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ASYMPTOTIC ESTIMATES FOR INTERPOLATION AND CONSTRAINED
APPROXIMATION IN H2 BY DIAGONALIZATION OF TOEPLITZ OPERATORS

Laurent Baratchart, José Grimm, Juliette Leblond, Jonathan R. Partington

Sharp convergence rates are provided for interpolation and approximation schemes in the Hardy
space H? that use band-limited data. By means of new explicit formulae for the spectral decomposition of
certain Toeplitz operators, sharp estimates for Carleman and Krein—-Nudel’man approximation schemes are
derived. In addition, pointwise convergence results are obtained. An illustrative example based on experi-
mental data from a hyperfrequency filter 1s provided.

1 Notation

Let T denote the unit circle and D the open unmit disk. We write T = I U J, the union of two disjoint
arcs, say one of which is open for definiteness. Without loss of generality, we can take I = (e7*%, %) and
J = [€%%,e'(?"9)] where 0 < a < 7.

For an interval E C Tor E C R and 1 < p < oo, we denote by LP(E) the familiar Lebesgue
space and by [|.||z»(z) the corresponding norm; the symbol ( , )z2(z) indicates the scalar product in L%(E).
The Sobolev space W1P(E) consists of functions in LP(E) having a derivative in the distributional sense
that belongs to LP(E); since E is 1-dimensional in our case, a function belongs to W?(E) if, and only
if, it coincides a.e. on E with some absolutely continuous function whose derivative lies in L?(E) (see, for
example, [11, thm VIIL.2]). When k is an integer strictly greater than 1, the space W*?(E) is defined
inductively to consist of functions in LP(E) whose distributional derivative lies in W*~1P(E). Whenever f
is defined on some open subset of T, we let f’ be its ordinary derivative with respect to 8. More generally
the superscript ’ denotes the derivative for functions of a real variable.

We designate by H? the Hardy space with exponent 2 of the unit disk, consisting of functions in
L?(T) whose Fourier coefficients of strictly negative index do vanish. Such functions have a Poisson extension
in ID which 1s not just harmonic but in fact holomorphic, and one recovers the function from its extension by
taking non-tangential limits a.e. on T (see e.g. [15, 22, 23]). For that reason, with a slight abuse of notation,
we regard H? both as a subset of L?(T) and as a Hilbert space of holomorphic functions on ID.

It is well-known that log |g| belongs to L!(T) whenever g lies in H? and g is not the zero function.

This entails that an H2-function is uniquely defined by the values it assumes on a subset of T of positive



Lebesgue measure. Conversely, whenever m € L?(T) is a positive function such that logm € L'(T), the

function

¥(2) = exp { ! / eZ“logm(t) dt} , z€D (1)

ﬂ TE" —2
lies in H? and is called the (normalized) outer function associated with m [15, 22, 23]; here, and elsewhere,

for I' C T, the notation fr‘ indicates that we integrate over those ¢ with e** € T'. Granted the normalization

condition (0) > 0, the outer function associated with m is characterized by two facts, namely:
(i) || =m ae on T,
(i) among H2-functions that satisfy (i), ¥ is largest-in-modulus pointwise on ID.

Intuitively, outer functions should be regarded as those Hardy functions having a well-defined logarithm on
T.

For E C T, we write H|2E to mean the space of traces on E of H? functions. More generally, the
subscript |g indicates restriction to E.

We denote by H2 the orthogonal complement of H? in L?(T), consisting of functions whose
Fourier coefficients of non-negative index vanish. Subsequently, we let Py : L%(T) — H? be the orthogonal

projection, and

¢: H?> — H? (2)

g +— Prz(xs9) (3)

be the Toeplitz operator with symbol x s, the characteristic function of J. Since

(69, R)ra(ry = (Pra(xs9), h)psery = (xs9, M) za(ry = (9, R)12(s), 9,k € H?,

1t is clear that ¢ is a strictly positive self-adjoint operator; in fact, it has no point spectrum and its spectrum
is [0, 1] (see [22]).

The Landau notations big O and little o will be given their standard meaning for comparison of
functions, namely f = O(g) as £ — zo means that limsup,_,, |f(z)/g9(z)| < co and f = o(g) as z — xo

means that lim, ., f(z)/g(z) = 0. The notation f ~ g as ¢ — zo will be used to express the property that
limy 2, f(2)/9(2) = 1.

2 Introduction

In [2, 6, 8, 17, 24], a family of bounded extremal problems was studied that generalizes classical dual ex-
tremal problems in H? to the case where the approximation is sought on a proper subset of T. Existence
and uniqueness results are available there, together with a characterization of solutions leading to convergent
numerical algorithms. In this paper, we shall be concerned exclusively with p = 2, in which case the bounded

extremal problem in question can be stated as follows:

(BEP) given f € L%(I), ¥ € L%*(J), and M > 0, find g = gg € H? to minimize ||f — gllz2(r) under the
constraint || ¥ — gl|z2) < M.



This question was originally considered in [17] when f = 0, in [2] when ¥ = 0, and generally
in [6] where the connection to Carleman’s interpolation formulas [3, 21] was also stressed. An extension to
more abstract function spaces has been carried out in [19]. We refer to [13] for a recent survey of this and
related approximation problems.

Apart from their theoretical interest, such problems have several physical motivations. For ex-
ample, they occur in signal deconvolution and linear systems identification from partial frequency-response
measurements [2, 8, 16, 20], as well as in the study of inverse 2-D Dirichlet—-Neumann problems such as
those occurring in fault detection [7]. More generally, the question of approximating a function on an arc
by one which is analytic in a prescribed region of the plane arises in many inverse problems involving 1-D
Fourier transforms or 2-D Laplacians. Typically, one could regard f as the measured or designed behaviour
on I of some H2-function, ¥ as a reference behaviour for that function on J, and M as a tolerance on the
unmodelled energy one 1s willing to allow off I in order to have a better fit on I between the data f and the
model gg.

In [2, 6, 19], it is established that there always exists a unique solution gg¢ to (BEP); moreover
| — gg||lz2(s) = M, unless f is the trace on I of some H2-function h such that ||k — V||z2(7) < M in which
case gg = h of course. In the present paper, we study the decrease of ||f — gu||z2(r) relative to the increase
of M. We shall distinguish according whether f ¢ H|21 or f € H|21’ the two situations being closely related

but quite different in character.

Approximation: When f ¢ H|21’ we refer to (BEP) as the approzimation problem. Under this assumption
If — gellz>(r) goes to zero if, and only +f M goes to infinity; this follows easily from the density of
H|21 in L?(I) and the weak-compactness of balls in H? [2]. In this case it can be proved (see [6]) that
|¥ —gg||z>(s) = M so that, by uniqueness of the solution, || f —g¢||z2(z) is a strictly decreasing function
of M for fixed f and ¥, that may as well be inverted to regard M as strictly decreasing function of
|f — gellz2(r). The approximation problem is the one encountered in practice. Indeed, if one thinks
again of f as the result of certain measurements or computations to represent an H2-function on I,
the unavoidable experimental or numerical errors will prevent f from ever being exactly the trace of
an H2-function. Therefore the modelling error ||f — gw||z2(1) may become small only if M goes large,
and a trade-off has to be made in which the increase of M relative to the decrease of ||f — gul|z2(r)

plays a central role that motivates the present study.

