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ON THE EFFECT OF NONLINEARITIES IN MULTIVARIABLE
FIRST ORDER PROCESS CONTROL

D.H. Owens, University of Sheffield, U.K.

SUMMARY

The paper considers the use of discrete and continuous, first
order, linear, multivariable, approximate models as the basis
of controller design for large-scale and/or badly-defined
linear engineering systems where the output measurement is the
sum of memoryless bounded and finite incremental gain forms.
The techniques have the advantage that high performance closed-
loop systems can be designed using only simple properties of
system matrices or plant transient response data, and bounds
for the transient behaviour of the real, nonlinear system can
be computed from the responses of the approximate, linear
systems.




Taking r € E, assumption (i) ensures that
¥].& [ and hence that equation (7) takes the
functional form y = Wy where, using (ii)and
(iii) W: B =+ L is causal and a global
contraction, The well-known contraction-
mapping thecorem (sce (5) or (6)) immecdiately
indicates that equation (1) has a unique solu-
tion in E obtainable as the strong limit of
the sequence yk+1=Wyg, kz1, for any initial
quess Y1 & E. The nonlincar fecedback system
is hence stable. Standard results (sec (6))
indicate that ||y-y2|| ¢ (3/(1-A))1]y2-v1

and hence equation (5) follows by choosing

y1 = 0 (when yz=y, ) and truncating. This com-
pletes the proof of the theorem.

The condition (4) is an 'incremental gain
condition' on the“nonlinearity error’ N-F and
is the crucial assumption. More precisely it
guarantees that the stability of Fig. 3 imp-
lies the stability of Fig. 1 and provides the
casily computed upper bound of equation (5)
for the modelling error expressed entirely in
terms of the responses of the linear feedback
system. For cxample, if E is the Banach space
of bounded continuous mxl vector functions of
time on the interval o ¢ t < +  with the .
normal uniform norm, then equation (5) implies,
for any t > o, that

5 A omax [ (y, (s)),| (&)
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which has the obvious interpretation in pro-
viding an upper bound on the transient model-
ling error y(t) - yl(tJ.

The following corollary is of great interest
in the next section:

Corollary 1: With the assumptions of theorem
1, suppose also that F has a bounded causal
in verse on E. Then the nonlinear feedback
system is stable if

I g
A = HLFIL Ay <1 9)
where -1
o = sup sup | [P{F Ny-y)
T>0 y,z€E

- (F - /] 1Pp -2 [ (o)

Moreover we can choose A = Xy so that, when

NO = 0, equation (5) holds with A replaced by

Al.

Proof: Write L, = (LCF)F_l and deduce from

the properties of norms that (4) holds with

A-Al.

Example 1: TIf the system is m-input/m-output

with N a diagonal nonlincarity, yi ——>

fij{yj)l¢ism, satis{ying the conditions, lsism,
£.00) - £,(2)

Rjg o=l el £ By

¥ =z i

(i

for some strictly positive scalars oj,Rj.
Cheosing I = diag tiaj + 81)/2)1si<m, then
it is ecasily verificed that we can choose
f. = a.

i i
B B. *u.}el
leisgm i i

V, = max { (12)

The validity of cquation (%) now depends only
upon the value of §|LCFL!.

A More General Class of Nonlincarities

Consider now the situation when

No= Nt Nl (13)
where N, satisfies an incremental pain condi-
tion of the form of (4} or (10) and N:Eg ~ E
is bounded nonlincarity (sce ref (4)) of the
form

: - 1qa
|!l’\.1 z|] ¢ /y V zEEO

We can now statce the following theorem
generalizing that used in ref. (4):

(14)

Theorem 2: Suppose that

(i) the linear configuration of Fig. 3
is input-output stable

(ii) Lc(Ng - F) is causal and maps E
into itself,

(iii) equation (4) holds with N replaced
by Ng and

(iv) Nj:Ep + E satisfies equation (14).

Then the nonlinear feedback system of Fig. 1
is stable and, if NyO = O,

Hepty-yu) s o5 1Pyl

1 P

sy P13 V1s0 (15)
Proof: Noting that v = 1 - Nyy& E whenever
T& E and reconstituting Fig. 1 in the form
of Fig. 4, it is clear from theorem 1 that

y & L and hence that the system is stable.
Also if yy is the linear system (Fig. 1) res-
ponse to input V, then, using equation (5),

A .
gty 1] < 5 Hegryl I ¥ T2 0 (6)
It is triviolly verified that y\=¥[-LcNqy and
hence that HDptyv-yd) | s !|PTLC\|q/2 and
HPryvil < |iFT)'L'M + ||PTLelg/2. Clearly
I|pT(Y‘YL);E£!IPT(Y"YV)’|+|ipT(YV_YL)|I

s [IPpyyll + 1IRgL || a/2

(17)

£

A g I B | q
=Py I HPpylgy 3+ HIPL ] g

which is simply equation (15).

