The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of High Pressure Controllers for Unknown Multivariable Systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/75533/

Monograph:

Owens, D.H. and Chotai, A. (1980) High Pressure Controllers for Unknown Multivariable
Systems. Research Report. ACSE Research Report no 130 . Department of Control
Engineering, University of Sheffeld, Mappin Street, Sheffield S13JD

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

" 629. 8 (S)

HIGH PERFORMANCE CONTROLLERS FOR UNKNOWN

MULTIVARIABLE SYSTEMS
BY
D.H. Owens B.Sc., A.R.C.S., Ph.D., A.F.I.M.A., C.Eng., M.I.E.E.
and
A.Chotai B.Sc., Ph.D.

Department of Control Engineering,
University of Sheffield,
Mappin Street,

Sheffield S1 3JD.

Research Report No. 130

October 1980.

(s)

This work is suppported by the UK Science Research Council
under Grant GR/B/23250.

e S |



Key Words: Stability; robustness; controller design; multivariable

systems; system order reduction; approximation;

Abstract
Recent work on the design of robust proportional plus integral process
controllers for unknown minimum-phase (but possibly unstable) multivariable
systems is ¢ompared and contrasted with recent work of Penttinen and
Koivo (1980) and Astrom (1980) and illustrated by application to an open-

loop unstable batch process.

Introduction

In recent papers Astrom (1980) and Penttinen and Koivo (1980) have
considered specific examples of the general problem of constructing simple
process controllers for unknown systems (unknown in the sense that its model
is unknown or is too high order to make normal design calculations feasible)
using only elementary computations based on inspection of graphical system
open-loop step response data. Both techniques do require that the unknown
plant has defined structural properties (suchas monotonicity, stability...)
but, when they do apply, the techniques are capable (in principle) of
generating simple process controllers that are easily tuned on-line. Both
techniques can, in fact, be regarded as attempts to provide rigorous al-
ternatives or generalizations of simple tuning methods such as that due to
Ziegler and Nichols (1942). oOther alternatives can be found in Davison
(1976) and in the following sections. In the authors opinion, all of these
methods lay on important foundation to help bridge the gap between control
theory and engineering practice based on experience and intuition.

It is the purpose of this paper to propose and validate an alternative
philosophy and approach to the control of unknown (possibly multivariable)

engineering systems that is being developed in the UK based upon the use of
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approximate plant models deduced from a large-order plant model or plant
step-response data (Edwards and Owens 1977 , Owens 1978,1979). The approach
is, in a well-defined sense, 'inverse' to those of Penttinen and Koivo (1980)
and Davison (1976) and has the advantage that the effect of measurement
nonlinearities can be estimated during the design exercise (see Boland and
Owens (1980) and Owens (198la)).

In the following sections the approaches described above are compared
and contrasted, some indications of the limitations of the theory are out-
lined and a generalization of the techniques of Edwards and Owens (1977)

(see also Owens (1978)) is derived and illustrated by application to the
open-loop unstable multivariable systems previously considered by Munro
(1972) and Rosenbrock (1974). The design method is the natural 'inverse'
of that proposed by Penttinen and Koivo (1980).

Alternative Approaches to Unknown Systems Control

It would appear to be a general principle that, in any attempt to
design a controller for an unknown system with m-inputs and %-outputs
described by (say) the (unknown) continuous linear time-invariant model

; n
in R

x(t) A x(t) + B u(t)

C x(t) (1)

y(t)

it is necessarily true that the structure of the design and the limitations
encountered should reflect this uncertainty and (hopefully) generate a
closed-loop system that is robust in that it is insensitive to the unknown
dynamics. Of course the details will vary from situation to situation and
will depend upon the physical nature of the plant. It is possible however,
to propose two distinct situations where general statements can be made
about stability as outlined in the following sections.

