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Abstract 

A multi-borehole pumping and tracer test in fractured chalk is revisited and 

reinterpreted in the light of fractional flow. Pumping test data analysed using a 

fractional flow model gives sub-spherical flow dimensions of 2.2-2.4 which are 

interpreted as due to the partially penetrating nature of the pumped borehole. The 

fractional flow model offers greater versatility than classical methods for interpreting 

pumping tests in fractured aquifers but its use has been hampered because the 

hydraulic parameters derived are hard to interpret. A method is developed to convert 

apparent transmissivity and storativity (L4-n/T and S2-n) to conventional transmissivity 
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and storativity (L2/T and dimensionless) for the case where flow dimension, 2<n<3. 

These parameters may then be used in further applications, facilitating application of 

the fractional flow model. In the case illustrated, improved fits to drawdown data are 

obtained and resultant transmissivities and storativities are found to be lower by 30% 

and an order of magnitude respectively, than estimates from classical methods. The 

revised hydraulic parameters are used in a reinterpretation of a tracer test using an 

analytical dual porosity model of solute transport incorporating matrix diffusion and 

modified for fractional flow. Model results show smaller fracture apertures, spacings 

and dispersivities than those when 2D flow is assumed. The pumping and tracer test 

results and modelling presented illustrate the importance of recognising the potential 

fractional nature of flow generated by partially penetrating boreholes in fractured 

aquifers in estimating aquifer properties and interpreting tracer breakthrough curves.  

Keywords: pumping test, tracer test, fractional flow, fractured chalk 
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1. Introduction 

Accurate information on aquifer hydraulic characteristics is needed to aid 

management of water resources by providing input for regional and local scale flow 

models, for assessing groundwater vulnerability and, most recently, to estimate the 

impact of climate change on groundwater resources. The accuracy of assessments 

and model predictions depends greatly on the accuracy of aquifer hydraulic 

parameters. One of the most important tools for estimating hydraulic parameters is 

the pumping test. Data from pumping tests is most commonly interpreted through 

fitting analytical models to observed drawdown curves. Over the last 80 years since 

fundamental work by Theis (1935), a wide range of analytical models have been 

developed for transient flow to a pumped well under a range of conditions (e.g. 

Kruseman and de Ridder 1990). These methods are designed for either 2 or 3D 

radial flow to the well in a homogeneous porous medium. The derived hydraulic 

parameters depend on the choice of an appropriate model and application of an 

inappropriate model can lead to errors.  

Classical methods have been highly successful in analyzing pumping test data in 

sediments and sedimentary rocks but do not always give good fits for such data in 

fractured rocks. In response to such poor fits, Barker (1988) introduced a 

generalized radial flow (GRF) model where the flow dimension is an extra fitting 

parameter and may take on any integer or non-integer value. The rationale for 

allowing a non-integer flow dimension is that, in fractured rocks, flow may have a 

wide variety of geometries which form a continuum from flow in a single channel 

(1D), to a single fracture (2D) and a fracture network (3D).  In this paper, a pumping 

and tracer test in the fractured Chalk Aquifer of East Yorkshire, UK,  previously 

analysed using classical techniques (Hartmann et al. 2007) is revisited.  A  method is 
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developed for deriving conventional transmissivity and storativity from the 

generalized fractional flow model (Barker 1988) and the impact of flow dimensionality 

on flow and transport parameters are investigated. The implications of revised 

estimates for transmissivity on the interpretation of a previously conducted tracer test 

at the site are then explored. 

 

2. The GRF Model  

The  GRF model (Barker 1988) generalizes the basic solutions of flow to a well to 

fractional flow dimensions which greatly increasing the range of drawdown type 

curves that may be fitted to observed data.  The drawdown given by the GRF model 

for the case of constant flow from an infinitesimal source in an infinite region where 

well bore storage is negligible is (Barker 1988): 
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2/1 n     ,     equation 3 

where h is drawdown, r is radial distance to the pumped borehole, t is time, Kf is the 

hydraulic conductivity, Ssf  is specific storage,   is the incomplete gamma function, n 

is the flow dimension, Q is the pumping rate, and b is ‘the extent of the flow region’. 

The variation in the shape of the drawdown curves with flow dimension, from convex 
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upward (1<n<2) to convex downward (2<n<3), is shown in Figure 1a. For n=2, the 

GRF model reverts to the Theis (1935) model for transient radial 2D flow where the 

drawdown curve on a plot of log time versus drawdown tends to a straight line. 

Variations in flow geometry are illustrated in Figure 1b where, in 1D flow (e.g. a 

single channel), b is the square root of the ‘flow through area’, in 2D flow, b is the 

thickness of the flow-through region (e.g. aquifer thickness, fracture aperture) and in 

3D flow, the exponent for b is undefined. Despite its versatility, the GRF model has 

not been widely used because the physical implications of a fractional flow 

dimension are difficult to conceptualise. Also, the GRF model results in hydraulic 

parameters that are a function of the parameter b and n. The quantities Tf 
3-n

 and Ssf 

b
3-n have been termed the ‘generalized’ or ‘apparent’ transmissivity and storativity 

(e.g. Bangoy et al. 1992, Marechal et al. 2003), with units of L4-n/T and L2-n 

respectively. It is not clear how such parameters may be incorporated in further 

applications such as groundwater flow models.  

 

3. Previous Applications of Fractional Flow and the GRF Model  

Since Barker’s paper in 1988, a number of authors have investigated the application 

and physical meaning of fractional flow through numerical modelling investigations 

and analysis of case studies. Doe (1991) points out that a flow dimension may reflect 

the power by which either the surface area through which flow is conducted (flow-

through area) or aquifer properties (hydraulic conductivity, specific storage) change 

with distance from the source (borehole). In the case of flow-through area, conduit 

cross-sectional area changes with distance from source proportional to rn-1. 

Fractional flow may also be generated by hydraulic conductivity that changes with 
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distance from the source, proportional to rn-2
 (Doe 1991, Acuna and Yortsos 1995). 

Whatever the origin of fractional flow, the fractional flow dimension does not 

necessarily imply a fractal aquifer geometry (Doe 1991).  

A number of authors have used numerical modelling approaches to investigate 

system geometries that give rise to fractional flow. Several authors have 

demonstrated that fractal fracture networks give rise to fractional flow (Acuna and 

Yortsos 1995, Doughty and Karasaki 2002, de Dreuzy and Davy 2007, Cello et al. 

2009). In non-fractal fracture networks both Euclidean and fractional flow can occur. 

Jourde et al. (2002) simulated pumping tests in 3D fracture networks based on a 

stratified system of ‘ladder’ style fracture patterns that closely mimic some natural 

systems. For partially penetrating boreholes, the flow dimension was found to be 

fractional (near spherical) demonstrating that non-fractal, space-filling 3D networks 

of fractures can give rise to fractional flow and illustrating the potential impact of well 

geometry on flow dimensionality. 

The GRF model has been increasingly used over the last 15 years as an aid to 

interpreting field pumping tests in fractured rocks. These studies have identified a 

range of flow dimensions from 0.5 to 3.0 for distances between pumped and 

observed boreholes of 2 to 400m. A survey of some 12 studies (see Table 1) 

indicates flow dimensions mostly less than 2 (between linear and radial) linked to 

flow dominated by single fractures or fracture zones which intersect the pumped well 

(e.g. Bangoy 1999, Leveinen et al. 1998, Van Tonder et al. 2002, Le Borgne et al. 

2004). Flow dimensions larger than 2 are reported from pumping tests in partially 

penetrating wells (Verbovsek 2009) and packer tests (Kuusela-Lahtinel et al. 2003) 

in fractured rocks and where a pervasive 3D fracture network is accessed through a 

single fracture intersecting a pumped well ( Marechal et al. 2003, Marechal et al. 
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2004). In the above field cases, the semi-log plot of drawdown versus time does not 

converge to a straight line at late times as predicted by the Theis model. The GRF 

model provides a better fit to the data by allowing flow dimensions other than 2 in 

which the slope of the drawdown curves evolve with time (see Figure 1).The problem 

in obtaining conventional hydraulic parameters transmissivity, T and storativity, S, 

from application of the GRF model has been tackled in a variety of approaches. 

Some authors simply quote the apparent transmissivity, Kf b
(3-n), and storativity, Ssf b

(3-

n) (e.g. Leveinen et al.1998, Le Borgne et al. 2004, Marechal et al. 2003, 2004). 

Other authors have attempted to derive Kf and Ssf by assuming the parameter b to be 

equivalent to the aquifer thickness, e.g. thickness of a fracture zone intersecting the 

pumped well (e.g. Leveinen et al. 1998, Van Tonder et al. 2002). Leveinen et al. 

(1998) evaluated the parameter b for the 1D and 2D flow as bounding values where 

the flow dimension lies between 1 and 2. They point out, however, that K values so 

derived should only be compared for like values of n due to these approximations. 