(Note: writing Le = Lo F "1 lcads to a
natural analoguc of covollavy 1, defining A4
by (10) with N replaced by Ny but this is
straightforvard and omitted here).

MULTIVARIARLE FIRST ORDER CONTROL

A major difficulty in the application of the
the need to compute uscful

above results is
hounds for & and {IPpLelt and/or || LeF| |
This mav be particolarly Jditficult if the

design of K procecded by analysis ol the
approxinate configuration Fig, 2. More
previously, assuming “erve initial conditions
and writing the solution ot cynation (27 1In
the Term vy = Lear where Loy is the linear
aperator in Folapprozizating' e, we may know
the respeoase vpy and the operator Ley but we
do not nevessarily know the response ¥ or
the operater Lo, Clearvle, in such a situa-
tion, the abeve resuits cannot be Jdirectly
applicd, norv can the conditions of the theo-
rems be dirvectly checkeds 1t is the purpose




of this scction to indicute how this prohlem
can be overcome (in a certain sense) in the
case of multivariable first order control,
For simplicity we consider only the discrete
case and note that the results carry over to
the continuous case by replacing 'sample rate'!
h-1 by gain k, the space Eg by the continuous
m-vector valued functions on fb, + =| and E
by the linear subspace of lij of bounded func-
tions. The norm on E is the normal uniform
norm.

Let Eg by the natural vector space of infinite
sequences {yg,¥1,...} of real m-vectors and
let £ be the Banach subspace of vectors of
finite norm ||y|l=sup||yk||m where [[.]]|, is
the normal uniform norm on RM, Consider the
m-input/m-output linear discrete plant G in Eg
described by the mxm invertible, minimum-phase
discrete model 5(4,4,C) n

TS T r X ER

Yy = C X . k2o (18)

with inverse z-transfer function matrix (TFM)
1(z) = (z-1)B; + B, + B_H(2) (19)

with [B | # 0 and H(z) proper. We assume that
S(®,A,CY is derived from a minimum-phase con-
tinuous model S(A,B,C) with [cBl # 0 and syn-
chronous sampling of period h.

Suppose now that G is to be approximated, for
the purposes of controller-design, by the
(multivariable!) first order approximatc model
Gpo in Eg with inverse mxm z-TFM

G;I[z] = (z-1)B, + B; (20)

obtained from G by neglecting H or deduced
from plant step responses. Consider now the
unity-feedback system LcAF realised in the
form of Fig. 5 where F is realized by an mxm
constant, invertible matrix. Choosing the
proportional controller K such that KF has the
suggested '"first-order' form (see ref(3))

K(z)F = B diag {1- k3]1< en - B (21)

with |kjl <1, 1€ j € m, then it follows (ref
(3)) that Fig. 5 (and hence Fig. 2) is stable,
that
Leat! | Hl !
lim | |LcaF = max - (22)
h*o+ | l)
and that ¥ H
i = = 4
h&;T LC L':A 0 (23)

We are lead therefore to the result:

Theorem 3: With the above construction, sup-
posce that N has the 'summation' form of
equation (13), is independent of sampling rate
and

(i) N0 is causal and maps E into itself
(ii) Nj:Eg ™ B satisfies ecquation (14),

;nd (153
i 3 i - A .
k) e o18fdm — 1 1 (with A

y o

a-le.

J
defined by ecquation (10) with N replaced by
Npl).  Then the nenlincar lecdback system of
Fig. 1 is stable for all fast cnouprh sampling
rates. M oalso Nyo = G, then, assuming zcro

initial conditions

1im supl [P (y-y, Ol "2 y
T A NS h_{{:ﬂ FLSTE

h+o + 2
(1-k.) )
v RV e T LA 4.¥r>0 @9
1=27 1g&j¢m | J;

In essence, the result states that a propor-
tional controller K designed on the basis of
the simple, approximate, first-order Gy of the
complex (possibly partially unknown) plant G
will not onlv produce cxcellent approximate res-
ponses yjA (see rel (3)) under fast sampling
conditiens but will alsno cnsure the stability
of the real system G in the presence of a

large class of nonlinearities N. The error

Y - YLa in the prediction of the output res-
ponse can also be accurately bounded (equatlon
(24)) under fast sampling conditions using

only control data F,k1,...,kyp and the (known!)
Tesponse yj,.