Specifically, letting for simplicity e = ||f — gq,||%2(l.) denote the approximation error, we shall obtain
asymptotic formulas for M as a function of e when the latter goes to zero, that are essentially sharp
with respect to some Sobolev-type assumptions for f on I (¢f. Corollaries 4.5 and 4.6). We also
treat the situation where f is a meromorphic function in the disk of the form h/q with h € H? and
g a trigonometric polynomial. This is a case where f is ultra-smooth, not only on I but also in
a 2-dimensional neighborhood of it, and a very important one in practice since it comprises rational
functions, in particular trigonometric polynomials. In this connection, it is significant that the increase
of M is much slower than before. As a byproduct of the analysis, we also get that gg()) converges
pointwise a.e. on [ to f when f has absolutely continuous derivative. Upper estimates of this kind

were obtained previously in [5], but they were rather pessimistic in view of Theorem 4.3.

Interpolation: When f € H21’ we refer to (BEP) as the interpolation problem. In this case, for simplicity, we
allow ourselves a slight abuse of notation in that we will continue to denote by f the H2-function defined

on the whole of T. With this convention, ||f — gg||z>(7) decreases strictly to zero as M increases to



||f —¥||£2(s) and vanishes identically for M > ||f —¥|2(); this is again a straightforward consequence
of the weak-compactness of balls in H2. From a constructive point of view, the interpolation problem
1s not so interesting since the slightest error in the numerical representation of f on I will destroy
1ts analytic character and bring us back to an approximation problem whose answer will depend
on ¥ and M in a crucial manner. This is but one way of regarding the classical ill-posedness of
recovering analytic functions from incomplete boundary data [18]. However, the interpolation problem
is interesting from a mathematical viewpoint because the set of solutions for M < [|f — ¥||z2(s)
coincides with an approximating family introduced in [21] which is itself an outgrowth of classical
recovery schemes dating back to Carleman [3]. This connection, noted in [6], is perhaps unexpected
since [21] is not concerned with optimality properties of the family in question. Our contribution here
will be to show that ||f —gg||z2(7) tends to zero exponentially fast as M increases to || f — ¥||z2(s), and
subsequently that gg converges to f pointwise a.e. on T if f has an absolutely continuous derivative
there. Because gy was merely known to converge in H? so far, this yields a new piece of information

on a rather old interpolation scheme.

The present paper dwells on the fact that the solution to (BEP) can be expressed in terms of a
real parameter A € (—1, +o0) playing the role of a Lagrange multiplier, ¢f. [2, 6, 19]. More precisely, if we

fet f I 0 I
~ on ~ on
F={ = , @
0 onJ ¥ onJ

and if f is not the trace on I of a H2-function (again denoted by f) such that ||f — V||z2(5) < M, then the

solution gg to (BEP) assumes the form
g3 = ga(N) = (1+2¢)" P (F+ (1 + 1)) (5)

where ¢ is the Toeplitz operator defined in (2) and A € (—1,+00) is some real number such that ||¥ —
gw(A)||z2(5) = M. Although X does not appear in the statement of the problem, (BEP) is most conveniently
studied if we use (5) to define gg(A) as a function of A € (—1,400), and if we introduce

ex(N) = |If —gsWlZoryy  Ma(A) =11¥ = g3 (V)l|z2()-

The first technical observation to be made is that eg(A) and M2 () are real analytic functions of

A. For instance, if we write
ME() = 190300y — 2Re{ (99 (N), F) Loy | + (X599 (N), 99 ()2

= 19127 — 2Re{ (90 (A), Pers(9)) g | + (899 (), 92 ()2,

the real analytic character of MZ()) follows at once from (5) and the spectral theorem as applied to ¢; a

similar argument works for eg(A) if one takes into account the elementary identity

Pg:(x19) = (1—¢)g, g€ H”. (6)

Note also that neither Mg nor eg can be the constant function except if f—l— V= H?, for we saw that
|f — gwl|z2(r) strictly decreases as M increases while gg = gg(A) for some A € (0,+00) by (5), unless
feH? and M > ||f = ¥|z2().



Assuming that f—l— ' ¢ H?, our second observation is that e() strictly increases with A and
that MZ()) strictly decreases. To see this, suppose that A; and s are two unequal parameters such that
gu (A1) = ge(A2) = gw, say. Then (14 X;j¢)gs = Py= (f—l— (1+ )\j)\if) for 7 = 1, 2, so on subtracting we
obtain (A1 — A2)¢ge = Pg=((A1 — Ag)\if). Thus Pgz(xs9e — \if) = 0. Since a nonzero anti-analytic function
cannot vanish on a set of positive measure, this implies that g¢g = ¥ on J, and so M = 0. Otherwise, the
uniqueness of the solution for each M implies that eg()) and MZ()) are strictly monotonic functions of A.

The strict monotonicity that we just observed implies, if f is not the trace on I of a H2-function
such that [|f — ¥||z2(7) < M, that X in (5) is uniquely determined by the requirement that Mg (\) = M. Of
course the correct guess for A is not known a priori, and the constructive approach to (BEP) proposed in
[2] relies on iterative applications of (5) where the Lagrange multiplier is adjusted according to a dichotomy
procedure that makes it converge to the right value. The situation when f € H? satisfies || f — V||z25) < M,
which was left out of consideration, can be recaptured by letting A = —1 in (5), for (6) shows that PHz(f) =
(1 —¢)f and setting A = —1 in (5) yields then gg = f which is indeed the solution to (BEP) in this case.

To recap, given A > —1 we know that gg(}) is the solution to (BEP) corresponding to M = M (),
and also that 6311/2()‘) is the value of the problem. If f ¢ H21’ every instance of (BEP) gets associated in this
manner to some unique value of . If f € H|21’ only those instances of (BEP) such that M < ||¥ — f||12(s)
can be recast in this fashion while the remaining ones are recovered in the limiting case A = —1. However,
we shall no longer be concerned with (BEP) in the trivial case where f € H|21 and M > [|¥ — f||z2(s), so the
parametrization of solutions in terms of A € (—1,400) is well-adapted to our needs. In any case, we have
that

lim eg(A)=0. (7)

Ao —1t

If we are considering the approximation problem, that is to say if f ¢ H|21’ then it also holds that

}\_1)1r_r11Jr Mg (A) = +oo. (8)
If we are considering the interpolation problem, in other words if f is the trace on I of an H2-function (still

denoted by f), then
Jdim My (3) = |If = ¥l|za). 9)

The general approach we take to the asymptotic analysis of the approximation problem is to
estimate the rate of convergence in (7) and (8) and then eliminate A to obtain an inequality between
|f — gllz2(r) and M. When dealing with the interpolation problem, we estimate the rate of convergence
in (7) and (9) in a similar manner, but then take advantage of a singular integral representation of gg
of Carleman type, where X is naturally connected to the exponent of the kernel, in order to establish the
convergence properties that we seek.

Let us stress once again that the approximation problem may be regarded as a substitute for
interpolation in practical situations, that allows one to discriminate rather efficiently between close-to-
analytic data and far-from-analytic ones. This way (BEP) can be used as a tool in modelling practice, and
we shall examplify this on real data from a hyperfrequency filter provided to the authors by the French
National Space Agency (CNES-Toulouse) and processed using the software Hyperion developed at INRIA-
Sophia. In fact, the need for solving such problems in harmonic identification originally motivated the
present investigations.

Also, the function ¥ in (BEP) provides some flexibility in applications, but plays no significant



role in the analysis to come. In fact, results will be proved first when ¥ = 0, and then carried over over to
¥ #£ 0 via the formula:
g93(3) = 9o(A) + (1 +2) (1 +1¢)~" Pya¥ (10)

which is an immediate consequence of (5). For that reason, we will often drop the subscript 0 and write
e(A) = eo(A) = [If = go(MlIZ2(z

M(X) = Mo(X) = [lgo(Mllz2y

where

90(A) = (1+X¢)"! Pusf (11)

is the solution associated to ¥ = 0 through (5).
Our working tool will be the constructive diagonalization procedure for Toeplitz operators [22]

as applied to the following formulas obtained in [2]:
M*(\) = (¢(1+ A$) 2Py f, Puzf)ra(r), (12)

e'(d) = -(A+1) (M) (). (13)

Differentiability is understood here in the strong sense: we saw that e(A) and M?()) are smooth (even real
analytic) functions of A € (0, 400).