Lods and Gouze (2004) derive K and S from the GRF model by defining the 

Equivalent Cylindrical Transmissivity (ECT) through equating fractional and 

cylindrical flows. However, they give no details on the derivation of ECT and there is 

little discussion of the assumptions or validity of this approach in their paper.  

The studies above have shown that fractional flow dimensions can be generated in 

both fractal and non-fractal fracture systems. A wide range of fractional flow 

dimensions have been observed from pumping tests in fractured rocks showing that 

the flow dimension is controlled by the fracture system in combination with pumped 

borehole location and completion. The main difficulty that remains is the 

determination of conventional parameters T and S where the flow dimension is non-

integer. In the following, the GRF model is applied to pumping test data from 
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fractured chalk and a method developed by which the conventional parameters T 

and S may be determined for non-integer flow dimensions between 2 and 3. This 

facilitates the use of the GRF model where flow is non-integer by providing estimates 

of transmissivity and storativity that may be used in further applications.  

 

4. The Pumping Test 

4.1 The Field Site  

The site is located in the Chalk Aquifer at Wilfholme Landing on the Holderness Plain 

of East Yorkshire, approximately 20 km north of Kingston-upon-Hull, NE England 

(Figure 2a). The Chalk Aquifer of NE England extends over an area of approximately 

1800 km2 and is confined over most of the Holderness Plain by glacial and alluvial 

deposits of Quaternary age. The aquifer at Wilfholme is composed of well bedded 

chalk with thin marl (clay-rich) horizons and is confined by 10 to 13 m of glacial, clay-

rich sediments.  At the site, three boreholes (M1, M2 and M3) are arranged in an 

equilateral triangle, each 25 m from a fourth central borehole, P with a fifth located at 

a distance of 75 m from P (see Figure 2b). Correlations between boreholes from 

acoustic logs indicate that bedding dips at around 3o eastwards and that there are no 

significant faults at the site (Hartmann et al. 2007). Driller’s logs, flow logging (Parker 

et al. 2009) and dilution testing (West and Odling 2007), together with core from 

borehole P, indicate the presence of some 4 m of low conductivity ‘putty’ chalk 

directly beneath the glacial sediments, passing downwards into around 9 m of highly 

fractured and weathered chalk of high hydraulic conductivity, and finally into more 

solid fractured chalk of lower conductivity (Hartmann et al. 2007), see Figure 2(c). 

Fracture orientations in the more solid chalk below the casing from acoustic logs 
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(Hartmann et al. 2007) show a wide range of trends lacking preferred orientations 

and a range of dips from 40o to 90o. This is consistent with observations from coastal 

exposures which indicate a well-connected fracture system with no distinct preferred 

orientations. Acoustic logs are not available from the highly fractured, high 

conductivity layer but core, although showing poor recovery from this section, 

suggests it consists of roughly equi-dimensional fracture blocks the majority of which 

range from 2 to 15 cm in diameter. Many fracture surfaces show iron hydroxide 

staining indicating that they are natural and not a result of drilling.  

The boreholes are cased for 17.4 to 26.2 m through the glacial sediments and most 

of the highly weathered chalk (which is too weak to sustain an open hole) and 

thereafter open to depths of 60 to 80m below ground surface, see Figure 2(c). This is 

typical of borehole construction in the area. Only a small thickness (0.11 to 3.3 m) of 

the highly conductive layer at the base of the casing is open and thus boreholes 

partially penetrate the aquifer. Details of borehole completion and layer thicknesses 

are given in Table 2.  

 

4.2 Pumping Test Data Collection and Pre-processing  

The drawdowns recorded at the time of the tracer test (Hartmann et al. 2007) were of 

somewhat low resolution and compromised by intermittent problems with the 

pumping rates at late times. A further high resolution, constant rate pumping test was 

carried out in 2008 (Kilpatrick 2008) with a pumping rate of 423 m3/day over a period 

of 47 hours. Water levels and barometric pressure were recorded using pressure 

transducers (resolution 0.09 cm) at 30 second intervals. Background water level data 
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from all boreholes was also recorded 5 days prior to and 3 days after the pumping 

test, at 5 minute intervals.  

Before analysis, the pumping test drawdown data was corrected for effects of 

barometric pressure, Earth tides, and recharge trend. In confined aquifers, water 

levels in open boreholes rise during falling barometric pressure and vice versa 

(Rasmussen and Crawford 1997) and is characterized by the barometric efficiency of 

the aquifer (Rasmussen and Crawford 1997, Clark 1967). Water levels recorded by 

the pressure transducers can be compensated for the effects of barometric pressure 

using the equation (Rasmussen and Crawford 1997): 

BPBETPWL )1(         equation 4 

where WL is the corrected water level, TP is the total pressure recorded by the 

pressure transducer (water pressure plus barometric pressure), BE is the barometric 

efficiency of the aquifer and BP is the barometric pressure expressed in equivalent 

units of water head.  The barometric efficiency of the aquifer was estimated using 20 

weeks of water level and barometric pressure data to be 0.65 and this value . is used 

in equation 4 to compensate all data recorded by pressure transducers for 

barometric pressure. 

The data recorded for 5 days prior to the pumping test was used to identify the 

influence of Earth tides, local pumping and recharge. Earth tides cause a regular 

cyclic variation (wavelength 24 hours) in borehole water levels with an amplitude of 

around 2 cm, see Figure 3. The Earth tide influence on borehole water levels over 

the pumping test period was estimated from the theoretical Earth tide signal at 

Wilfholm(TSOFT software, van Camp and Vauterin 2005),This signal, ranging from 

+0.2 to -1.5 cm, was then subtracted from the compensated water level data.  
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A falling linear trend in water levels of -0.025 cm/hour due to seasonal recharge 

variations is observed in the background data. This is removed from the water level 

data over the pumping test period, resulting in a maximum correction of 1.46 cm over 

the 47 hours of the pumping test. The effects of short term pumping from a nearby 

domestic borehole some 200 m to the south can be seen as sharp water level drops 

of 1 to 2 cm over 30 min periods, occurring once or twice a day (see Figure 3). Due 

their irregular nature, it is not possible to correct for these effects and in the final 

drawdown curves, these periods of short term pumping appears as small bumps in 

the drawdown curve. However, drawdowns due to external pumping of 1 to 2 cm are 

small compared to the total drawdown in monitoring boreholes during the pumping 

test of around 0.7 m. 

Figure 4(a) shows a plot of the corrected pumping test data for all boreholes which 

shows drawdowns of up to 1.9 m for the pumped borehole and up to 0.8 m for 

monitoring boreholes. The drawdown curves for the monitoring boreholes at 25 m 

distance (M1, M2, M3) and the pumped borehole (P) show a similar geometry with 

an initial steep rise in drawdown followed by a convex downwards curve. The first 

derivative of drawdown with respect to time (slopes of these curves) was calculated 

using the Savitsky-Golay method (Press et al. 1992) with a sampling window of 15 

data points to minimise the effects of noise. The derivatives, shown in Figure 4(b), 

show that the maximum slopes (inflexion points on drawdown curves) occur at times 

between 1.3 and 2.5 minutes after which slopes steadily decrease with time. For the 

monitoring borehole at 75m (M4) the initial steep increase in drawdown is much less 

marked. All drawdown curves show small scale kinks at times around 1.3 and 3.8 

hours which are due to sporadic pumping from a domestic borehole some 200 m 

away.   
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The drawdown curves for all boreholes flatten after 19 hours (Figure 4a). This is 

thought to be caused by pressure support to the aquifer provided by leakage from 

the overlying glacial deposits. Although the head in the glacial sediments has not 

been monitored specifically, it is known that field drains limit head in these sediments 

to a maximum of around 0.5 m below ground level. Heads in the aquifer were above 

this level prior to the pumping test, and below this level by the end of pumping at all 

boreholes except M4. Thus towards the end of the pumping test, heads in the glacial 

deposits could provide support to the aquifer.  

The corrected drawdown curves up to 19 hours were analyzed, firstly using classical 

techniques and secondly using the GRF model. 

 

5. Pumping test analysis – classical methods 

The corrected drawdown curves for up to 19 hours for boreholes M1, M2, M3 and 

M4, shown in Figure 4(a), were analysed using a number of classical methods 

including the Theis (1935) method for radial flow, and modifications to include 

delayed monitoring borehole response (Black and Kipp 1977), effects of partial 

penetrating wells and leaky aquifers (Hantush 1961, 1964), and impact of dual 

porosity (Boulton and Streltsova 1977). The results are described below and 

summarised in Table 3.  