Example 2: 1If, o ¢ kj <1, 1 £ j ¢ m, and No
has the form defined by example 1 with «j > O,
1 £ 1¢m, then it is clear that 2= 3y < 1
and the nonlinear fcedback system with the
defined controller is stable under fast samp-
ling conditions with

lim sup| 1P (y=y; ) | IS5 ‘o lim ||P
il (=¥ =y 11+O+I|TYLAi|

f oy max 1o (25)
X, lejem (uJ B

Proof of Theorem 3: We verify that the con-
ditions of theorem 2 are valid for h+o*.
Certainly Ley and hence (equation (23)) L are
causal and bounded in E and hence stable.

Also L. (Ny-F} is causal and maps E into it-
self, and, using the definitions,

lim sup!iPTLc{(Ny—Fy) - (Nz-Fz)}]|
h+o+
im || 2 = a
$ h:f He L FLE Ay Tly-z] < l&lly ZIi( )
26

as lim ||P.L F|] ¢ 1im L.F[] = lim L. E
Jim [P P < dim [[LCEl] = ind Ll

by equation (23). Flnﬁl}\ if NgO = 0, then

[2-1] follows from (L5) uot;n)_. that ||y]_ }Ll‘\ll
‘I(LL-LC\\IJ + 0 as h~o + by (23) and

11m ¥iA exists {see ref (3))

TLLUSTRATIVE EXAMPLE

Consider the open-leop unstable continuous

system (re [ (41} described by
A= 2 1 0.1 ,B=[|1 1
11 =l 0.2 01
lu.s 0.8 -1J o o0
c={1 0 0
£y 1 Q £27)
amd note that TCRP A 0 and the system is
miniwum-phase. The desian problem considered
15 the choice ef proportional controller K in
the cenfisuration ef Vig. 1 with a Jdiagonal

Teedivick nonlincarity y--fityi),i=1,2 of the
form !



(1+1.05 |yii)

flyy) =

(1 + 0.95|y]]

N I)«'ZI £ 0,05

fz(yz) - (28)
. yz-.0.0S SEn ¥,

describing small deviations from lincarity in
measurcement of yq| and a deadzene in the measure-
ment of yz. Discretizing the system with a
sample interval h = 1/20, the approximating
first-order lag matching the high frequency

and stecady state plant characteristics is de-
fined by

19.52 =21.0 -0.95 -1.92

Bo = Bl =
-0.5 20.51 =1.1 0.84
(29)

and we attempt the design of K by analysis of
Fig. 2, with F = I,(Zx2 identity matrix). More
precisely, using the controller K defined by
equation (21) with k; = k2 = 0.0 leads to the
excellent, deadbeat tesponse y A to a unit step
demand in y; of the form indicated in Fig. 6.
The remaining problem is to estimate the degree
to which the calculated response yjA deviates
from the real system response y. If the plant
model is known exactly one need only simulate.
If, however, the plant model is not known (i.e.
By, and By were computed frem plant transient
tests) we can use the results of theorem 3 and
the observation that the plant sampling rate is
high to predict (a) that the nonlincar feedback
system is stable if A2 = Ay < 1 and (b) that
the peak transient error can then be estimated
from cquation (24) by deleting the limits i.e.
the relation

A
2
||PT(Y‘YLA)II ‘j:jg— |IPTYLA|I

1 (1-k.) -1 q
C T, e, e E Ul 2 (30)

holds to high accuracy for all T > 0. Both of
these predictions are verified in Fig. 7 where
the rcsponses ypa and y of the approximate and
real feedback configurations are plotted
together with the estimated error bounds imp-
lied by equation (30) with the data Az= kg =
0.105 and q = 0.1. It is clear that X3 < 1 and
that the estimated error bounds arc highly
pessimistic.

CONCLUSIONS

Previous work (1) - (3) has demonstrated the
viability of using very simple models of linear
plant dynamics as the basis of linear control-
lev desipn for a well-defined class of discrete
or continuous multivariable plant. The (first-
order) approximate wmodels used have the advan-
tage thay they are easily computed from a
complex plant model (if available) or, if the
system is open-loop stable, from risc-time and
steady-state properties obtained from plant
step response tests. In the second casce it is
" clear that a detailed plant model is not
required!

The work described in this paper has extended
that of rvef (4) by demonstrating that the

effect of measurcment nonlinearitics on closed-
loop system =tability and performance can also
be assessed using clementary caleulation based
an the nonlincarvity and the responses of the

approximite Linear feedback system,  The
results obtained are oniy strictly correct
under high gain/Tast sampling conditions but
examples show that they provide vscetful working

cstimates under a relaxation of these”
conditions.
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Figure 3 Linear feedback system with linear
measurement approximation.