The outline of the paper is as follows. In Section 3, we recall the diagonalization procedure
from [22] which exhibits an explicit unitary transformation between H? and L?(0, 1) transforming a Toeplitz
operator into a multiplication operator. In Section 4, we apply this constructive spectral theory to formula
(12) for a Sobolev class of functions f in order to get the asymptotic estimates of Theorem 4.3 for eg and
Mg as X approaches -1; their sharpness is discussed in Remark 4.4. Next, we consider in Section 5 the case
where f 1s the trace on I of a meromorphic function, using the residue theorem to compute the effect of the
concrete diagonalization procedure on f

Finally, we restrict our attention in Section 6 to the interpolation problem, for which stronger
asymptotics hold as derived in Subsection 6.1; pointwise convergence results are derived in Subsection 6.2,

and a numerical example is shown in Section 7. Concluding remarks are made in Section 8.

3 Concrete spectral theory

The cornerstone of the present work is that formula (12) can be re-expressed using the spectral measure of
¢. More precisely, following the concrete spectral theory and the diagonalization procedure for self-adjoint
Toeplitz operators of multiplicity 1 given in [22, ch.3], we see that ¢ is unitarily equivalent to multiplication
M, by the independent variable z on L%([0, 1], dp), where dp(z) = Cdz with C = sina/w. In fact, there
exists a unitary transformation V : H2 — L%([0, 1], dp) such that

VeoV=l=»M,, (14)

which acts on Cauchy kernels ko(z) = 1/(1 — az) as

(Vko)(2) = [o(a)(1 — ae™®)/2(1 — ae™)"/?) 7, (15)



where, for 0 < z < 1, we let ¢, be the unique outer function (¢f. (1)) such that ¢,(0) > 0 and

z on I,
o= {

11—z onlJ,

and where the principal branch of the square root, namely the one which is positive for positive arguments,
is used in (15).

We now generalize formula (15) as follows:

THEOREM 3.1 For every h € L?(T) such that
(1 _ e—ieeia)—1/2(1 _ e—iee—ia)—1/2 h(eie) c Ll(T) ’ (16)

we have that, for a.e. € (0,1),

V) = o [ s (17)

_ e—zeeza)l/2(1 _ e—zee—za)1/2

PROOF. First, let h be a trigonometric polynomial. Then h extends analytically across T, and
by the Cauchy formula we get for » > 1:

(Pth)(z):i/M lz] < 7.

27[_ _Zezel
1 r

Thus, if we divide [0, 27) into n intervals [6y, fr41) of equal length, (Pg= h)(2) is equal for |z| < 1 to the

uniform limit as n — oo of the following Riemann sum:

ze— ¥k
r

n—1
1 rewk 9k+1 - gk)
2w Z

k:

Since V : H? — L?([0,1],dp) is an isometry, V (Pg= h), when viewed as a function of = € [0, 1], is equal by
formula (15) to the L2([0,1], dp) limit of

n—1
1 10
g kZ_O h(T‘ e k)(9k+1 — Gk) (V kelek/r) (CC)
1A h(r €% (811 — Ox)
= 2w P esz/r 1—e zekeza/,,,)l/Q(l _e leke za/r)1/2 .

As the L? limit is certainly equal to the pointwise limit when the latter exists and since 4, is continuous on
the circle |z| = 1/r, for each r > 1 and z € (0, 1), we get by taking the limit of the above Riemann sum that
1

B h(re*)dg
(V(Pr=h)) () = o /T (e /r)(1 — e=ifeia /r)1/2(1 — e=ife=ia /r)1/2

Letting » — 1 proves the theorem for trigonometric polynomials by dominated convergence since |¢);]| is
uniformly bounded away from zero in ID for fixed @ € (0,1). When & is continuous, it is the uniform limit on
T of a sequence of trigonometric polynomials; then the convergence holds both in L? and under the integral

sign in the right hand-side of (17) for fixed = € (0, 1), the use of dominated convergence being justified by the



boundedness of 1/|¢,| in D and by hypothesis (16). This proves the result for continuous functions h. If h is
merely bounded, we can find a family of continuous functions converging boundedly pointwise a.e. to h by
Lusin’s theorem and the Borel-Cantelli lemma [14, Lemma VIII.3.1]); by Lebesgue’s dominated convergence
theorem, such a sequence tends to h in L? and still the right hand-side of (17) is preserved in the limit, which
proves the result for bounded functions. Finally, under the hypotheses of the theorem, we approximate h by
the sequence of bounded functions x[o,»)(|h|) 2 and appeal to dominated convergence again. [ ]

Since functions h satisfying (16) are dense in L?(T), Theorem 3.1 gives a rather explicit description
of how V operates on a dense subspace of H? comprising, say all continuous functions there, and this is all
we shall need to proceed with the estimates we have in mind for (BEP). Nevertheless, it is natural to ask
how one computes V( Pz h) for any h € L?(T). For this, he may approximate h in L?(T) by a sequence h,,
satisfying (16), and the corresponding limit in the right-hand side of (17) will hold in L?([0, 1], dp) although
not necessarily pointwise on z. In this respect, the definition of V' is reminiscent of the Fourier transform of
a function H, which is defined pointwise as

too .
F(H)(y) = H(o)e ¥ do

if H € L*(R), and as the L?(I?)-limit, when A — +oo, of F(Hx[_4,4]) if H € L*(R). This analogy is actually
no accident, for there is an explicit link between V and F which lies at the heart of many computations in

the present paper. To state the result conveniently, let us introduce two functions:

_ log 2 Io 1—cos(f +a)

(= R 6 1
wri(=a,a) = R, wr(f) 2w g1—<:os(9—a) ' (18)
log 2 1—cos(f — a)
wy:(a,27r —a) > R, wr(6) = o IOgl—cos(G—l—a)'

Note that wy : I — R and wy : J — R are increasing diffeomorphisms since their derivatives are respectively

log2 2sina log2 2sina
wr(6) = wy(0) =

(19)

27 cos@ — cosa’ 27 cosa —cosf’

Let us also fix the following notation, that will be in use throughout the paper:

_ logz —log(1 — =)
(@) = 21og 2 ’

z € (0,1). (20)

THEOREM 3.2 To any measurable function h: T — C, associate two functions Hy, Hy : R —

C by:
_ h(e?) R
Hi(o) = omw (8)(1 — e Peia)L/2(1 — g—ifg—ia)i/2’ 6 =wr (o), (21)
_ h(e) R
Hy(o) = 21w (8)(1 — e—#eia)L/2(1 — g—ife—iayi/2’ b =ws (o). (22)
Then Hy, Hy € L?(R) 1f, and only if, h € L%(T), and in this case
1 1
V(Pg= h)(z) = ﬁF(HI)(—’Y(Jj)) Vi F(H5)(—y(z)) ae ze(0,1). (23)



PROOF. By the chain rule, we get from (21), (22) that

+ oo |h(9)|2
/_oo |H(o)|" do /I Ar2|(1 — e=ifeia)(1 — e~ifeia)|wi(f)

+o0 i
o @)
/_oo |H](0’)| do = /J 47l'2|(1 — e—“’ei“)(l — e—iee—ia)|w9(9) de.