5.1 Theis and Hantush methods 

Theis (1935) gives the solution for transient radial flow in a homogeneous aquifer to 

a fully penetrating well and model curves are shown on plots of 1/u against the well 

function W(u) where tTSru 4/2 . Applying the Theis method (using AquiferWin32 

software) shows that it is not possible to fit the entire drawdown curves for the 
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boreholes at 25 m to the Theis model curve. The fit is improved by excluding the first 

5 minutes of drawdown data (shown by arrows in Figure 5a) giving transmissivities of 

460-488 m2/d and storativities of 1-10 x 10-5, see Table 3. The drawdown curve from 

borehole M4 at 75m shows a much better fit to the Theis curve (Figure 5a) with a 

similar transmissivity of 469 m2/d and storativity of 2 x 10-4.  

A possible explanation for the early steep parts curves is a delayed response in 

monitoring boreholes due to flow resistance between borehole and aquifer and such 

model type curves (Black and Kipp, 1977) are shown in Figure 5(a). Only the 

monitoring well at 75m, shows an acceptable fit indicating a small borehole response 

time of around 23 seconds.  

Borehole storage and/or skin effects are known to contribute to early time responses 

in both pumped and observation boreholes and the potential impact of these effects 

on the drawdown data presented here are explored below. Borehole storage effects 

generate an initial drawdown segment in the pumped borehole with a slope of 1 on a 

log-log plot of drawdown versus (1/time) or W(u) versus time or 1/u  (Papadopulos 

and Cooper 1967). Borehole storage effects in the pumped borehole cause a delay 

in drawdown and a reduction in the slope of the drawdown curve at observation 

boreholes (Streltsova 1988). The potential significance of borehole storage on the 

pumped borehole response is tested using the method of Strelsova (1988) where 

borehole capacity is given by, grF w  /2 , where rw is the radius of the borehole,  

is the density of water and g is the gravitational constant. Time, t, to which borehole 

storage effects are insignificant at the pumped well is given by Trt w /6766.9 2

where T is the transmissivity of the formation. This is the time at which formation flow 

rate constitutes 99% of the pumping flow rate (Streltsova 1988). Using the lowest 
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value of transmissivity of 450 m2/d with a borehole (casing) radius of 0.075 m gives a 

value of t of 33 s. The impact of well bore storage in observation boreholes 

diminishes with distance from the pumped well and at r/rw >200 is negligible 

(Streltsova 1988). With a ratio r/rw of 333 for the monitoring wells at 25 m, the impact 

of borehole storage at the pumped borehole is thus predicted to be insignificant at 

the observation boreholes. Thus, it is unlikely that the initial steep section of the 

drawdown curves at observation boreholes is due to borehole storage effects. In 

addition, the early time segment of the drawdown curve for the pumped borehole, P, 

shows a slope greater than 1 on a log-log plot of drawdown versus time suggesting 

that significant borehole storage effects are not present. 

Significant positive skin is thought unlikely for the boreholes at the site as all 

boreholes have been repeatedly pumped (for flow logging, Parker 2010) which is 

likely to have cleared blocked fractures. Analysis of recovery data at borehole P, 

using the method of Matthews and Russel (1967) described in Kruseman and de 

Ridder (1994) gives only a small positive skin factor of 4.1. In addition, the impact of 

skin on drawdown is negligible at observation boreholes when borehole storage 

effects are small (Tongpenyai 1981, Streltsova 1988, Bulter 1990, Pucknell and 

Clifford 1991), as is the case here. Thus the early steep parts of the drawdown 

curves for the observation boreholes (Figure 4) are unlikely to be due to skin effects. 

Since it is known that the boreholes are cased through significant proportions of the 

highly conductive layer, the Theis method modified for partially penetrating wells in 

anisotropic aquifers (Hantush 1961, Reed 1980) was applied (using Aquifer Win32 

software). Significantly improved fit to entire drawdown curves for boreholes at 25 m 

(M1, M2, M3) are obtained if anisotropies (Kz/Kr) of  2 to 3 orders of magnitude are 

invoked, see Figure 5b and Table 3.  Compared to the Theis results, the resulting 
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transmissivities are slightly higher (up to 30%) and storativities one to two orders of 

magnitude higher for boreholes at 25 m (M1, M2, M3) and unchanged for the 

borehole at 75 m (M4). However, early time segments of drawdown curves for 

boreholes at 25 m are still significantly steeper than any of the type curves (Figure 

5b). When the first 5 minutes of data were omitted, the Hantush model gives a much 

improved fit with values of T, S and Kz/Kr within 10% of the previous results, see 

Table 3. The method of Hantush (1964) for partially penetrating wells in a leaky 

aquifer gave very similar results with a small reduction in T of 9 to 19%, see Table 3.  

The similarity of parameters from models with and without leakage suggests that 

leakage has not significantly modified the drawdown curves for times up to 19 hours. 

Both Hantush (1961, 1964) methods require significant anisotropy with 

horizontal:vertical hydraulic conductivity ratios of 2 to 3 orders of magnitude. 

Examination of core from the borehole, P, suggests that the weathered section of the 

chalk is intensively fractured generating overall equi-dimensional blocks of 2-15cm 

across consistent with a lack of any preferred fracture orientation (section 4.1 

above). This makes a high degree of anisotropy in the highly conductive layer 

difficult to justify.If an anisotropy ratio of 1 is enforced in the Hantush method (late 

data), the results are very similar to those of the Theis method applied to late data. 

 

5.2 Dual porosity effects 

In a dual porosity aquifer such as fractured chalk, when heads in fractures are drawn 

down due to pumping, matrix bocks may provide pressure support to fractures (e.g. 

Boulton and Streltsova, 1977). This is expressed on a drawdown versus log time plot 

as a reduction in slope of the drawdown curve at intermediate times. The possible 
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impact of dual porosity effects was investigated using the model of Boulton and 

Streltsova (1977). Model curves are controlled by the dimensionless parameter rD 

where : 

f

m
D

k

k

H

r
r 

     ,        equation 5 

where H is the half matrix block width, km and kf  are the matrix and fracture 

permeability, respectively. An rD of zero reflects no contribution, and large rD reflects 

strong support by matrix blocks. The observed drawdown curves show poor fits to 

dual porosity model curves, as illustrated in Figure 6 for borehole M1, as it is not 

possible to generate a fit to both the early and late time segments. Also, the 

observation that the borehole at 75m (M4) shows a tolerably good fit to a Theis 

curve indicates that dual porosty effects are not significant. 

In summary, application of the classical Theis (1935) method for 2D radial flow show 

a reasonable fit to the observed drawdown data for the more distant borehole (75 m 

from the pumped borehole) and to the boreholes at 25 m for drawdown data later 

than 6 minutes. For all boreholes, the Hantush method (partially penetrating 

boreholes) gives improved fits to drawdown if high hydraulic conductivity 

anisotropies of 2 to 3 orders of magnitude are invoked, although the validity of this is 

questionable. Methods that include borehole response time and dual porosity effects 

do not result in improved fits to the observed drawdown data. Overall, the classical 

methods suggest transmissivities of around 500 m2/d and storativities around 10-4 

(Theis) or 2x10-3 (Hantush), see Table 3.  

 

6 Pumping Test Analysis – the GRF Model 
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The drawdown curves up to 19 hours for boreholes M1, M2, M3 and M4 were fitted 

to the fractional flow GRF model of Barker (1988) using a Fortran program which 

employs the method described in Le Borgne et al. (2004) and calculates best fit 

curves using the Levenberg-Marquardt method (Press et al. 1992). The program 

gives the best fit estimates for apparent transmissivity, Ta, apparent storativity Sa, 

flow dimension, n,  and RMSE (root mean square error) for the fit.  

For the boreholes 25 m distant from the pumped borehole (M1, M2 and M3) it was 

found that, as for the classical methods, the entire drawdown curves cannot be 

explained in terms of a single flow dimension. However, good fits were obtained for 

drawdown data from 5 minutes to 19 hours (over two orders of magnitude in time) as 

shown in Figure 7 and Table 4. The boreholes at 25 m (M1-M3) show a narrow 

range of flow dimensions from 2.33 to 2.38 and for the borehole at 75 m (M4) the 

whole data set is well explained by a single flow dimension of 2.2. The fits obtained 

by the GRF model (RMSE 0.0028-0.0038) are significantly better than those 

obtained from the classical methods when applied to the whole data set (RMSE 

0.008-0.02 m). The fit to the Hantush model is also improved when when the first 5 

mins of data are omitted but the RMSEs (0.0055-0.0074 m) are still around double 

those of the GRF model (0.0028-0.0038 m), see Table 3. The GRF model also has 

the advantage that there is no need to invoke high degrees of hydraulic conductivity 

anisotropy which are required by the Hantush model but which are inconsistent with 

core observations. Thus the GRF model provides the preferred fit to the drawdown 

curves. 

Apparent transmissivities, Ta, from the GRF model lie in the range 45-55 m4-n/d for 

boreholes at 25 m and 114 m4-n/d for the borehole at 75 m and all apparent 

storativities, Sa, lie in the range 0.4-1.0 x 10-4 m2-n. However, these values cannot be 
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directly compared with values of T and S estimated using classical methods due to a 

mismatch in units. A method for converting Ta and Sa to T and S is developed below. 