The Low Gain Philosophy for Stable Unknown Plant

Suppose that the system'(l) is stable and, for simplicity, consider

the case of proportional output feedback control
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u(t) = Kl(r(t) - y(£)) (2)
where K;is a constant fxm matrix and r(t) is the mxl demand vector. It
is trivially verified that the closed-loop characteristic polynomial is

p (8) = | s I -Aa+ BKC| (3)
and, applying a continuity argument (or, following Koivo (1980), a
Lyapunov argument), it is clear that the closed-locp system is stable if
all elements of Kl(or, equivalently, any norm of Kl are small enough.
These arguments will also carry through for proportional plus integral
output feedback described by the transform relation

u(s) =(K +ZK)(x(s) - y(s)) (4)
provided the elements of both matrices Kl and K2 are small enough and the
plant (1) satisfies certain structural constraints (see Koivo (1980) or

Davison (197:6)). In summary we have the following simple result:

Theorem 1l: An unknown multivariable plant that is known to be stable will,
in general, retain its stability under low gain proportional plus integral

output feedback!:

The work of Davison, Penttinen and Koivo and (in the discrete case) Astrom
represent specific cases of the application of this result.

The High Gain Philosophy for Minimum Phase Unknown Plant

Suppose now that m = { and that the system (1) is invertible and minimum-
phase in the sense that all its invariant zeros have strictly negative real
parts (see, for example, Owens (1978)). Consider the general case of the
proportional plus integral output feedback controller

u(s) =p (K +TK) (x(s) - y(s)) (5)
which is invertible and minimum-phase with scalar gain p. It is a simple
exercise in the theory of multivariable root-loci (see, for example,

Owens (1978), (1981b)) to prove the following 'inverse' to theorem 1:
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Theorem 2: An unknown square invertible multivariable system that is

known to be minimum phase will be stable under high enough gain proportional

plus integral output feedback if
(a) the controller is minimum phase and
(b) all asymptotes of the root-locus lie in the open-left-half
complex plane
(Note: (i) condition (b) is equivalent to the requirement that the system
has only first order infinite zeros and/or second order infinite
zeros with pivots possessing strictly negative real parts.
(i1) alternative stability analyses of minimum phase plant can be

found in Owens (1974) and Edwards and Owens (1977)).

Of course, if the system is totally unkown, condition (b) could be difficult
to check. Noting however (Edwards and Owens (1977) and Koivo (1980)) that
the matrix CB can be estimated directly from open-loop plant step responses,
the following proposition identifies situations when the conditions of the

theorem can be checked quite easily:

Proposition 1: Condition (b) of theorem (2) is satisfied if CB is nonsingular

and all eigenvalues of CBKl have strictly positive real parts.

(Note: the condition on CB ensures the existence of only first order

infinite zeros!) In effect, if a system is unknown but it is known (or
conjectured) to be minimum-phase and CB can be estimated from plant step
responses obtained from plant tests or simulations of a complex dynamic
model, then it is guite easy to find a proportional plus integral controller

to stabilize the plant provided high enough gains can be used. Unfortunately

the results (as stated above)neither suggest specific choices of Kl and K2
nor do they say how high the gain must be. This will be discussed further

in section 3.



Low-gain versus High-gain: inverse approaches

In order to highlight the relationships between the high and low gain
philosophies consider the class of all possible square invertible linear
systems divided into four subclasses:

(a) Stable and minimum phase systems,

(b) Stable and non-minimum phase systems,

(c) Unstable and minimum phase systems and

(d) Unstable and non-minimum phase systems.

If an unknown system belongs to (a) or (b) it is clearly true (theorem 1)
that, in general, it can be regulated using low-gain proportional plus
integral control. It is also clear that the low gain philosophy will not
apply if (c¢) or (d) pertains! If, however an unknown system belongs to
(a) or (c) it follows from theorem 2 that, provided some simple structural
constraints are satisfied, the system can be requlated using high-gain pro-
portional plus integral controller. Note that both the low gain and high
gain philosophies are applicable to an unknown system in class (a) whereas
neither philosophy applies to an unknown system in class (d) and that the
low-gains philosophy alone applies to (b) whereas the high-gain philosophy
alone applies to (c)! Clearly the two approaches have distinct but over—
lapping areas of applicability and hence must be regarded as distinct
alternatives. In particular, although stability and asymptotic tracking

are fundamentally important design specifications, many applications demand

higher performance specifications including fast rise-times, small overshoot,

small transient interaction etc. 1In this area the applicability of the low
and high-gain philosophy differ markedly as it is generally true that high
performance systems require tight (i.e. high gain) control loops!

Finally, we note that the low and high gain philosophies can be pictured

as 'inverses' of each other in the sense that
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(1) the inverse of a high gain is a low gain, and
(1ii) a minimum-phase system has a stable inverse.