If we take into account the identity:

(1—e " e')(1 — e e) = 2e7*(cos § — cosa),

we see from (19) that ||h||%2(T) is equal, up to a multiplicative constant, to ||HI||%2(]R) + ||HJ||%2(R), thereby
showing that the former is finite if, and only if, the latter is. In addition, this entails by density that it
is enough to establish (23) when h satisfies (16). In this case, starting from (17), the result is obtained as
follows. Using the notation introduced in (20), we compute from the definition of an outer function with

prescribed modulus given in (1) that

Pz (') = \/ETW(m)(eie) =z exp(y(z) log T(e*?)), ae.onT,

where T is the outer function such that

1 a.e. on I,

[Y(e)] = { 1/2 ae. onJ.

Denote by &y, &5 the argument of T on I, J, respectively. It coincides with wy on I, with wy on J. Indeed,

) log 2 2T—a it 10
(Z)I(ew):—&hn/ e.idt

o et _ it :

for e*® € I, we have:

A direct computation gives

26 —ia
ia — €
e e
619 — eta

= wI(eie), e? e, (24)

. log 2 et ,—ia log 2
Gr(e?) = %log (e”e . _e . ) = c;g log

™

from the definition (18), the quantity e*® (e? — e~%%) / (¢*® — %) being real valued there. Similarly, we see
that &7 = wy. Let us now rewrite ¥, in polar form:
. i6
: z exp(iy(z)wr(e?)), a.e.on I,
ety [ VESREAE @), )
V1—z exp(iy(z)ws(e®)), ae.onlJ,

If we set for simplicity
h(e*) i6
H(9) = (1— e-Peia)i/2(] — g—ifg—iayi/z "’ © €r,

then H € L'(I) by (16). From

1 h(e")iby (") df
V(PH2 XI h)(:c) = g‘/I CC(]. _ e_igeia)1/2(1 — e_ige_ia)1/2 , L € (01 1):



together with (25), we obtain

V(P x1h)(z) = % /I H(f) exp[i;(;)wf(e)] o

Performing the change of variable ¢ = w;(#) and the analogous calculation on J leads to (23). [ |

4 Approximation in a Sobolev class

We now return to the approximation problem (BEP) and we shall apply the results of the previous section
to formula (12). For f € L?(I) and f as defined in (4), we let

/U:VPHzf, (26)

where V was introduced in (14).

PROPOSITION 4.1 Suppose that f satisfies

(1 _ e_igeia)_1/2(1 i e—iee—ia)—1/2 f(eie) € Ll(I) ’ (27)
and
(1— e™eia)1/2(1 — =% =a)1/2 f(0) € WHI(]) . (28)
Then
lim v(z)log(l —z) = 0. (29)
rz—1—

PROOF. First, (27) and (28) imply that f € L%(I), since WH(I) C L*°(I) and

1Az < (L= e e ) 21— e e )2 fllpon sy
XH(]' _ e—ieeia)—1/2(1 _ e—iee—ia)—1/2 f||L1(I)~

Thus f satisfies the hypotheses of Theorem 3.1, and it follows from the latter and from the definition of ¢,

that . I i) g6
o(z) = ﬁ/ﬂ;( ™ s (<) z € (0,1). (30)

1 — e=if¢ia)1/2(1 — ¢—10g—ia)1/2"

As in the proof of Theorem 3.2, setting

_ G
F(6) = (1 — e~#0gia)L/2(] — g~i0g—ia)L/2 " (31)
it holds that F € L'(I) by (27) and
_ 1 [ F(f)expliy(z)wr(6)] df
oe) = 5= [ e . (32)
Again we let ¢ = wr(f) and conclude that
o(#) = —= F(G)(—(=) (33)



where

F(9)

G(U)Imy

6 =w;'(o). (34)
To unwind the definition of G, we observe that
(1— e ®ei)(1 — e~Pe=i%) = 2~ (cos§ — cosa),
and we obtain from (34) in conjunction with (31) and (19) that
f(e*)(cos 6 — cosa)
2(log 2)(sin a)(1 — e~*¢i®)1/2(1 — e~0—ia)1/2

f(eie)eie(l _ e—ieeia)1/2(1 _ e—iee—ia)1/2
4(log 2)(sin a) ’

G(wi(9)) =

Now, by (34) and the chain rule, we have

+oo +oo
/_ |G(a)|da:/I|F(9)|d9 and / |G’(a)|da:/I|dilgG(wI(e))|d9.

Consequently, we see from (31) and (35) that G belongs to WbI(R) if, and only if, f satisfies (27) and
(28). Moreover, since the Fourier transform converts differentiation into multiplication by the independent
variable, it follows from (33) that

Y(@)Vav(z) = —F(G)(—v(z))

and, in view of (20), we obtain
log(1 — 2) u(a)] ~ 2log2 |F(G')(~1(e))], asz— 17,

however, the Fourier transform of an L'(R) function is continuous on R and goes to 0 at doo by the
Riemann-Lebesgue lemma [23, thm 9.6], thereby establishing (29). ]
Estimates for M (A) and e(A) will follow from Proposition 4.1 and the following lemma.

LEMMA 4.2 There exist absolute constants pyg > 1, C1 > 0, and Cs > 0 such that, for any

increasing function € : (0,1/2) — RT, we have:

?

/1/2 e(z) dz - Cie (log® p/ ) N C2e(1/2)
o (L+pz)’log’z =  plog”p plog® p

as soon as p > fo.

PROOF. If 3 is such that

1/p<B<1/2, (36)
then 5 () P @)
e(z)dz 5 dz _ Be(B )
/0 (1+ pz)2logz < (e(A)/ 1o ,5)/0 (14+pz)>  (1+ pB)log’ B’
also

V2 () da V2 gy Be(1/2
[ o s (/e [ < O
s (L+pz)’log’z = p<aciy s zlog’z = (1+uf)*log2



Taking 5 = log3 w/ e, it is easily checked that we satisfy (36) as soon as, say g > 17, and then a short
computation shows that |log 3| > log x/10. From this, the required estimate follows immediately by adding

up the two inequalities above. [ |

We are now able to state and prove the main result of this section:

THEOREM 4.3 If f satisfies (27) and (28), then as A\, —1,
ME(O) =o((A+ 1) log (A + 1)) , (37)

whale

ex(1) = o(|log (1 +)]). (38)

PROOF. Let again v = V Py f From (14), it follows easily by a continuity argument that, for

any continuous H : [0,1] — R, one has
B B 1
(H(¢)Py>f, Pua>f)r2(m) = C/ H(t)|v(t)|? dt .
0
Therefore, we get from (12) that

c/ 1+At v(t)|? dt. (39)

For X near to —1, the behaviour of the integrand near ¢ = 1 dominates; to help us derive an estimate, we

introduce two auxiliary functions, namely

e(v) = [v(l—y)logy] for0<y<1, (40)
and
e(y) = sup o%(z). (41)
0<z<y
v (39), we can write
1 201
M2()) = c/ te'(l ? dt (42)
o (14 At)?log*(1 —¢)
Putting y =1 —t and A = —1 4 1/u, we obtain
(1- y)d
)2 log’y’
thus a fortior:
,C [Y° £(y) dy
M?()) < p? +0(1) as AN\, —1.
2 (1+ (n = 1)y)?log™y

We now apply Lemma 4.2 with ¢ as in (41) and p replaced by u — 1. Recalling that A +1 = p~?, this yields

Cre([1+272 [log® 1+ 271 C2(1/2)
(=) (A 4+ 1Dlog? [1 + A1 (=0)(A + 1) |log® [1+ A-1||’

M2(\) < (44)



< Gse |1+ A7 Jlog® [1+ A7) Cac(1/2)
- A+ Dlog?(A+1) (A +1) log®(A + 1)

(45)

for some absolute constants C3,Cs > 0, as soon as A + 1 < (po + 1)_1 with po as in Lemma 4.2.
Now we turn our attention to the behaviour of e(A). Using (13) and differentiating (39) under

the integral sign, we get
1 2
e'(p) = 2C —|—1/7vt2dt
() =200+ 1) [ Gl

and, since e(—1) = 0, integrating by parts with respect to p while appealing to Fubini’s theorem gives us

after a short computation:

A 1 2
t
A) = "(p)dp = C(X 12/ —_|u(t)|?dt. 4
(W= [ erdr=C0+17 | o) (46)
Using (40), this can be rewritten as
! 2 0?(1—t)dt

e(N) =C(h + 1)2/ (47)

o (14+X)2(1—1t)log’(1—1t)
To get an upper estimate, we restrict ourselves to —1 < A < 0 which is possible since A will tend to —1 from
above, and we split the integral into fO_A and f_1>\ that we evaluate separately.