 

6.1 Converting Apparent Transmissivity and Storativity 

The flow-through area, An, (units L2) for a flow dimension n, as defined by Barker 

(1988) is given by the product of the surface area S(n) (units of Ln-1) and b3-n where b 

is the extent of the flow-through area (e.g. van Tonder 2002): 
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       .         equation 6 

 

For integer flow dimensions 1, 2 and 3, equation 6 reduces to surface areas of a 1D 

channel (2b
2
 , n=1), a cylinder (2rb, n=2) and a sphere (4r

2
 , n=3). In 1D flow, b 

therefore represents square root of half the flow-through area, in 2D flow (n=2) b 

represents the vertical extent of the flowing region (thickness of the aquifer) and in 

3D flow (n=3), the parameter b reduces to 1 (Barker 1988). Thus for flow dimensions 

between 1 and 2, the b must lie between the square root of the flow-through region 

and the thickness of the aquifer. Leveinen et al. (1998) and Van Tonder et al. (2002) 

use values of b for flow dimensions of 1 and 2 to obtain bounding values of T and S. 

However, for non-integer flow dimensions between 2 and 3, only one bound to the 

parameter b (that for 2D flow) exists. 

The drawdown curves from the monitoring boreholes at 25 m distance from the 

pumped borehole (M1, M2, M3) suggest sub-spherical flow, most likely caused by 

the partially penetrating nature of the boreholes casings. From the model of Hantush 
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(1961) for partially penetrating wells, Reed (1980) states that flow occupies less that 

the full thickness of the aquifer when zr KKBr /5.1 where r is the distance 

between pumped and observation boreholes and B is the thickness of the aquifer. In 

the case of an isotropic aquifer (suggested by the nature of fracturing observed in 

core), this suggests that flow is likely to occur throughout the full thickness of the 

aquifer at distances of more than around 14 m from the pumped borehole. Thus at 

the distance of the monitoring boreholes (25 m), flow is likely to occupy the entire 

thickness of the aquifer. The GRF model assumes constant hydraulic conductivity, 

Kf, and specific storage, Ss, and a flow-through area that evolves according to rn-1. 

This is however, not compatible with the case where flow is restricted to the height of 

the aquifer. One way to reconcile these observations, is to consider a model where 

the flow-through area is confined to the thickness of the aquifer (as in 2D radial flow) 

while transmissivity increases with distance from the pumped borehole, as described 

in Doe (1991).   

Consider a cylinder, radius r, with the same surface area as the flow-through area, 

An, (equation 6)  where 2<n<3. The transmissivity of the aquifer at distance r from 

the pumped borehole is T= Kf  F, where F is the height of the cylinder, so: 

f
n

f K
r

A
FKT

2


    , 
      equation 7 

Now assume that flow is restricted to cylinder height B (thickness of the aquifer) so 

that to preserve transmissivity, hydraulic conductivity becomes dependent on 

distance, r, from the pumped borehole. Substituting for F (equation 7) and using Kf 

b
3-n

 = Ta  then gives: 
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Storativity, S, may be derived from apparent storativity, Sa , by similar arguments to 

give: 

)2/(/2)12/( nΓrSS nn

a

      .      equation 9 

Thus equations 8 and 9 can be used to estimate T and S from Ta and Sa given the 

flow dimension n, for flow dimensions, 2< n<3. The ratio T/Ta  (from equation 8), 

increases with increasing flow dimension, n, and distance, r. At r=25 m and n=2.4 

(boreholes M1, M2 and M3), the ratio of  T/Ta is around 5 while for r=75 m and n=2.2 

(borehole M4), it is 2.8.   

Equations 8 and 9 were used to determine transmissivity (T) and storativity (S) from 

the apparent transmissivity (Ta) and storativity (Sa), and flow dimensions, n, assuming 

an aquifer thickness (B) of 9.5 m. The resultant transmissivities lie in the range 196 

to 337 m2/d and storativities 2 to 5 x 10-4 (Table 4). In comparison with classical 

methods results, the GRF model transmissivities are smaller by a factor of 2 to 3 and 

storativities around one order of magnitude smaller than those from the  Hantush 

method. As a check on the values of T and S given by equations 8 and 9, upper and 

lower bound may be calculated by using the aquifer thickness of 9.5 m for b as in 2D 

flow giving a lower bound and by assuming b3-n
 = 1 , as in 3D flow, giving an upper 

bound. The values of T and S from equations 8 and 9 are seen to lie between these 

bounding values, see Table 5. 

 

7 Analysis of the Multi-borehole Tracer Test 

The nature of flow has potentially important implications for the analysis of radially 

convergent  tracer tests. A multi-borehole tracer test was previously conducted at the 

site in 2001 in which borehole P was pumped and tracers injected into the 
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observation boreholes M1, M2 and M3. The aquifer transmisisivty, estimated using 

classical techniques,  was used as an input parameter in modelling of breakthrough 

curves to derive fracture characteristics. In the following section, the modelling 

method is adapted for fractional flow and the tracer test re-interpreted to investigate 

the implications of fractional flow for the derivation of fracture characteristics. 

There have been few studies that have incorporated fractional flow in the 

interpretation of tracer tests in fractured rocks. Van Tonder et al. (2002) developed 

generalized equations incorporating fractional flow dimensions into expressions for 

Darcy and seepage velocities from dilution and tracer tests which were applied to 

tracer and dilution tests in fractured sandstones by Riemann et al. (2002). Flow 

dimensions for a fracture zone of 1.75 to1.85 were determined and the estimated 

Darcy and seepage velocities and kinematic porosity showed sensitivity to flow 

dimension.  Kurtzman et al. (2005) estimated dilution factors in forced gradient tracer 

tests in fractured chalks based on fractional flow. They obtained flow dimensions of 

1.8 to 2.0 and inferred that flow was dominated by a network of channels comprising 

1 to 3% of the fracture planes. 

 

7.1 The tracer test and previous interpretation 

A multi-borehole radial tracer test was conducted at the Wilfholme site in 2001 

(Hartmann et al. 2007). Tracer dyes were injected into the three monitoring 

boreholes at 25 m from borehole P (Eosine in M1, Amino G Acid in M2 and 

Rhodamine WT in M3) while borehole P was pumped at a rate of 330 m3/day for 8 

days. The tracers were injected as single slugs (Dirac injection) after 7 hours of 

pumping to achieve a near steady state flow field and injection boreholes M1, M2 
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and M3 were re-circulated throughout the tracer test. The concentration of tracers in 

injection boreholes showed a sharp decline with 10% or less remaining after 24 

hours (Figure 8). The breakthrough curves showed similar shapes with initial 

breakthrough from 6 to 11 hours, a sharp initial rise with peak concentrations at 31 to 

49 hours, and a long tail (Figure 8). However, recoveries varied greatly from Eosine 

(M1) at 9%, to Rhodamine WT (M3) at 17%, and Amino G (M2) at 57%. Aquifer 

transmissivity and storativity were estimated from drawdowns, manually dipped 

during the tracer test, using the Theis (1935) and Hantush (1964) leaky aquifer 

methods.  

The tracer break-through curves were modelling using the 1D analytical dual porosity 

model of Barker and Foster (1981) for fracture flow with matrix diffusion modified for 

radial flow. Input parameters supplied by laboratory tests on core samples of chalk 

matrix from the site (Hartmann et al. 2007) are the matrix porosity (30%), matrix 

hydraulic conductivity (0.07 to 0.68 x 10-4 m/d), and effective diffusion coefficient (1.4 

to 5 x 10-11 m2/s). The injection borehole tracer concentrations were used as source 

functions and the estimated transmissivities were used as an additional fitting 

condition. Best fits models to the observed breakthrough curves, obtained through 

trial and error, showed reasonably good fits and resulted in estimates of fracture 

aperture of 363 to 384 m, fracture spacing of 6 to 9 cm and fracture dispersivities of 

1 to 5 m.  

The tracer test breakthrough curves from the 2001 tracer test are here re-analysed 

incorporating transmissivities derived from the 2008 pumping test, assuming i) 2D 

flow and ii) fractional flow. 
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7.2 Modelling the Tracer Breakthrough Curves 

The tracer breakthrough curves are modelled using an analytical, dual porosity 

model described in Barker and Foster (1981) for 1D flow in parallel, equally spaced 

fractures, modified for 2D and fractional radial flow. The model of Barker and Foster 

(1981) considers advection of water along fractures with velocity, v, and longitudinal 

dispersion, , coupled with exchange by diffusion between the mobile fracture water 

and immobile matrix pore water. The matrix of porosity, m, is divided into regular 

blocks by fractures of aperture, a, and constant spacing, d, see Figure 9. Water flows 

along the fractures with a constant velocity, vf. Solute concentration in the fractures 

and matrix pores is initially zero and at time, t=0, solute of concentration c0 is 

introduced into the fractures at x=0 (Figure 9). The evolution of the solute 

concentration in the fractures and matrix is described by equations 10-14 (Barker 

and Foster 1981, Hartmann et al. 2007): 
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with boundary conditions: 
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and initial conditions: 
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  00, txc f    ,         

  00,, tzxcm     ,         equations 13 

where cf  and cm are the concentrations of solute in the fracture and matrix 

respectively, c0(t) is the source function (solute concentration introduced at x=0, the 

in-flow end of the fracture, Figure 9) and De is the effective diffusion coefficient for 

the matrix.  