Figure 4 A system decomposition

Fipure & Linear feedback system used for
Pesign ol K.
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Figure 6 Responsc y,, of approximate linear
feedback system to Kunit step demand in
output one.
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ON THE EFFLCT OF NONLINEARITILS 15 MULTIVARIARLE FIRST ORDLE PROCLSS CONTEOL

., . Owens

University of Sheffield, UK

INTRODUCTION

The viability of using both continuous and
discrete first order linear approximate models
as the basis for controller design for large-
scale and/or badly defined linear multivariable
engineering systcms has been investigated re-
cently by Owens (1), Edwards and Owens (2) and
Owens (3). The techniques have the advantage
that high performance closcd-loop systems can
be designed in a straightforward manner using
only simple properties of the system matrices
or graphical analysis of transicnt response
data obtained from plant trials or simulations.
More recently Boland and Owens (4) have demon-
strated that the approximate first order model
can be used to obtain easily computed esti-
mates of the effect of a common class of mea-
surement nonlinearities on the transient res-
ponse of the closed-loop system. The non-
linearities were restricted to bounded non-
linearities such as quantization and deadzone
and the results take the form of upper bounds
on the difference between the transient res-
ponses of the linear and nonlinear closed-
lcop system under comparable conditions.

The results presented in this paper extend
those of reference (4) to include the use of
approximate first order multivariable plant
models for the estimation of (a) the effect of
measurcement nonlinearities of finite incre-
mental gain on stability and transient res-
ponsc and (b) the effect of nonlinearities
written as the sum of bounded and finite inc-
remental gain forms.

NONLINEAR FEEDBACK RELATIONS

Consider the (discrete or continuous) feed-
back system illustrated in Fig. 1 and regard
the reference signal r, error e, input signal
u and output signal y as clements of a common
vector space Eg large enough to contain 'all
possible'. The plant and controller are as-
sumed to be linear and characterized by causal,
linear operators G and K respectively mapping
Ep into itself. 1t is also assumcd that the
measured output signal y depends on the real
cutput v in a manner described by the causal,
memorvless, nonlinear map Ni:li, = Eg and hence
that the system is described hy the functional
equitions

y =GKe+y, , ¢=7T- Ny (1)
where vy is an initial condition term. let F
he a linear vector subspiace of Ky, regarded
as a Banach space with norm }[.[?. Then the
fecdbiich system ol Fig. 1 is said to be input/
output stable if, for cvery demand v E and

for all initial conditions, the system equa-
tions (1) have a uniyue solution y that lies
in L. ’

Now let Foand Gy be causal, linear, approximi-
tions to N and ¢ (vespectively) to be used Tox
the purposes ol the design of the forwvard path

controller K, and suppose that the resulting
approximate, lincar fcedback system (Fig. 2)
described by the relations

YA ® GAk ety e T - FYLA (2)
is stable and possecsses 'satisfactory' per-
formance characteristics. We ask the follow-
ing questions:

fa) When does the stability of the linear,
approximate configuration of Fig. 2. imply the
stability of the real configuration of Fig. 1?7

(b) If Pr is the truncation opcrator (see,
for example, Cook (5) or Holtzman (6)), then
can we find computable upper bounds for the
modelling error || Pp(y-yLa)!l, T > O, in terms
of yLa? The solution of these problems is of
vital impertance if F and G\ are to be useful
approximations for design purposes. Some
partial solutions are outlincd below in the
special case when the plant approximation Gp
is identical to the plant i.e. G = Gy when
Fig. 2 takes the form of Fig. 3. Thc applica-
tion of the results to the situation when Gp
is a first-order approximate model of the
plant G is left to the following sectien.

Nonlinearities of Finite Incremental Gain

It is trivially verified that the configura-
tion of Fig. 3 is described by the lincar re-
lations

YL T GKe + Yo » € =T - F YL (3)
ard that, in the case of zero initial condi-
tions (ygq = 0), we can write y], = Ler where
Le is a linear operator in Eg. We now state
the following theorem:

Theerem 1:

Suppose that

(i) the lincar configuration of Fig. 3
is input-output stable,

(ii) Lg(N-F) is causal and maps E into
itself and

(iii) there exists a real scalar VE€[0,1[
such that

|| Bl ¢ (X = Fy) - [Nz - F2))|
é\EWHPﬂ“VTDUVLZGE (@]

Then the nonlincar fecdback svstem of Fig. 1
is input;output stable and, if N0 =0,

Hepiry 1 ¢ 5 U YT 00

Proof: Writing cquation (1) in the form
yeike ¥ ¥y € = {0 ® Ry - Nybo - Fy (0]

and using equation (3) vields

o g ¥ 8 B o Y (M
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