As to the first term, since 0 < (A +1)/(1 —¢) < 1for¢ < —A, we get

, Y 2 92(1—t) dt
C(A+1) jC (1 4+ M)2(1 — t)log?(1 — t)

VotoP(l—t)dt
: C(A+1)/o (14 At)2log?(1 —¢t)

= (A D)MA),

where the last equality follows from (42).
As to the second term, we observe that 0 < (A +1)/(1 4+ A¢) < 1 whence

s ! t? 0%(1 —t) dt ! dt (A +1)
A+ 1) /_A (14 At)2(1 —t)log?(1 —t) se(+d) /_A (1—t)log?(1 —t) |log(A+1)]

where the second inequality uses (41). Altogether, we have that

Ce(A+1)

e(A) < (A+1)M*(A) + my

(48)
and since €(y) — 0 when y — 0 by Proposition 4.1, the estimates (45) and (48) establish the desired result
for ¥ = 0.

The general case where ¥ € L?(J) now follows easily. Indeed, we get from (10) and the self-
adjointness of ¢ that

llgo — gell32ry = (A +1)? ((1 +2¢)" L P, (1 + A¢)‘1PH2\T’)L2(I)

=(A+1)2((1+A8)72 Pya¥, Py
O+ 17 (1429)77 P, o)



whence

2 _ 2 -2 0 J
lgo — gellZary = (A +1) (XI(1+A¢) Pyt PHZ\II)LZ(T).

Now, we can apply Pgz to the left argument of the above scalar product without changing its value, because

the right argument lies in H?. Noting that Pgs(xru) = (1 — ¢)u whenever u € H?, this yields

lgo — gell3acry = (A + 1)? (1= @) (1 + X 9) 2 Ps ¥, P

L3(T)
Using the relation
l—¢=(1+28)-(A+1)¢, (49)
together with the obvious upper bound:
02 6) < L/A+1) for —1<A<0, (50)

1t follows that
||g0—gq;||%2(1—)20()\—|—1) as)\\—l.

But the triangular inequality implies that
el "(%) < e°(N) + llg0 — gsllz2r)

so by the previous part of the proof

V0 = (g + 0 (049) = ()

when A\, —1 as was to be shown. Also,
Mg (A) < M)+ [lgo — gellzazy = M) + |(A+ 1) (1+A¢) 7 Paa |12y ,

and by (50) the last term in the right hand-side remains bounded when A \, —1. Therefore the estimate for
M(}) remains valid for Mg (A) and the proof is complete. [ ]

REMARK 4.4 A discussion of the sharpness of these estimates is appropriate at this point.
When speaking of the sharpness of (37) and (38), we mean that whenever ¢; and ¢ are positive functions

such that
e1()) = o(()\ +1)"1log (A + 1)) and e5()) = o(| log™ (1 + /\)|) as AN, —1,

then there exists f satisfying (27) and (28) such that MZ()\) > e1()) and eg()) > e2()) as soon as A + 1 is
small enough. By the estimates given at the end of the previous proof, the actual choice of ¥ is irrelevant
in this definition of sharpness; hence we consider ¥ = 0 only.

Observe, since ¢ is decreasing, that for > 5

/1 (L-we@dy  _ (1—2/(u—1)e(l/(p—1) /2/<~—1> Ay
o (14 (p—1)y)%log’y ~ log?(p — 1) ey (L (u— 1)y)?



S e(1/1) ’
~ 12(u— 1) log®(p — 1)

(51)

and

/1 I-vewdy (/¥ /1/“ dy _ e(1/p?) 52)
o (14 (p—Dy)2ylog’y = 1+ (p—1)/p)? Jiju» ylog’y — 8logpu
If o defined in (40) happens to be increasing near 0 so that e(y) = ¢?(y) for y small enough, then (43) and
(51) will imply

cre(A+1)
A+ Dlog?(A+1)’

M?() > (53)

for some absolute constant ¢; > 0 as soon as A + 1 = p~ 1!

from (47) and (52) that

1s small enough; analogously, we get in this case

cae((A+1)%)
[log(A + 1)]

for some absolute ¢; > 0 as soon as A + 1 is small enough. The lower estimates (53) and (54) will establish

e(d) = (54)

the sharpness of the upper bounds (37) and (38) if we can show that f may be chosen to satisfy (27) and
(28) in such a way that ¢*(1 — z) = |log(1 — z) v(z)|? converges to zero arbitrarily slowly as z — 1 and in
addition monotonically for zg < < 1 and some zy > 0.

We claim that this is possible. Indeed, we already observed when f and G are related by (31)
and (34) that (27) and (28) together are equivalent to the condition G € WU (IR). Therefore it is enough
to prove that |F(G')| can tend to zero arbitrarily slowly at infinity and in a monotonic way there. Now,
the Riemann-Lebesgue lemma is known to be sharp, in that every continuous even function x on R that is
convex on (0, c0) and decreasing monotonically to zero, is the Fourier transform of a function in L*(IR) (see,
for example, [25, thm.124]). Note for later use that « is then absolutely continuous with bounded derivative.
Since only the behaviour near infinity is of interest here, we may suppose that x is linear on [0, 1]. By adding
to K a continuous piecewise linear even function of compact support, whose inverse Fourier transform will

lie in L!'(R), we may obtain a function kg such that:
(1) xo(y) = 0 on some neighborhood of 0,
(i1) ko(y) = «(y) for |y| sufficiently large,
(iii) the inverse Fourier transform of ko, say Gi lies in L*(IR),
(iv) kg is bounded and absolutely continuous with bounded derivative on R.

Let G € L?(IR) be the function whose Fourier transform is xo(y)/y. It certainly exists since xo(y)/y € L*(R)
by (i) and (iv). Taking the derivative in the sense of distributions, we get F(G')(y) = iko(y), which implies
that in fact G’ = ¢G lies in L'(R). Since

, d
F(=#G0))y) = 32 (ko(v)/y) € L*(R)
(because ko and k) are bounded), we have tG(t) € L%(IR). Writing S = R \ [-1, 1], we have
IG®)lz2(s) < IKGWNIza(s)llt llza(s) < o0,

by the Cauchy-Schwarz inequality, hence G € L!(R) since G is continuous. Altogether G € WH1(IR) and

|F(G")(y)| = x(y) when |y| is large enough. Finally, since any positive continuous function [0,00) — R¥



tending to zero at infinity is majorized by a convex continuous function decreasing to zero (a piecewise linear
one is easily constructed), we can assume that x(y) goes to zero arbitrarily slowly at infinity which proves

the claim. Thus (37) and (38) are, indeed, sharp.

