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ABSTRACT

This work is an extension to previous team work carried out on
modelling of packed distillation columns, headed by J.B. Edwards (1) in
which the author was a team member and had taken part in development of
the model. 1In this work a close examination of the model input-output
stability has been made and some of the remarks made in (1) based on
open-loop input-output stability assumptions are asserted. The results
of computer programmes developed for time simulation and Nyquist diagrams

are alsc examined and their agreement with theoretical deductions checked.



Introduction

The model partial differential equations and the equations of

boundary conditions for the case studied in (1) are as follows
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feed boundary conditions

aT &e(L} = y(L) - uye(L)
top and bottom boundary conditions
x'(-L) - axé (-L) (1.3)
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These equations using the concept of inverted u tube (i.e. conceptually
bending the process into the form of an inverted u-tube and redefining

the origin of h now at the reboiler) and defining the following vectors

- 5 - x! +
* # ye Xe G ¥ .
g = § E = and E = -—\-77
+ 1 + Ll =
4 X Ye Xe v [
can now be solved for either of q or ¥, Anticipating feedback

control from Y{o) and %' (o), which excludes involvement of terminal
capacitances within the control loop, attention was focused on vector

g(o,p). The solution is as follows:

{(u—l)(costh—l)pil—(l+a)(sinth)q_l— 8/2}fl

ql(o,p) l(p) (1.4)
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{(u—l)p(costh-1>q"2—(a+1)(sinh(qL))q"l- e/Bks

It

(p) (1.5)

qz(o,p) 2
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The steady state values of Equations (1.4) and (1.5) for step perturbations

of magnitude Uy and u2 are
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_af{(a-1)L" - (a+l)L - e/2}
%y o0 = 2(a-1)L +a+ 1 U1 (1.6)
_ _oaf{latl)L + e/2}
qg(o,o) = (o-1) u, (L.7)

Open-loop Input-output stability

A test for the system input-output stability is fundamental before
transient behaviour of the system to step inputs is simulated on the
digital computer. This avoids the confusion between the instability of
the system of partial differential equations together with their boundary
conditions and their assumed equivalent lumped parameter system of ordinary
differential equations, assuming that for the numerical method chosen the
criteria for numerical stability is well established. Also since the trans-
fer functions of both il and §2 are irrational, Nyquist criterion can be
applied to derive the conditions for input-output stability of feedback
systems if the open-loop transfer function has no singularities in the
closed right half complex—plane*{Z). The conventional methods like, Routh-
Hurwitz etc. are only for rational transfer functions and cannot be used
for this test. Based on modern concepts of mathematics a few input-output
stability criteria has, in recent years, been established for fairly
general systems, but just to check if the system under study possesses the
requirements of any of these criteria and to apply them requires a good
background of the mathematics involved in them. Instead the following
method was chosen, which seems to fit better in the style of this work.

Let us consider the denominator of &l(o,p) and investigate the possi-
bility of a value for p in the closed right half-complex-plane satisfying

it. If so then for the value of p
el
p Tp + (1 +a )_
= . -1 = 0 (

T # (1 =@ )

ro
=

tanh (gL) +

/2 .
Consider the variable q = /b + 2p first. It can easily be shown that the

roots of any complex number are obtained from the following formula.

*
then the mapping lemma remains valid for irrational transfer functions



fu + jv = X + JY
8 i X >
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where X =

5
Y = o {2:3)

the two roots are of opposite sign. This could also be deduced from the
following formula for the roots of complex numbers based on de Moivre's
Theorem (3)

& B +
z =1 ™{cos (kgsz+lgi) + i sin (‘9*?;Jéﬂg)}

However, in the derivation of transfer functions of ql and q2 in (1),
the +ve root of 92 + 2p was denoted g, and therefore here in ecuation
(2.2) only the + ve sign is considered. Since p is the closed right half-
complex-plane it must be of the form p = Xr:i jyr where xr and Yr are +ve

real figures. Then
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From equations (2.2) and (2.3) it is evident that when