The model is evaluated through five  parameters; advection time, ta, characteristic 

time for diffusion from fracture to matrix, tcf, matrix to fracture porosity ratio, , 

relative dispersivity, rel, and a scaling parameter, C : 
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where R is the distance between injection and pumped boreholes. 

  

7.3 Travel Times to a Borehole in Fractional Radial Flow 

In the case of radial flow in an aquifer of constant thickness confined by 

impermeable layers above and below, the flow-through area at distance r from the 

pumped borehole is constrained to be the surface area of a cylinder of radius r and 

height B (the aquifer thickness). Consider a thin shell of thickness r which is 

bounded by two cylinders of radius r and r+r. Assume that flow within this shell is 

conducted by vertical fractures oriented radially to the pumped borehole with spacing 

d, see Figure 10a. This is a reasonable representation of fracture flow in rocks with 

fracture systems composed of two or more orthogonal sets (as is the case at this 
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site) where the fractures that are most closely oriented radially to the pumped 

borehole will carry most flow.  

In the case of 2D flow, the number of flowing fractures, Nf, with spacing, d, at 

distance, r, from the pumped borehole is: 

d

r
N f

2


         
.        equation 15 

Flow in a single fracture, Qf, is given by the pumping rate, Qp, divided by the number 

of fractures, Nf . The average flow velocity in each fracture is then fracture flow, Qf, 

divided by fracture cross-sectional area (a.B) and thus the average travel time, ta, 

over distance r, is : 
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Following the previous development, it is assumed that flow is confined to the 

thickness of the aquifer, B, and that hydraulic conductivity depends on r. T can be 

related to fracture aperture, a, spacing, d, and aquifer thickness B by the Cubic Law:  
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where  is the density of water, g is the gravitational constant and  is the dynamic 

viscosity of water. If fracture aperture is assumed to be constant, fracture spacing, d, 

depends on r , see Figure 10b. An expression for spacing, d(r), can then be derived 

from equations 17 and equation 8, for the case of fractional flow: 
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and thus travel time for distance, r (substituting for d in equation 16) is:  
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Travel time from distance r to the pumped borehole at rw (borehole radius) is given 

by integrating the above equation between the limits of r and rw: 
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When n=2, T is equivalent to Ta, and equation 20 reduces to    22/ wpa rrdQBat     

which is the equation used by Hartmann et al. (2007) for travel time in 2D radial flow.  

 

7.4 Application to Tracer Breakthrough Curves 

The dual porosity transport model is evaluated using an Excel spreadsheet originally 

written by John Barker and modified for radial and fractional flow by the authors. 

Input parameters that are held constant include aquifer thickness (B), pumping rate 

(Qp), the inter-borehole distance (R), borehole radius (rw) and matrix porosity (m), 

see Table 6. Two values of effective matrix diffusion coefficient (De) were used. The 

value of 5 x 10-7 m2/s measured from core samples of un-weathered, un-fractured 

chalk from approximately 70 m depth at the site was used as a lower bound. It is 

likely that the porosity and diffusion coefficient of the weathered chalk matrix from 

the upper conductive zone is higher and thus a value of 2x10-6 m2/s, representative 

of less compacted chalk (Hill 1984, Witthüser et al. 2000, Polak et al. 2002, Gooddy 

et al. 2007), was used as an upper bound. The observed variation in tracer 

concentration with time  in the injection boreholes were used as source functions for 

M1 (Eosine) and M3 (Rhodamine WT) boreholes (see Figure 8). Due to sampling 

problems in M4 (Hartmann et al. 2007), a simple box-shaped source function was 
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constructed consisting of initial tracer concentration for a duration equal to the time 

needed to wash all tracer from the borehole. The flow-through rate of the borehole, 

Qinj, was estimated from the equation  bhinj VdtcdQ ]/)ln([   (Freeze and Cherry, 

1979, equation 9.27) where c' is the observed injection borehole concentration 

normalized by initial concentration, c0, and Vbh is the volume of the flowing section of 

the borehole, as in Hartmann et al. (2007). The term ]/)ln([ dtcd  was estimated 

using the first few concentration data points from M2, when concentration fell rapidly, 

and the volume of the recirculated borehole as Vbh , giving Qinj as 0.49 m3/hr. The 

time required to wash the injected mass from the borehole is then given by 

)( 0cQMt injinj  , where M is the mass of tracer injected, which gives a source 

function duration of 1.86 hours.  

Travel time (ta), fracture spacing (d) and fracture dispersivity (are constrained to lie 

within acceptable upper and lower bounds (Hartmann et al. 2007), see Table 6. 

Travel time was restricted to smaller than the timing of the breakthrough curve peak 

and fracture dispersivity was allowed to vary between zero and the distance between 

monitoring and pumped boreholes (25 m). The scaling factor, C, representing the 

dilution of the tracer due to radial flow, was allowed the maximum range of [0-1]. 

With the input listed in Table 6, a range of models with similarly good fits to the 

observed tracer breakthrough curves, comprising a range of fracture aperture and 

spacing combinations, are possible. In order to further restrict the solution, fracture 

aperture and spacing were constrained to be consistent with the observed 

transmissivity through equation 17. Atkinson et al. (2000) has previously used 

transmissivity, through the Cubic Law, as a check on the validity of different transport 

models of a tracer test in chalk. 
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The model was run for each of the three breakthrough curves assuming i) 2D radial 

flow (n=2) using transmissivities determined by the Hantush (1964) method (Table 2) 

and ii) fractional flow using flow dimensions and transmissivities from the GRF model 

(Table 3). The spreadsheet determines the best fit values of the parameters ta, tcf, , 

rel and C to the observed breakthrough curves using the Solver function in Excel and 

the RMSE between best fit model and observed data is calculated. From these best 

fit parameters, fracture aperture, spacing and dispersivity for each model are 

derived. The results are shown in Figure 11 and listed in Table 7.  

Generally good fits between model and observed breakthrough curves were 

obtained (Figure 11) with RMSEs ranging from 0.0006 to 0.003 m (Table 7). The 

models for 2D and fractional flow show equally good fits apart from the breakthrough 

curve for borehole M1 (tracer Amino G Acid) where a significantly better fit was 

found using a fractional flow dimension of 2.36 with a lower transmissivity of 196 

m2/d. Comparison of the models results assuming 2D and fractional flow shows that 

the fractional flow models result in smaller fracture apertures (26-34% reduction), 

smaller fracture spacings (7-16% reduction) and smaller dispersivities (20-35% 

reduction). Increasing the effective diffusion coefficient by a factor of 4 results in an 

increase in apertures by a factor of around 1.25 and spacings by up to a factor of 2, 

while scaling factors and RMSE values are not significantly changed. Resulting 

apertures from the fractional flow models range from 220 to 300 m and spacings 

from 3 to 8 cm, while dispersivities are in the range 1 to 2.2 m. The fracture spacings 

are consistent with observations from core at borehole P which indicates fracture 

block sizes of 2 to 15 cm. Travel times, representing time to travel distance from 

injection to pumped boreholes without matrix diffusion or dispersivity, range from 4.4 

to 8.3 hours.  
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8 Discussion 

8.1 A Conceptual Model for Flow Evolution with Time and Distance from the Pumped 

Borehole 

Analysis of the drawdown curves using the GRF model has shown that flow 

dimensions range from 2.3-2.4 at 25 m to 2.2 at 75 m from the pumped borehole, for 

times greater than 5 minutes. For times less than 5 minutes, the drawdown curves 

for pumped borehole and boreholes at 25 m show steep initial sections that are 

concave upwards (see Figure 7), suggesting flow dimensions between 1 and 2 (sub-

radial flow, see Figure 1a). This is followed by a transition period as the flow 

dimension evolves to a stable value greater than 2 (sub-spherical flow) at times later 

than 5 minutes. By contrast, the drawdown curve for the borehole at 75 m (M4) 

shows a dimension of 2.2 for all times. 

These changes in flow dimension with time and distance from the pumped borehole 

suggests a conceptual model for the evolution of flow during the pumping test. At a 

distance of 25 m, flow is restricted during the first few minutes to a small number of 

channel ways within fractures giving a flow dimension of less than 2. Flow during this 

time is likely to be concentrated within a thin zone at the base of the highly 

conductive layer where the pumped borehole is open to the aquifer (see Figure 2c). 