High Performance Controllers based on Approximate Plant Models

Although theorem 2 is a useful conceptual beginning for a theory of
control of minimum-phase unknown multivariable systems,many more details
must be filled in. More precisely, specific choices of Kl and K2 must
be made to ensure, not only stability, but excellent time responses for
the closed-loop system. The approach taken by the authom is to base con-
troller design upon a very simple model of plant behaviour, to ensure that
the derived controller produces the derived stable, high performance
responses from the approximate model and to demonstrate that, at high gains,
the real plants stability and transient characteristics are arbitrarily
close to those predicted by the approximate model.

Consider a square, invertible,minimum-phase system described by the
mxm transfer function matrix G(s) and a unity negative feedback system for
the control of G using invertible, minimum phase proportional plus integral
control. Suppose that G has the inverse structure

-1 _
G (s) =As +A +A H(s) ; |AO| # 0 (6)

1

where H(s) is proper and stable. Equivalently the plant is minimum phase
and CB = A;l is nonsingular (see, for example, Owens (1978) p. 130). We

can also assume, without loss of generality, that H(o) = O and hence that

Al = G_l(o) is the D.c. inverse gain matrix.

Let io and A. be numerical estimates of AO and Al obtained by estima-

1
tion of CB and G(o) from a system model or plant step responses and approxi-
mate plant dynamics by the model GA(S) of the first order (Owens (1978))
form

6 e) =s A + K (7)

I o 1
It is seen that GA(S) approximates the high frequency and steady state plant

characteristics only.



Consider now the two-term parametric controller

k.c, .

- ) 375 -
K(s) AD diag {kJ cj - } 1 (8)
generalising previous work of Owens (1978 p. 120). A simple calculation

yields the identity

1
(Im + GA(S)K(S)) GA(S)K(S)

11

(€, (s) + K(s)) Mk(s)
~-1~

(diag {(k, + ¢c.)s + k.c.} — SAOAl)
] ] 33 1¢5¢m

- & .
T dlag {(S+kj) (S+Cj)}lsj$m

and hence the approximate system is stable in the closed-loop situation iff
kj > 0 and cj 2 0, 1 g 3J< m Ifwe identify the kj's with fast modes and

c.'s with slower modes then a simple pole-residue calculation yields the

results

(a) responses in loop j have time-constants of the order of k;l,

zero steady state errors in response to unit step demands if
cj # 0 and reset times of the order of c;l, and
(b) defining k = min k., then the system responsg speeds in response
to unit step d;mand can be made to be arbitrarily fast and
transient interaction effects arbitrarily small as the 'gain'
k becomes large.
Clearly the controller (8) generates a high performance closed-loop
system for the approximate plant (7) if loop gains are high! Suppose that
we now apply the controller to the real (unknown) system (6)! Applying

the results given in Edwards and Owens (1977) , a sufficient condition for

closed-loop stability is that the approximate closed-loop system is stable

and that &
A =L -1. -1 = 10
A = max sup X |({I +Q “(s)} o () -9 T(s)h..| <1 (10}
2 ; m “A A ij
lgigm s & D j=1
where Q = GK , Q. = G_.K and D is the usual Nyquist Contour in the complex

A A
plane. Substituting from the data indicates that
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” _l‘% ool s @t K—i (A -A ) + A -A. — A H)
(Im QA ) QA =R ) E A A b B o o 1717 o
. s T e _al
= diag {TE:£5T731533}1£j$m(sAb (AO AD) + AO (Al Al) AO AOH(S)) (11)

and we can prove a natural 'inverse' to the results of Penttinen and Koivo

in the form of the following main result of this paper.

Theorem 3: An unknown multivariable plant that is known to be minimum phase
with CB nonsingular will be stable in the presence of unity negative feed-
back with forward path proportional plus integral controller of the form

of equation (8) if

(i) the tuning parameters k__J > 0, Cj > 0 (lgjgm),

(ii) the inequality
m -1 -
A = max Y |G T@a-an,. | < 1 (12)
o . . o o o ij
lgigm j=1

is satisfied, and

(iii) the gain parameter k = min k, is sufficiently large.
3
Proof: Condition (i) is required to ensure the stability of the approximate

feedback system . Conditions, (ii) and (iii) together also guarantee the

truth of (10) as, noting that H is proper and stable, we cbtain the

inequality
m 9 .
lim A = lim max sup E |(diag{(s+k ?(S+c ) }l<'<m Agl(AO‘AO))i.
Kes-ton k>0 lgigm seD J=1 4 3 <J<g 5
< A <1 (13)

This proves the theoremas (10) is clearly satisfied at high gains.