P =x_+Jy X> Oand ¥Y> O
r ) x
and when
Pp=x_- ]y X »0and ¥Y< O
r J xr

Therefore the real and imaginary parts of g have the same sign as those of

-],
_'.
p at all times. Consider now the case when p = X + jyr. Let Xy =R +_£?g_
-1
1=
and x2 = Xr + g whence xl > x2, Substitute for p,q, xl and X2 in the
second term of Equation (2.1) i.e.
a8 ) 1+uii
Tp + (140 ). p _ T 77w P (2.5)
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where yX - xY > O since from (2.3) and (2.2)
& Xy (xr+l) v

"
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Yr X
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=% [ x -yt (xr # yr) + 4(xr + 1] (xr + yr)] (2.7)
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clearly (2.7) is a + ve value and hence from (2.6) it is evident that the

real part of equation (2.5) is always + ve. Now if p were of the form

X - jyr, then substituting for p,q, X and X, in (2.5) will have
r
- x =7 - j ¥ £ -3 X + jy
=1 I e i, ) (xl ]Yr)( 5 jyr) (xr Jyr) ( 3Y)
=Gy =3 2 . 2 ' R
X2 jyr 2 3 X, + yr X +Y

2. .
[(x ¥, + yr)+3(xl—x2)yr] [(xrx+er)+3(er—yrx)
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£ g - 2 4+ v
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where x ¥ -y X = - [y X - x YJ and from (2.7) it must be -ve and therefore
s r ¥ r

again the real part of (2.5) will always remain +ve.

] L
Now let g = peJB and examine tanh %—

fan al _ l—e_q%i_ l—e—pLCOSB[cos(oL sinB)-j sin (pL sinB)J
% l+e_qL 1l+e —pLCOSB[cos (pL sinf)=j sin (pL sinB)]
_ 1 - e_2DLCOSB+ j2e_pLCOSB sin{pL sinf} (2.8)
1+ e—ZDLCO58 + 2 e_pLCOSB cos (pL sinR)

If the denominator of the above equation is set equal to zero we will have
cos (pL sin B) = - cos h (pL cos B)

T
The above equality is impossible unless B = 5 or - since only at

i
2 r
il

these values with coth (pLcosf) is at its minimum value However £ cannot

i m
assume the wvalues E—and = 3~since then g = £ jY and X is equal to zero.

But for X to be zero from (2.2), we will have

u < 0Oand v =o0 (2.9)
r ¥

From (2.4), W, = + 2yr(xr + 1) and it can only be zero when ¥, =© in which

case u_ = x2 + 2x and is always + ve. Therefore the conditions (2.9) will
r r ¥

not be met and since the real and imaginary parts of g always have the same



sign as those of p,

= %—< B < g— (2.10)
and it is also deduced that the denominator of (2.8) cannot become zero
and so it must always be either +ve or -ve. Evaluating its value for any
value of p,R and L reveals that it muét always be a +ve value. Therefore
from (2.8) it is evident that the real part of tanhgg is always +ve and
will not vanish to zero. Clearly tangL in (2.1) will also be the same and
hence both terms of (2.1) will always have +ve real parts for values of p in the
closed-right-half-complex plane with the real part of tanhgl never vanishing
to zero. Therefore (2.1) shall never be possible and él(o,p} is open-lcop
input-output stable. Evidently similar argument is possible for input-output

stability of éz(o,p).
Digital Simulation of Transient Response to Step Inputs

There are a number of methods, available to choose for the digital
simulation of the system,équations (1.1), each having certain advantages
and drawbacks. The simplest method to program is to approximate space
and time derivatives of the dependent variables by a simple forward or
backward finit difference. That is to assume for example that

\
ay; _ Ynean " ¥y Or:yhl—yher
1

ahlh Ah Ah

However, the nature of boundary conditions (1.2) and (1.3) dictates that time
integration of dependent variables in each section of the column may not

be performed simultaneously and only after the process of integration of

one variable has proceeded from one end of the section to the other,
integrétion of another variable can be started. This feature, depending

on the updating procedure taken offers a choice of layouts for integration
passes and it is not easy to find a superiority for one layout over another.
To avoid this situation after approximating the spatial derivatives, the
resulting simultaneous first order eguation together with the boundary
conditions (1.2) and (1.3) were arranged in the form