That this behaviour is not observed at 75 m suggests flow is more evenly distributed 

throughout the aquifer thickness at this distance. At around 5 minutes, the flow field 

stabilizes with respect to time but the flow dimension remains dependent on distance 

from the pumped borehole from 2.3-2.4 at 25 m to 2.2 at 75m. This suggests that 

with increasing distance, flow accesses an increasing proportion of the fracture 
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network spreading up from the initial pathways close to the base of the aquifer to 

encompass the full thickness of the highly conductive layer, see Figure 12.  The 

change in flow dimension with distance suggests that at distances somewhat greater 

75 m, a dimension of 2 would be reached where all available fracture flow pathways 

in the aquifer are exploited, i.e. fully 2D radial flow is reached. Thus the flow 

dimension evolves at early times from near linear (1<n<2) to sub-spherical (2<n<3) 

close to the pumped borehole. At later times, when the flow regime has stabilized, 

flow dimension evolves from subspherical (2<n<3) to radial (n=2) with increasing 

distance from the pumped borehole, illustrated for times greater than 5 minutes in 

Figure 12. These non-integer flow dimensions are consistent with effects generated 

by the partially penetrating geometry of the borehole casing and therefore do not 

reflect intrinsic properties of the aquifer.  

The analyses suggest that the effects of partial penetration extend further from the 

pumped borehole than would be expected in an isotropic porous media aquifer. In 

the present case, these effects are seen at 75 m compared to 14 m predicted by the 

Hantush method (see section 6.1) as the maximum extent of the effects of partial 

penetration in an homogeneous, isotropic porous media aquifer. In the Hantush 

method, this is explained in terms of anisotropy with values of Kz/Kr of 2 to 3 orders 

of magnitude, which is not compatible with observations of an essentially isotropic 

fracture system from core and acoustic logs. This suggests that the effects of partial 

penetration are not just a matter of restricting flow to a part of the aquifer thickness 

but also of restricting flow to the subsets of fracture network. Flow may occupy the 

full thickness of the aquifer at around 14 m from the pumped borehole (as predicted 

by the Hantush method for an isotropic aquifer) but may be dominated by the larger 

apertures in fractures that are well connected with the borehole. In this conceptual 
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model it is only at much greater distances from the pumped borehole that flow is 

likely to occur throughout the entire connected fracture system, as illustrated in 

Figure 12. This conceptual model suggests that the effects of partial penetration 

extend much further from the pumped borehole in fractured aquifers than in 

homogeneous, isotropic porous media. Thus to avoid such effects, monitoring 

boreholes at larger distances from the pumped borehole should be used (in the 

present study > 75m). The highly conductive layer of the aquifer in this study is 

highly fractured with a very small fracture spacing (2-15 cm) compared to many 

fractured aquifers. It is possible that where fracture spacing is larger, fractional 

flow/partial penetration effects could extend to much greater distances from the 

pumped borehole than observed here (around 75 m). 

 

8.2 Re-interpretation of the tracer test  

Interpretation of drawdown curves using the GRF fractional flow model results in 

smaller transmissivities which are reflected in the smaller fracture apertures and 

spacings from the fractional flow transport models. Model fracture spacings of 3–8 

cm are consistent with observations from the core at borehole P which shows 

fracture block sizes of 2 to 15 cm. For any given model and diffusion coefficient, 

results from the three injection boreholes show a relatively narrow range of fracture 

apertures (10-20%) and spacings (25-30%), reflecting the narrow range (10-20%) in 

transmissivities. There is, however, a much wider variation (by a factor of 6) in the 

observed tracer recovery (Amino G Acid 57%, Rhodamine WT 17% and Eosine 9%).  

The question then arises of why such a wide range in recoveries should occur when 

the dual porosity model predicts narrow ranges of parameters for all boreholes. 
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Recovery in the dual porosity model is controlled dominantly by the scaling factor, C, 

which was allowed to vary widely in the interval [0-1] to find the best fit model curve 

and reproduce the observed recoveries. The dual porosity model uses the shape of 

the observed breakthrough curve to determine model parameters (fracture aperture, 

spacing and dispersivity) while the scaling parameter is used to adjust the 

magnitudes of model break through curve concentrations to reproduce observed 

recoveries. The dual porosity model therefore does not give a physical explanation 

for observed recoveries. Scaling factors may also be estimated from the change in 

injection well concentrations with time (source functions) and injection borehole flow-

through rates, Qinj. Flow-through rates for boreholes M1 and M3 were calculated 

(using the method described in section 7.4) as the rate required to wash the injected 

tracer mass, M, from the borehole in the time taken for injection well concentrations 

to fall to less than 1% of initial values. From these flow-through rates and that 

already estimated for M2 (section7.4), predicted scaling factors (C’) were estimated 

from the ratio Qinj/Qp  (Table 8).  

Comparing the predicted scaling factors, C’, with those from best fit model curves, C, 

shows that predicted scaling factors are significantly larger for M1 (Eosine) and M3 

(Rhodamine WT) by a factor of 2 and 4 respectively, while C’ for M2 (Amino G Acid) 

lies closer to C.  By replacing the best fit scaling factors, C, in the model by predicted 

scaling factors, C’, recoveries predicted by Qinj are obtained (Table 8). Predicted 

recoveries show a much narrower range (32 - 44%) than the observed recoveries (9-

57%) which is consistent with the relatively narrow ranges of the other model output 

parameters (Table 7). The predicted recoveries, C’, are larger than observed, C, for 

M1 (by 27%) and M3 (14%) and smaller than observed for M2 (13%). Since the dual 
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porosity model does not provide a physical explanation for the observed recoveries, 

other explanations for these discrepancies must be sought.  

Dilution tests of the boreholes show significant variations in flow with depth 

(Hartmann 2004, West and Odling 2007) with M1 showing one, and M3 two, distinct 

flow horizons in addition to that at the base casing. By contrast, flow logging at M2 

(Parker 2010), shows that flow is very strongly dominated by the zone just below the 

base casing. In boreholes M1 and M3, it is therefore likely that significant amounts of 

tracer were drawn into aquifer at subdominant flowing horizons for which 

breakthrough may not be observed.  The slight increase in tracer concentration at 

110-150 hours observed for M1 (Eosine) in Figure 11 could be interpreted as a 

secondary breakthrough resulting from tracer in the lower flow horizon.  

Another cause of reduced tracer recovery may be the nature of connection between 

the borehole and the fracture network. While transmissivities determined from the 

GRF model reflect averages over the thickness of the aquifer and distances from 

pumped to observation boreholes, tracers are introduced over much smaller volumes 

constrained by the borehole radius and the narrow intervals where the boreholes are 

open to the highly conductive aquifer layer (0.11 to 3.3 m). The injection borehole 

flow-through rates, Qinj , are likely indicators of the ‘goodness’ of borehole connection 

with high flow pathways of the fracture network. The highest observed recovery 

(57%) and flow-through rate (0.49 m3/hr) at borehole M2 (Amino G Acid) suggests 

that it is well connected to high flow pathways in the fracture network. This is 

supported by the early drawdown curve slope for this borehole (Figure 7) which is 

thought to reflect a flow dimension close to 1, consistent with the presence of a high 

flow pathway. By contrast, the lower flow-through rates (0.144 and 0.055 m3/hr) of 



34 

 

M2 (Rhodamine WT) and M1 (Eosine) which correlate with lower recoveries (17 and 

9% respectively) may indicate poorer connections with the fracture network.  

This suggests that while the dual porosity model estimates fracture apertures, 

spacing and dispersivities averaged over the distance between injection and pumped 

boreholes, recoveries are sensitive to other influences not explicitly included in the 

model and may vary widely. High recoveries and borehole flow-through rates may be 

indicative of flow dominated by a single horizon and good connection between 

borehole and fracture network. Low recoveries and borehole flow-through rates may 

indicate the presence of multiple flowing horizons and poor connection with the 

higher conductive parts of the fracture network. 

 

8.3 Implications for determination of aquifer properties 

The fractional nature of flow in the vicinity of pumped, partially penetrating boreholes 

becomes important in the interpretation of pumping and tracer tests where nearby 

observation boreholes are used. Application of classical methods when flow is 

fractional will tend to overestimate T for flow dimensions greater than 2 and 

underestimate T for flow dimensions less than 2. For flow dimensions of 2.3-2.4, the 

classical methods overestimate T by factor of up to 3.  