Following on from Theorem 4.3 and the previous discussion, we can eliminate the parameter A
between (37) and (38) and obtain in (BEP) an upper bound for Mg in terms of eg which is sharp with

respect to the considered class of functions.

COROLLARY 4.5 Ifin (BEP) f satisfies the assumptions of Theorem 4.3, then to each K1 >0
there is Ky = Ka(f) > 0 such that
ME < Ky e exp{Kieg'}. (55)

In the above statement, the factor e,}l in the exponent cannot be replaced by h(eg) for any function h : RT —
R* such that h(z) = o(1/z) as =z \, 0.

PROOF. By the estimates at the end of Theorem 4.3 and Remark 4.4, we may assume without
loss of generality that ¥ = 0. The relation e — 0 being equivalent to A N\, —1, it follows from (37) and (38)

that
K,

A+ Dlog?(A+1)’

M?() < (56)

and
K,

°= TlogOh + 1) (57)

as soon as e is small enough. If we set for simplicity E = 1/|log(A + 1)|, we can rewrite (56) as M? <
K1E?expl/E and (57) as ¢/K; < E. However, for sufficiently small z > 0 the function z — z2exp 1/z is

decreasing, and hence for sufficiently small E > 0 we have
M? < K7'e? exp{K;/e}. (58)

Since (58) is valid for all e small enough and M decreases as e increases, we may adjust K3 so that (55)
holds for all e.

To show that the exponent e~! cannot be replaced by some o(1/e), suppose on the contrary that
whenever f satisfies (27) and (28), then to then to each K7 > 0 there is Ky = Ka2(f) > 0 such that

M? < Kje? exp{Kin(e)/e} (59)

for some function 7 : RT — R ¥ such that lim,_, o+ 7(z) = 0. We may assume that n(z) > z? and also that 7
1s increasing upon replacing it by supg., <, 7(y). By the sharpness of (38) discussed in Remark 4.4, we may
choose f such that
/2(|1og™ (14 A 1
P log LA
[log(1+ )| |log(1 4+ A)]

(60)

as soon as A is close enough to —1; in addition we may ensure that the associated function ¢ defined in (40)
in monotonic near 0. Now, by the monotonicity of 7 we have that n(e) < n(|log™'(1 4+ A)|), and inserting

the above majorizations in (59) yields

K, exp{K1n'/*(|log™"(1 + A)]) [log(1 + N[}

M2
- log?(1 + )




K,
(14 X)En*/2(leg™* (14+2)]) log?(1 + A)

as soon as A is close enough to —1. In view of (53) which is valid when A N\, —1 by the monotonicity of o(y)
for small y, we deduce that

e+ 1) < B2(1 4 ay-Kan 2 log™ @)

€1
hence e(A +1) = o((A + 1)¥) for every o < 1 as A — —1. Comparing this with (48) and (37) we see that
e = o(log™?(\ + 1)), but since n(z) > z* we also get from (60) that log™?(A 4 1) < e, a contradiction that
completes the proof. [ |
If f is actually smoother than stated in Theorem 4.3, the estimate (55) can be improved. For

example, one has the following result:

COROLLARY 4.6 Suppose that f satisfies (27) and moreover that
(1 _ e—ieeia)3/2(1 _ e—iee—ia)3/2 f(eie) c W2’1(I) ) (61)

Then to each constant K3 > 0 there is Ka = K4(f) > 0 such that

M < K,4 63,/2 expv/ Kz/eg . (62)

PROOF. It is easy to check that (27) and (61) together imply that G defined in (34) lies in

W2L(R). Thus v(z) is o(y~?(z)) by (33), and therefore e(y) defined in (41) is o(|log™* (A + 1)|). From (45)
and (48) we now see that (37) and (38) sharpen to

Mg(3) = o(A +1)7Hlog > (A + 1)),

ex(A) = o(log™*(1 + 1)),

and from that point the proof follows a course similar to that of Corollary 4.5. ]

A numerical illustration of the estimates given by Theorem 4.3 is provided in Section 7.

5 Approximation of traces of meromorphic functions

Roughly speaking, we found in the previous section that the smoother f on I, the slower the increase of
Mg as eg goes to zero. It is natural to ask whether these estimates can be further improved if f extends
smoothly in two dimensions, in particular when it is analytic in some annulus containing T. In this section,
we shall consider the case where f is of the form h/qy, where h € H? and gy is a polynomial of degree N
having all its roots in . This is especially interesting from the point of view of applications, since many f in
practice would be represented as trigonometric polynomials. We begin with an improvement of Proposition

4.1 when f is rational.

PROPOSITION 5.1 Assume that f is the trace on I of a rational function py_1/qn where
pN_1 and gy are algebraic polynomaeals of degree N — 1 and N respectively, and where the zeros €1, -, &N

of qn lie in some compact subset K CID. Then, v being as in (26), it holds that

v(z) B _
m =0(1) as ¢ — 17, (63)



where the O(1) holds uniformly with respect to the ; € K.

PROOF. We get from (24) and (32) that

. 1 9 ) _ ,—ta

which i1s understood as a line integral on I C T oriented in the counterclockwise direction. Put

H, (&) = exp {i’y(:c)lof_ 2 log (ei“%) }

and

f&)
(€ — eia)1/2(¢ — e—ia)1/2°
With the notation of Section 3, it holds that H,(¢) = ¥,(§)/v/z, B(e’) = e ** F(8). The function H, is
analytic and bounded in C\ I while B is meromorphic in C\ I with poles ¢1, - - -, &y in D, and vanishes with
order 2 at infinity. By Cauchy’s theorem, it holds that

B(¢) =

N
1 1

0=— [ Hy(¢)B(£)dé =) Rese (H,B)+ — [ (HF(6)B*(¢)— H; (§)B~ d
o L HBE) de = 3R (128 + [ opt© - 18 ©)

where the symbol Res;; indicates the residue at £; and the subscript + indicates the determination of a

function on the positive or negative side of the oriented cut I. As it is easily checked that
H; (§) = exp (2y(z)log2) HF(€), while B~(§) = -B*(¢),

and since by definition

Vau(e) = 5 [ BB €,

we deduce by taking into account the definition of y(z) that

1z
ve) = —— Res;¢ . (H,B).
(0= =5 Do e (:5)
Observe that the argument of €*®(§; — e™*®)(¢; — €**)~! lies within (0, —7), uniformly with respect to
& € K CID. Using this, one checks that each residue is bounded up to some multiplicative constant by its
multiplicity times \/#/(1 — z) (this is straightforward for simple poles, and multiple poles can be handled
by an easy limiting argument). The result now follows. ]

We now derive the analogue of Theorem 4.3.

THEOREM 5.2 If f is of the form h/qn with h € H? and qn a polynomial of degree N whose
roots all lie in 1D at a distance d > 0 from T. Then, as A\, —1, we have that

M) = O(N? [log(A + 1)), (64)

and

ex (V) = O(N(1+ 1)), (65)



where the symbols O hold uniformly with respect to d and ||f||L>(t)-

PROOF. By division, we can write f = u + py_1/qn with w € H? and py_; a polynomial
of degree N — 1. The H? norm of v is uniformly majorized with d and | fllz2(r), so u will play no role
in the asymptotic behaviour of M () and e(}), and we may as well assume that f = py_1/qn and apply
Proposition 5.1. A straightforward majorization of (39) and (46) using (63) gives us the result.

COROLLARY 5.3 If f is of the form h/qn with h € H? and qn a polynomial of degree N
whose roots all lie in 1D at a distance d > 0 from T. Then

MZ =0 (N?|loges|) , (66)

and the symbol O holds uniformly with respect to || f||z2(1) and d, the estimate being sharp in the considered

class of functions.