The application of the result is illustrated in the next section. Before
continuing however we note that conditions (i) and (iii) have an obvious
interpretation. Condition (ii) is a little more difficult but, in essence,
it provides explicit lower bounds on the permissible error between AO

and its computed estimate AO which, in turn, can be interpreted in terms
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1 3 ;
of the permissible errors between CB = AO and its estimate CB = AO

computed possibly by rough and ready analysis of open loop plant step

response data. In particular, if the calculations are exact, then AO =
Ao yielding A, = O and (12) is satisfied trivially. In other cases, (12)
can be interpreted as a measure of the robustness of the design at high

gain. Finally, note that A, and ﬁl play no role in the theorem and hence

1

the results are insensitive to the choice of A e.g. choosing A, = o the

1 1

result is still valid and the controller structure considerably simplified.

Numerical Example

To illustrate the application of theorem 3, consider the unstable
batch process discussed by Munro (1972) and Rosenbrock (1974) and defined

by the matrices

(
A = 1.38 -0.2077 6.715 -5.676
-0.5814 -4.29 0] 0.675
1.067 4.273 -6.654 5.893
0.048 4.273 1.343 -2.104
¢ 3 1 0 1 =],
B=|0 o) ¢ o=
(0] L (6] O
5.679 0
1l.136 -3.146
1.136 0
L ) (14)

which is known to be minimum phase and open-loop unstable. We will assume
that it is required to design a high performance controller generating a
closed-loop system with fast rise-times, zero steady state errors and small
interaction effects in response to unit step demands. Also, although the
system model is known, we will assume that the controller design must be

undertaken without the aid of an interactive computing facility!



Following the procedure defined in section 3,

_lo_

we can use the model to

compute the two matrices AO and Al exactly i.e.

which defines the

fact that X
s 0]

to a unit step input in u

approximate,

( 0 0.176
=i = ((:B)_lz
@ -0.318 o
( 0.141 0.296 |
- -1
=A = -CA =
1 B
0.995 2.455 (15)

approximate model GA unigely and immediately yields the

= 0. The open-loop responses of real and approximate systems

are shown in Fig. 1 and illustrate that the

i

conceptual model is also unstable with significantly different

time responses!

Suppose

that a closed-loop time-constant of = 0.05 is required from

both loops and integral action of reset time of = 0.2 in both loops to remove

steady state

troller will

chosen gains

errors. These considerations immediately suggest the choice of

and ¢, = ¢_ = 5 and it is anticipated that the resultant con-

1 2

generate excellent responses from the approximate model if our

are high enough and also that the real system G will be stabi-

lized as all

are verified

conditions of theorem 3 will then be satisfied. These facts

in Fig. 2 which shows the closed-loop unit step responses of

both real and approximate system and indicates that the real system responses

are very close to those predicted from the approximate model.

Finally, we note that the final design above generates

parable with

responses com-

those obtained by Munro (1972) using sophisticated systematic

multivariable frequency response techniques and an interactive computing

facility.

only minimal

In contrast, the above design was achieved very rapidly and with

computational requirements! Perhaps there is a moral here?



- 11 -
Conclusions
It has been demonstrated that the low-gain philosophy inherent in
the work of Astrom, Koivo and Davison on the control of stable unknown plant
has a natural 'inverse' namely, the high gain philosophy for the control of

minimum-phase unknown plant. This second approach has been explored by

constructing a generalization of the first authors previous work in the form of
a parametric controller structure capable of stabilizing unknown multi-
variable plant at high gain. The applicability of the results has been
verified by the design of a high performance regulator for an unstable
multivariable process that compares favourably with a previous design obtained
using model-based multivariable frequency response methods.

Finally, we point out that the principles outlined in this paper will
extend naturally to the discrete case with 'high gains'and 'low gains'
replaced by 'fast sampling' and 'slow sampling' respectively. The details
of this extension are currently under consideration.
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