groce, A. Rule systems for runtime verification:
A short tutorial. In Run-time Verification, Volume
5779 of Lecture Notes in Computer Science, S.
Bensalem and D. Peled, Eds. Springer, Berlin/
Heidelberg, 2009, 1–24.

4. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H.,
Kienle, H.M., Litoiu, M., Muller, H.A., Pezze, M., and
Shaw, M. Engineering self-adaptive systems through
feedback loops. In Software Engineering for Self-
Adaptive Systems, Volume 5525 of Lecture Notes in
Computer Science. Springer, Berlin/Heidelberg, 2009,
48–70.

5. Calinescu, R., Grunske, L., Kwiatkowska, M.,
Mirandola, R., and Tamburrelli, G. Dynamic QoS
management and optimization in service-based
systems. IEEE Transactions on Software Engineering
37, 3 (May–June 2011), 387–409.

6. Calinescu, R., Johnson, K., and Rafiq, Y. Using
observation ageing to improve Markovian model
learning in QoS engineering. In Proceedings of the
second ACM/SPEC International Conference on
Performance Engineering (Karlsruhe, Germany, Mar.
14–16). ACM Press, New York, 2011, 505–510.

7. Calinescu, R. and Kwiatkowska, M. CADS*:
Computer-aided development of self-* systems.
In Fundamental Approaches to Software
Engineering, Volume 5503 of Lecture Notes in
Computer Science, M. Chechik and M. Wirsing, Eds.
Springer, Berlin/Heidelberg, 2009, 421–424.

8. Calinescu, R. and Kwiatkowska, M. Using quantitative
analysis to implement autonomic IT systems. In
Proceedings of the 31st International Conference
on Software Engineering (Vancouver, Canada, May
16–24). IEEE Computer Society Press, Washington,
D.C., 2009, 100–110.

9. Cheng, B.H. et al. Software engineering for self-
adaptive systems: A research roadmap. In Software
Engineering for Self-Adaptive Systems, B.H. Cheng,
R. Lemos, H. Giese, P. Inverardi, and J. Magee, Eds.
Springer-Verlag, Berlin/Heidelberg, 2009, 1–26.

10. Clarke. E.M. and Lerda, F. Model checking: Software
and beyond. Journal of Universal Computer Science
13, 5 (May 2007), 639–649.

11. Crow, J. and Rushby, J. Model-Based Reconfiguration:
Diagnosis and Recovery. NASA Contractor Report
4596. NASA Langley Research Center, Hampton, VA,
May 1994; work performed by SRI International.

12. Epifani, I., Ghezzi, C., Mirandola, R., and Tamburrelli,
G. Model evolution by run-time adaptation. In
Proceedings of the 31st International Conference
on Software Engineering (Vancouver, Canada, May
16–24). IEEE Computer Society Press, Washington,
D.C., 2009, 111–121.

13. Filieri, A., Ghezzi, C., and Tamburrelli, G. Run-time
efficient probabilistic model checking. In Proceedings
of the 33rd International Conference on Software
Engineering (Honolulu, May 21–28). IEEE Computer
Society Press, New York, 2011, 341–350.

14. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F.,
Lund, K., and Gjorven, E. Using architecture models
for runtime adaptability. IEEE Software 23, 2 (Mar.
2006), 62–70.

15. Garlan, D. and Schmerl, B.R. Using architectural
models at runtime: Research challenges. In
Proceedings of the first European Workshop on
Software Architecture, Volume 3047 of Lecture
Notes in Computer Science, F. Oquendo, B. Warboys,
and R. Morrison, Eds. (St. Andrews, Scotland, May
21–22). Springer-Verlag, Berlin/Heidelberg, 2004,
200–205.

16. Ghezzi, C., Mocci, A., and Monga, M. Synthesizing
intensional behavior models by graph
transformation. In Proceedings of the 31st
International Conference on Software Engineering
(Vancouver, Canada, May 16–24). IEEE Computer
Society, Washington, D.C., 2009, 430–440.

17. Ghezzi, C., Mocci, A., and Salvaneschi, G. Automatic
cross-validation of multiple specifications: A case
study. In Proceedings of Fundamental Approaches to