PROOF. The uniform estimate follows from (64) and (65). It is sharp because when f is a
polynomial of degree N in 1/z, the proof of Proposition 5.1 yields a sharp estimate. ]

6 Interpolation

When f € H|21 and ¥ = 0, the set of all solutions to (BEP) as M ranges from ||PHzf||L2(J) to || fllz2(n)
defines via equation (11) a family of functions go(A) indexed by A € (—1,0). In [6], it was shown to coincide
with the family of Carleman-type interpolants studied in [21] and described also in [3, 20]. It is remarkable,
by the way, that the latter has the extremal property of solving for (BEP) whereas it was originally built
for recovery purposes rather than those of approximation. In this section, the singular Cauchy integrals
expressing Carleman interpolants will team up with our functional-analytic approach to (BEP) to produce
new information on the convergence of this classical interpolation scheme.

We shall consistently assume that f € H|21 \ {0}; thus it extends uniquely to some nonzero H2-
function defined on the whole of T that, with a slight abuse of notation, we shall still denote by f. Moreover,
since we only consider the case where ¢ = 0 in (BEP), we shall set for simplicity gn = go(}A) and this will
simplify the notation into g»(z) or g(e*") when evaluating this function at z € D or at €** € T. Now, using

(6) and (49), formula (11) becomes
Hp=f-(O+1D)(1+A¢)7 47, (67)

This expression for the solution to (BEP) when ¥ = 0 and f € H|21’ combined with the concrete spectral
theory of Section 3, will be the key to the forthcoming analysis.

As X decreases to —1, the error e(A) = ||f — g>\||%2(1.) of the interpolation problem decreases to
zero like in every instance of (BEP). However, the decay will turn out here to be considerably faster than
1t was for the approximation problem studied in Section 4. In addition, as pointed out in the introduction
already, peculiar to the interpolation problem is the fact that ||f — ga||z>(r) itself goes to zero when A — —1,
and we will estimate the corresponding error rate when f lies in a Sobolev class before giving, as corollaries,

pointwise convergence results.



6.1 Estimates of the L? decay rates

The following estimate shows that the convergence of e(A) to 0 when A — —1 is much faster if f € H|21 than
the error rate (38), although we know the latter is sharp with respect to the approximation problem in a
Sobolev class by Remark 4.4.

PROPOSITION 6.1 If f € H? then, as A\, —1,
e(A) = O(1 + ).
PROOF.
eA) = A+’ 1+ A8) "¢ fllzoy = A+ (L +A8)72 (1= ¢) 6 f, lzan).-
Using again (49), we get
eM) = +1)2 [(T+A) ¢ f, ey — A+ 1) (L+2¢)72 6% f, fram)

< A+ D) [1fllZecry

from (50). ]

In contrast to Proposition 6.1 that provides an easy majorization of e(A) = ||f — g>\||%2(_,), the
convergence of ||f — ga||z>(s) to zero cannot be quantified in general, unless f assumes more smoothness
than just being in H2. In a vein similar to that of Theorem 4.3, we now derive estimates for this quantity
when f belongs to a Sobolev class on I. This hypothesis will also improve the convergence rate we just gave

for e(A).

THEOREM 6.2 If f is the restriction to I of an H? function (still denoted by f) such that

(1 _ e—ieeia)—l/2(1 _ e—iee—ia)—1/2 f(eie) € Ll(T),

and
(1 _ e—ieeia)1/2(1 _ e—iee—ia)1/2 f(eie) c Wl’l(T),
then as A\, —1,
I = gallZ2ry = o(|log(A +1)| 1)
whale

e(A) = o{(A + D)|log(A + 1)|71). (68)
PROOF. From (11) and (67):

If = aallzzy = A+ 12 (82 (1 + 28) 72, fza(r)

:c<x+1)2/0 ﬁm(t)ﬁdu (69)

where, this time, vg = V' f. Theorem 3.1 then gives:

vo(e) = — fe )&

27 /T Pp (€19)(1 — e=10€30)1/2(1 — g=i0¢—4a)1/2




= o(2) +

1 F(e)s (%) db
27 /J (1 —2)(1 — e=Peia)l/2(1 — e—ibe—ia)1/2 "

for the function v defined by (30). Following (25), it holds that

1 / F(6) exp[iy(z)ws(6)] 46
2 Js Vi—z ’

where F' and wy are now defined on the whole [0,27) by (31) and (18). Moreover (19) is still valid for w;

on a < 8 < 2m — a and therefore wy is still monotone (but this time decreasing) (a,27 — a) — (—00, 00).

(70)

The remainder of this proof now goes as that of Proposition 4.1 by expressing vg — v in terms of the Fourier
transform of some W1'1(IR) function. We thus get

1
lvg(z)] = o <m| og(1 = :c)|) as z — 1. (71)

Putting this in (69) and since we are mainly interested by the behaviour of this quantity for A near to —1

where the behaviour of the integrand near ¢ = 1 still dominates, there exists

a positive increasing function ¢, with zl_i,réi g(z) =0, (72)
such that: . ,
I =oallony < 00 | [ R0 o). (73)
Hence, from the computations above (48), we get
1f = 9allZa(s) = o log(A + 1) 7). (74)

Also, from (12), we get that

Iy - w20y = ¢+ 1) [ S o ar

<o+ 1) /1 t2e(1—t) (24 (A —1)t)dt Lo +1).

172 (L4 22 (1 —¢) log?(1 — t)
Moreover, writing 2+ (A — 1)t = 2(1 —¢) + (A + 1),

D t2e(l—t) (24 (A —1)t)dt
(A+1 /1/2 (14 M)2 (1 —1¢) log?(1 —1¢)

_ b 2e(1-t)dt 2 ! Pe(l—t)dt
=0+ /1/2 (11 X2 log?(1—1) (1) /1/2 (1+2)2 (1~ t) log*(1—t)

The first integral above is bounded by the one appearing in (42), which is itself, as in (43), dominated by
o((A 4+ 1)t log™%(\ + 1)); the second integral coincides with the one involved in (73) whence, from (74),

1£1Z2(y = M2(2) = o[ log(A + 1| 7).



Now, concerning e(A), we get from (13) that

A
o) = ~l(r+ IR, - [ w(ryar,
-1
and, in view of the above bound,

e() = o((A +1) [log(A + 1)| ") + / L o((A+1) [log(A +1)| 7).

_1 log(r+1)
|

REMARK 6.3 Note that some further links can be derived between vy = V f and v when
f € H? Indeed, v=V Pyaf = V(1 — ¢)f and, using property (14) of the isometry V, v(¢) = (1 — t)vo(¢),
in this case. Recalling (71), this improves Proposition 4.1 whenever f € H?:

v(z)| = o (%)

as ¢ — 1.

As a consequence of the estimate (68) in Theorem 6.2, we get a lower-bound for ||f — gal|z2(s) showing
that, for the interpolation problem with smooth data, the error on J has to be significantly bigger than the

squared error on I.

COROLLARY 6.4 If f satisfies the assumptions of Theorem 6.2, then

e(A)

= o(|log A+ 1)|7H)  asd\, —1.
If = gallzay

PROOF. We have that

If = aallzary > 19(F = g)llzoery = A+ D11+ A9) ™" 2 fllzary,

from (67), whence, for —1 < A <0,

A+1
If = arllzary > m||¢2 fllzoery = A+ D16 Fllaery-

Moreover, we get from (68) that

S ollloga 1) ws AN,

and combining the above two inequalities completes the proof. [ |

6.2 Pointwise convergence

Concerning pointwise convergence of sequences of H? interpolants, it is of great interest to make use of
Proposition 6.1 in order to get such results on the boundary T, at least almost everywhere. Indeed, to
our knowledge, it was only known up to now that pointwise convergence for such sequences holds locally
uniformly in D, from Goluzin and Krylov’s Theorem, see [20, 21].