The flow and tracer test results analysed here illustrate the impact of borehole 

construction on flow dimension. The simple borehole construction at Wilfholme of a 

solid casing extending partially into the highly conductive layer is typical throughout 

this region. The analysis here shows that pumping from such partially penetrating 

boreholes in the Chalk Aquifer can have an impact on the flow dimension for at least 

75 m distant from the pumped borehole. Similar drawdown curve shapes to those 
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observed at Wilfholme are reported from pumping tests in the confined Chalk aquifer 

in Yorkshire and Lincolnshire (MacDonald 1977). Reported transmissivities derived 

from these pumping tests using classical methods (Theis) for the confined Chalk 

Aquifer range from around 30 to over 3000 m2/day (MacDonald 1977, MacDonald 

and Allen 2001). If the boreholes in these pumping tests partially penetrate the highly 

conductive part of the aquifer, as they do at Wilfholme,  the upper end of this range 

may significantly overestimate transmissivity. Similarly, where forced gradient tracer 

tests in dual porosity media such as chalk are carried out over relatively short 

distances (e.g. to ensure tracer breakthrough within a reasonable time period),  

ignoring the potential impact of partially penetrating borehole construction on flow 

dimension in such fracture aquifers may result in overestimation of both fracture 

aperture and spacing.  

 

9 Conclusions 

The GRF model (Barker 1988) which incorporates non-integer flow dimensions, 

offers greater versatility than classical methods but has not been widely used as it 

gives apparent transmissivity and storativity with dimensions that are dependent on 

the flow dimension. A method is developed to convert apparent transmissivity and 

storativity (L4-n/T and S2-n) to conventional transmissivity and storativity (L2/T and 

dimensionless) for the case where flow dimension, 2<n<3. These parameters may 

then be interpreted in the usual way and used in further applications, thus facilitating 

application of the GRF model.  

Classical methods tend to overestimate T and S where flow dimensions are greater 

than 2, and underestimate T and S where flow dimensions less than 2. In the case 
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illustrated here, flow dimensions are 2.3-2.4 and transmissivities and storativities 

from the GRF model are lower by 30% and an order of magnitude respectively, than 

estimates from classical methods. These non-integer flow dimensions are interpreted 

to be the result of the partially penetrating nature of the pumped borehole. 

Partially penetrating boreholes in fractured rocks create flow regimes in which flow 

dimension varies with time and distance from the pumped borehole. At early times 

flow dimensions are less than 2 (sub-radial).  At later times, flow dimensions are 

greater than 2 (sub-spherical) around the pumped borehole, reducing to 2 (radial) 

with distance as the influence of borehole construction diminishes. For the case 

illustrated here, the transition from sub-radial to sub-spherical flow occurs at around 

5 minutes and 2D radial flow is reached at distances larger than 75 m.  

A previous multi-well tracer test at the site (Hartmann et al. 2007) is reinterpreted in 

the light of fractional flow using an analytical model of solute transport in fractured 

media that incorporates matrix diffusion (Barker and Foster 1981), modified for 

fractional radial flow. Application of the model shows that incorporating fractional flow 

reduces predicted fracture apertures and dispersivities by around 30%, and fracture 

spacing by around 12%. The dual porosity, solute transport model provides fracture 

apertures, spacing and dispersivity averaged over the volume from injection to 

pumped borehole. Tracer recovery is, by contrast, highly variable and strongly 

dependent on conditions in the immediate vicinity of the injection borehole such as 

presence of subordinate flowing horizons and local heterogeneities in the fracture 

network. From the tracer test presented here, recoveries correlate with flow-through 

rates in injection boreholes (Qinj), with high recovery and flow-through rate reflecting 

good connection between the injection borehole and high conductive pathways in the 

fracture network.  
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The pumping and tracer test results and modelling presented here illustrate the 

importance of recognising the potential fractional nature of flow generated by 

borehole construction in estimating aquifer properties and interpreting tracer 

breakthrough curves. In the case of partially penetrating boreholes, failure to 

recognize the fractional flow regimes can lead to overestimation of transmissivity, 

storativity, and fracture apertures, spacing and dispersivity. 
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Figure Captions 

 

Figure 1 a) Drawdown curves showing development of drawdown with time and 

fractional flow dimension, n. The integer flow type curves (1, 2 and 3 D flow) are 

shown in heavy lines.  The curve for n=2 is the Theis curve for 2D radial flow to a 

well in a homogeneous medium. b) Diagram illustrating 1D, 2D and 3D flow to a 

pumped borehole.  

 

Figure 2 a) Map of East Yorkshire showing the location of the study site within the 

confined Chalk Aquifer. b) Outline of the borehole layout at the study site showing 

the pumped borehole (P) and 4 monitoring boreholes (M1, M2, M3 and M4). c) 

Cross-section showing confining glacial sediments overlying putty chalk, densely 

fractured chalk and less densely fractured chalk. The aquifer comprises the densely 

fractured chalk layer of high hydraulic conductivity. The boreholes (P – pumped 

borehole, M – monitoring borehole) are cased (thick line) to near the base of the 

densely fractured chalk layer and thus partially penetrate the aquifer. Black arrows 

show the impact of partial penetration on flow geometry during pumping from 

borehole P.  

 

Figure 3 Background water level data from monitoring boreholes at the study site 

showing the impact of Earth tides (Et) which cause variations in water level of around 

1.5 cm with a wavelength of 24 hours.  Sharp, short duration drops in water level of 

2-3 cm (labelled P) are caused by pumping of a nearby domestic borehole. The 

dotted line shows the best fit Earth tide model to the data. 
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Figure 4 a) Drawdown versus time curves for the pumped borehole (P) and 4 

monitoring boreholes (M1, M2, M3, M4). The boreholes at 25 m from the pumped 

borehole all show an initial steep segment. b) Slope (dh/dt) versus time of the 

drawdown curves in (a) for the five boreholes, showing large slopes at early times. 

Slopes become somewhat noisy at larger times but show a general trend of 

decreasing slope with time.  

 

Figure 5. a) Type curves for W(u,) versus 1/u for 2D radial flow to a pumped well in 

a homogeneous media incorporating delayed monitoring well response (Theis 1935, 

Black and Kipp 1977). The drawdown curve for M4 at 75 m from the pumped 

borehole shows a small effect suggesting a small delayed response (around 23 

seconds). Drawdown curves for monitoring boreholes at 25 m from the pumped 

borehole (M1, M2 and M3) show much steeper slopes than type curves at early 

times. b) Type curves for W(u,)+f  versus 1/u for flow to a partially penetrating well 

(Hantush, 1961).  Improved fits to the observed drawdown data are obtained in 

comparison to (a) but slopes are steeper than all type curves at early times.  

 

Figure 6. a) and b) Type curves from the dual porosity model of Bolton and 

Streltsova (1977). T – bulk rock transmissivity, S – bulk rock storativity, rs - ratio of 

matrix to fracture storativity.   The drawdown curve for monitoring borehole M1 at 25 

m does not show a good fit to any type curves, the slopes being either too shallow at 

late times (a) or too steep at early times (b).  

 



47 

 

Figure 7. Best fit type curves for the GRF model (Barker 1988) to drawdown curves 

for monitoring boreholes. Good fits are obtained for drawdown data later than 5 

minutes (0.8 hours) for boreholes M1, M2, and M3 and for the whole drawdown 

curve in the case of borehole M4. The curves indicate flow dimensions of 2.33 to 

2.38 for the monitoring boreholes at 25 m (M1, M2 and M3) and 2.21 for the 

borehole at 75 m from the pumped borehole.  

 

Figure 8. Tracer breakthrough and injection well concentration curves (adapted from 

Hartmann et al. 2007). Breakthrough curves show similar shapes but greatly varying 

recoveries from 9 to 57%.  

 

Figure 9. Conceptual model for the analytical 1D dual porosity model for solute 

transport in fractured rock with matrix diffusion (Barker and Foster 1981).  Water with 

solute travels in the x direction along parallel fractures with aperture, a, and spacing, 

d. Solute also diffuses between fractures and matrix blocks in the z direction. 

 

Figure 10. Conceptual models for flowing fracture geometry around the  pumped 

borehole. a) In 2D radial flow, fracture spacing and bulk hydraulic conductivity are 

constant with increasing distance from the pumped borehole.   b) In fractional flow 

with dimension 2<n<3, fracture spacing decreases and thus bulk rock hydraulic 

conductivity increases with increasing distance from the pumped borehole. 
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Figure 11. Tracer breakthrough curves and best fit model curves for 2D flow and 

fractional flow. Model fits are equally good for boreholes M1 and M3 but the 

fractional flow model shows a better fit than the 2D flow model in the case of M2. 

 

Figure 12. Conceptual model for flowing fractures in the fractured chalk aquifer 

during the pumping and tracer tests. Arrows indicate general direction of flow during 

pumping from borehole P. At the start of pumping, flow is initiated at the base of the 

aquifer where the boreholes are open to the aquifer. At later times, progressively 

more fractures conduct flow with increasing distance from the pumped borehole 

giving a flow dimension close to 1 in the immediate vicinity of the pumped borehole, 

> 2 at 25 m and 2 at distances greater than 75 m.  

 

Table Captions 

 

Table 1. Overview of case studies on fractional flow from the literature, PP - partial 

penetrating wells, FP – fully penetrating wells.  

 

Table 2. Details of borehole completion, estimated thickness of the high hydraulic 

conductivity layer and thickness of open section at the base of the borehole casing. 

 

Table 3. Results of monitoring borehole drawdown curve analysis using Theis and 

Hantush (1961, 1967) methods for monitoring boreholes. Theis – Theis (1935) 

method for radial flow to a well, Hant. PP – Hantush (1961) method for partially 
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penetrating wells, Hant. PP+leak – Hantush (1967) method for partially penetrating 

wells with leakage, Hant. PP Late – Hantush (1961) method applied to data later 

than 5 minutes.  r – horizontal distance between pumping and observation wells, T – 

transmissivity, S – storativity, Kz/Kr – vertical to horizontal conductivity ratio, RMSE – 

root mean square error. )/( bTKrr  where K’ and b’ are the hydraulic 

conductiviy and thickness of the confining layer. 

  

Table 4. Results of fractional flow modelling applied to drawdown curves at times 

greater than 5 minutes (0.0035 d) for boreholes M1, M2 and M3 and all data for 

borehole M4. Ta - apparent transmissity, Sa - apparent storativity, T - transmissivity, 

S - storativity, n - flow dimension, RMSE - root mean square error. Upper and lower 

bounds to T and S are calculated assuming 2D and 3D flow.  

 

Table 5. Values and allowable ranges of input parameters for the 1D dual porosity 

model of solute transport in fractured rock with matrix diffusion (Barker and Foster 

1981). 

 

Table 6. Best fit dual porosity transport model results to breakthrough curves for 

tracers in boreholes M1, M2 and M3 and for two values of effective diffusion 

coefficients (De),  5.0E-11 m2/s (first value) and 2.0E-10 m2/s (second value). 
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Table 7. Recoveries (observed and calculated), flow-through rates, Qinj, and scaling 

factors, C (best fit) and C’ (estimated) for breakthrough curves from boreholes M1, 

M2 and M3.   
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Table 1.  

 

Authors 
Date Lithology  Fractional flow 

dimension 

Hamm and Bidaux 
1996 granite  

 

1.45 

Bangoy and 

Richard 

1999 granite and limstone  0.76-1.34 

0.5-1.14 

Leveinen et al.  
1998 gneisses 1.5, 1.2, 2.0-2.25 

Van Tonder et al. 
2002 sandstones, mudstones 1.75-1.85 

Kuusela-Lahtinen 

et al. 

2003 gneisses 1.5-2.5 

Le Borgne et al. 
2004 schists, gneisses 1.4-1.7 

Marechal et al.  
2003, 

2004 

granite 1.2-2.5 

Delay et al. 
2004 limestones 1.9-2.0 

Bernard et al. 
2006 limestones 1.85-2.0 

Verbovsek  
2009 dolomites  PP, average 2.19 

FP, average 1.73 

Chang et al. 
2011 slates and 

metasandstones 

1.3-2.27 

Zarrouk et al.  2007 volcanics 
2.4-2.75 
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Table 2  

 

borehole 
depth to 

base 

casing  

(m) 

depth to 

base 

glacial 

sediments  

(m) 

thickness 

below 

base 

casing   

(m) 

estimated 

thickness 

high K layer  

(m) 

P 
25.77 13 0.11 8.58 

M1 
26.15 11 0.11 9.26 

M2 
26.19 13 0.14 11.33 

M3 
22.55 10 3.3 8.85 

M4 
17.35 13.3 0.18 3.53 
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Table 3  

  

BH 
r  

(m) 

Theis   Hant. 

PP 

   Hant. 

PP+ 

leak 

    Hant. 

PP 

Late  

   

 
 T  

(m2/d) 

S  

x 10-3 

RMSE 

(m) 

T  

(m2/d) 

S 

x 10-3 

Kz/Kr RMSE 

(m)  

T  

(m2/d) 

S  

x 10-3 

Kz/Kr r/β  RMSE 

(m) 

T  

(m2/d) 

S  

x 10-3 

Kz/Kr RMSE 

(m) 

M1  
25 

460 0.119 0.078 564.4 4.55 0.006 0.008 501 4.60 0.006 0.053 0.008 548.8 4.17 0.006 0,0062 

M2  
25 

482 0.017 0.128 646.8 3.89 0.003 0.0179 585 3.50 0.004 0.044 0.017 563.9 2.53 0.004 0.0055 

M3  
25 

488 0.022 0.098 560.3 1.02 0.002 0.0194 457 1.07 0.003 0.045 0.016 611.9 0.86 0.001 0.0074 

M4 
75 

469 0.209 0.007 504.2 0.189 1.0 0.01 445 0.225 1.0 0.051 0.0051     
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Table 4 

 

BH 
Time 

range 

(d) 

Sa  

(Ss.b
3-n) 

Ta 

 (K.b3-n) 

n RMSE 

(m) 

T = KB 

(m2/d) 

T   

bounds  

(m2/d) 

S=Ss.B S  

bounds 

M1 0.0035 

-0.8 

1.170E-04 45.0 2.3

8 

0.0035 206.4 106, 428 5.36E-04  
2.75E-04, 

1.11E-03 

M2 0.0035 

-0.8 

4.760E-05 46.1 2.3

6 

0.0031 195.6 104, 438 2.02E-04 
1.07E-04, 

4.52E-04 

M3 0.0035 

-0.8 

5.062E-05 54.5 2.3

3 

0.0028 205.1 115, 518 1.91E-04 
1.06E-04, 

4.81E-04 

M4 0.0-0.8 7.708E-05 114.6 2.2

1 

0.0038 337.0 184, 

1089 

2.27E-04 
1.24E-04, 

7.32E-04 
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Table 5 

 

parameter range  

effective diffusion 

coefficient (De ), m
2/s 

5.0E-11,  

2.0E-10 

matrix porosity (m )   
0.3 

travel time (ta), hr  
0 – 31.0 

scaling factor, C  
0 – 1.0 

fracture spacing (d), m 
0.01 - 1.0 

dispersivity (), m 
0.1 - 25.0 

aquifer thickness (B), m 
9.5 

pumping rate (Qp), m
3/hr 

13.8 

borehole distance (R), m 
25.0 

borehole radius (rw), m 
0.075 
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Table 6  

 

Borehole/ 

Parameter 

2D radial flow  Fractional radial  

flow  

M1: Eosine 

Flow dimension (n) 
2.0 2.38 

Transmissivity (T), 

m2/d 

501 206 

Aperture (a), m 
332 – 420 232 - 297 

Spacing (d), m 
4.32E-02 – 8.73E-02 3.63E-02 – 7.59E-02  

Travel time (ta), hr 
10.4 – 6.51 7.26 – 4.44 

Dispersivity (), m 
2.16 – 1.53 1.72 – 1.06 

Scaling factor (C) 
1.47E-03 – 1.46E-03 1.45E-03 – 1.40E-03 

RMSE, m 
6.74E-03 – 6.89E-04 6.91E-04 – 6.97E-04 

M2: Amino G acid 

Flow dimension (n) 
2.0 2.36 

Transmissivity (T), 

m2/d 

585 196 

Aperture (a), m 
358 - 417 219 – 276 

Spacing (d), m 
4.60E-02 – 7.29E-02 3.23E-02 – 6.48E-02  

Travel time (ta), hr 
10.5 – 7.73 7.77 – 4.89 

Dispersivity (), m 
0.67– 1.30 1.14 – 0.84 

Scaling factor (C) 
3.29E-02 – 4.29E-02 4.01E-02 – 4.00E-02 

RMSE, m 
3.78E-03 – 1.72E-03 2.03E-03 – 2.01E-03 

M3: Rhodamine WT 

Flow dimension (n) 
2.0 2.33 

Transmissivity (T), 

m2/d 

457 205 

Aperture (a), m 
295 - 375 219 – 278 

Spacing (d), m 
3.30E-02 – 6.79E-02 3.08E-02 – 6.27E-02 

Travel time (ta), hr 
12.1 – 7.5 8.26 – 5.14 

Dispersivity (), m 
3.07 – 2.37 2.22 – 1.75 

Scaling factor (C) 
4.77E-03 – 4.70E-03 4.36E-03 – 4.32E-03 

RMSE, m 
3.82E-03 – 4.17E-03 3.70E-03 – 3.94E-03 
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Table 7 

 

Borehole 

/tracer 

M1  

Eosine 

M2  

Amino G 

Acid 

M3  

Rhodamine 

WT 

Observed recovery 

(%) 

9 57 17 

Flow-through rate, 

Qinj (m
3/hr) 

0.082 0.492 0.108 

Scaling factor from 

best fit model, C 

0.00142 0.040 0.00434 

Recovery from best 

model fit (%) 

8.8 56.27 17.2 

Predicted scaling 

factor from Qinj, C’ 

0.00594 0.0311 0.00783 

Predicted recovery 

from C’ (%) 

36.5 

 

43.8 31.0 

 