The result about convergence on I is simple, and we begin with this. Recall that, by convention,

I is an open arc.



THEOREM 6.5 If f € H|2I; then gx(e’) — f(e*®) uniformly on compact subsets of I, as
A— —1.

PROOF. It is simplest to use the equivalent expression of g, in terms of a Carleman-type integral
formula, that links our family of approximants to the sequences of interpolants given in [21]. Indeed, we get
from [6] that:

() L p(6)\" d¢
02 =000 = 51 [ (29) tune ¢ veen. (75)
or equivalently that: .

9 = Ja = e P2 (9% (x1f)) »

where ¢ 1s the outer “quenching” function of modulus equal to ¢ > 1 on [ and to 1 on J:

1 it
¢(z) = exp {%/6» +zdt} , 2 €D,
s

[ €t —2
and where log(h + 1) o
:—ng,or)\:—l—l—g . (76)
Thus i
10-06 =5 [ (89) s %, wen.

and by continuity this extends to all z in I. Uniform convergence to zero on compact subsets K of I follows
immediately given that |p(€)/¢(2)| = 1/0 < 1for allé € J and z € K, and that € — 2| is uniformly bounded
away from zero. [ |

Pointwise convergence to f of the sequence (§»), as defined in (75) with & = n, also holds almost

everywhere on J, and thus on T, under some smoothness assumptions:

THEOREM 6.6 If f is the restriction to I of an H? function whose derivative is absolutely con-
tinuous on T, then the sequence (§n) of Goluzin—Krylov approzimants to f converges to f almost everywhere

on J.

Thus, combining this with Theorem 6.5, we see that if f is the trace on some subarc I C T of positive
measure of an H? function whose derivative is absolutely continuous on T then, almost everywhere on T, f
is the pointwise limit of its sequence of H? approximants (g ).

The proof of this result requires the following improvement of Theorem 6.2.

PROPOSITION 6.7 If f is the restriction to I of an H? function whose derivative is absolutely

continuous on T, then, as A\, —1,

1f = 9allZ2(7) = o(|log (A + 1)) ,

or, equivalently,

1f = Gallzacry = o(a™).

PROOF. Consider the expression (70) of vg. Recalling (33), we get that

Iy (2)Vzu(z)] = |F(G")(—(=)],



while we analogously get from (70), by taking this time the variable ¢ = w(f) with a < 6 < 27 — q,
7 (2)V1 = z(v —vo)(z)| = |F(G")(—(=))| -

Using the Riemann-Lebesgue lemma here also implies that, if G’ € L*(IR), then

1
0 (27) as ¢z — 1,
log“(1 — )

as ¢z — 1. (77)

|v(z))]

1
volz)] = o
[vo(=)] (x/l—:clog2(1—:c))
Now, the assumption that f” € L*(T) actually implies that G € L*(IR), as can be seen from (35).
Putting (77) into (69) implies:

1 $3 5(]_ —t) dt
If = aallzzn = (A + 1)2/0 (14 A)2(1 —t)log*(1 —t)

' t2e(l —t) dt
/1/2 (14 At)2(1 —t)log*(1 — t) +0(1)

<(A+1)°

for e satisfying (72). Straightforward computations similar to the ones below (73) provide the desired
estimate. ]
PROOF OF THEOREM 6.6. For each § > 0, define

Bps = {e €7 [ga(e) = f(c*)] = 6}.

Let 2 denote Lebesgue measure on T. By Chebyshev’s inequality, using Proposition 6.7, there 1s an absolute

constant ', depending only on f, such that
UE, ) < C8/n?.

Thus Y>> 4(E,s) < oo, and so, by the Borel-Cantelli lemma (see e.g. [14, Lemma VIII.3.1]), for each
6 > 0 almost every ! € J belongs to at most finitely many sets Ey 5. The result now follows on taking a

countable sequence (6;) tending to zero. [ |

7 Numerical results

Figures 1, 2, and 3 illustrate the results of Theorem 4.3. In this example, the function f to be approximated
has been built by classical interpolation procedure (splines) from pointwise experimental data provided by
the French National Space Agency (CNES, Toulouse). These data correspond (through some conformal
map) to reflection responses of a hyperfrequency filter, which will be part of on board devices (input /output
multiplexors) for telecommunication satellites. From those data, the engineers want to robustly recover an
H? (in fact, rational) function. The deep links between approximation by analytic functions and harmonic
identification are discussed in [2, 8, 16, 20], among others, and the application to filter synthesis is more

precisely handled in [4]. It is perhaps worth noticing that, although the function is to be approximated
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in H?, the given pointwise values do not coincide with those of an H? function in general, since they are
provided by experimental devices and thus carry measurement errors.

We had here at our disposal 801 pointwise values in a high-frequency bandwidth, from which
we computed 801 Fourier coefficients of some function f € L?(I), with I = (e=*"/2 ¢™/2). A number of
approximants g, to f have been computed by a software package called Hyperion, developed at INRIA
(Institut National de Recherche en Informatique et Automatique), for various values of A near -1, together
with the associated quantities e(A) and M(A).

The behaviour of —log(1+ A)e(}), (1+ A)log?(1+ A\)M(}), and e()) log M () with respect to A

near -1 are plotted in Figures 1, 2, and 3.

8 Conclusion

The estimates of Theorem 4.3 considerably improve the ones that were established in [5]. We recall that, in
this work, it was shown if f € W12(I) that, as A approaches -1,

log(log M ()
=<0 (W) |

This could in fact be improved, using unpublished results in [9] on the decay of the Hardy-Sobolev norm as
a function of the L2-norm on I C T, to the effect that, in this case: e(\) < O(1/log M(})). But if f belongs
to W1H2(I), then it is easy to see that it satisfies the hypotheses of Theorem 4.3, and we now see from that

theorem, under even weaker assumptions on f, that the following stronger estimate holds:

This estimate sould be further held in contrast with Corollary 5.3 that shows a dramatic increase in the

speed of approximation when f is meromorphic in ID.



Concerning the estimates of Theorem 6.2 for interpolating sequences, they imply that whenever
fe H|21’ f € LY(T), if we set
2
es(A) =1If - g>\||L2(J) )

then the convergence rates on I and J are linked by

s <o ()

as A approaches -1, although, as a consequence of [10], we obtained only the following pessimistic inequality!

e loge ) )

s} <0 ( [loge(V)

A nice consequence of such estimates is that they seem to provide stability / instability properties for classes
of 2D inverse problems arising in nondestructive control. This is already under study, while the basis of the
strong and constructive links between 2D Laplace inverse problems and approximation in Hardy spaces from
band-limited data is provided in [7, 12], whereas stability properties are discussed in [1], for example.

Let us finally mention another issue we have in mind that seems particularly relevant when using
bounded extremal problems to express identification issues, either for transfer functions of linear dynamical
systems or for solutions of inverse problems. It comes in cases where it is a prior: known, for some physical
reasons, that the function f to be approximated on I does “almost” belong to H?, more precisely when
f=h+6, say, with h € H|21 and § € L¥(I)\ H|21’ |6]|z2(r) small. If we call, as usual, gx the solution in
H? of the bounded extremal problems associated to h + §, we wonder if there exists a value of A > —1 that
minimizes ||f — ga||z2(1). It is easily seen that for § = 0, this quantity goes to an infimum, equal to 0, as
A — —1, and that the same thing occurs for f = 0, as A — oco. However, this remains unsolved for § # 0

and f # 0, although the L? representation of H? functions used in the present work may be of some use.
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