X = AX + Bu



s o s
where A and B are only arrays of constants. The state transition matrices

of this linear first order equation is only time step dependent. That is

X (t +4t) = ¢ X(t) + Au

Bearing this in mind ¢ and A were computed for a suitably small At and
integration was progressed using the above formula. As it was discussed

in (1) from (1.4) and (1.5), the initial rate of rise may be evaluated as

lim g(o,t) = lim g(o,p) = - I
t=>o P> ®

Now equations (1.6) and (1.7) indicate that the steady state value of
q2(o,t) is always negative, but that of ql(o,t) is only -ve for short
columns and in the case of long columns it may be positive. Therefore the
response of ql(o,t) to step 'pertuantions should behave in a non-meonotonic
manner. This is the case when ql(o,t) is non-minimum phase. The complete
characterization of non-minimum phase responses in time domain is an unsolved

problem (4). This behaviour of q. (o,t) will be asserted in section 5. The

1
results of simulation for two typical cases of short and long columns are
shown in Figure (1) to (4). It can be noticed that the long column has a

considerably slower response compared with the short one.

Frequency Loci

As it was earlier remarked another benefit of open-loop input-output
stability proof is the validity of Nyquist criterion for testing the input-
output stability of the feedback system. The Nyquist diagrams are also of
use for design of a reduced model to approximate that of the true system.
As it will be proven in the followings these loci as p travels on its D
contour, will encircle the origin infinitely in clockwise and counter-—
clockwise direction the net number being zero, due to the fact that the
system is open-loop input-output stable. These encirclements impair the
ease of establishing the non-minimum phase behaviour of ql(o,t} from the

frequency loci. Equation (1.4) can be written in the form
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As p = ReJ assumes large values on the D contour p in g = ce 8will also

become. 1arge in which case the limit of the above equation will become

g. (o p) = - e 1 _ & 1
1 4 " sinh gL 2 ' gL ~-gL
g - e
P
As it was proven before - %—< B < %—, (2.10), hence the exponential
‘ 2
with -ve exponent vanishes. For large values of p, g = (p~ + 2p)% can,

using the Binomial expansion be approximated to q = p+l substituting this

in the above relation will result in

p -gL -(p+l)L g =l -LRcosb
G lop) = - o L EPIT e T (

L (4.1)

cos(LRsinS)—jsin(LRsine)J

From (4.1) it is clear that the Nyquist locus of %l(o,p) when p assumes
values on the semi-circle of the D contour will encircle the orgine with
a radius of r << 1 infinite number of times. Also when p travels along

the imaginary axis, there will be infinite encirclements of the orgine

after its value exceeds a certain amount. In this case 6 = g-or = %
and the radius of the limit encirclements is ecual to
o
€ (4.2) -

similar arguements apply to qz(o,p) which can easily be checked.

Figures (5) to (15) show direct and inverse loci for the examples of

section 3 . In Fig. (5) the size of the fadius of encirclements is

large enough for them to be clearly observed on the direct loci. From the
inverse loci of Fig. (9) it may also be checked that the radius of encircle-
ments has almost approached its limit value of 14.78 evaluated from (4.2).

For the long column the radius of encirclements as may be seen from Ficp.. ((10)
are too small to be clearly seen in the direct plot. However, inverse loci

of Fig. (11) offers a clear indication of existance of such encirclements. From

Figs. (5),(6),(10) and (11) it can also be noted that the gain margin of long



- 8 =
column is considerably smaller than that of short column, one of the
limitations imposed by the undesirable non-minimum-phase effect. Figs.
(12) to (15) show the direct and inverse loci of &2(0,9} for short and
long columns which show that their closed loop systems have a very large
gain margin.

Non-minimum-phase Behaviour

The following proof of existance of non-minimum-phase effect in ql{o,p)
- for long columns is another possibility, relying on the open-loop
input-output stability. Since knowing this the transfer function of

ql(o,p) can be written in the form

él(o,p) = et 1 <N<w® (5.1)

M @,

i=1

where N&l is the numerator of il(o,p) and ai are finite positive real
numbers or complex numbers with positive real part in which case for each
factor (ai + p) there should be another factor (aj+p) with aj equal to
conjugate of ui, since complex roots can only exist as conjugate pairs.
Now qu cannot also be written in this way since if this was possible

then &l(o,p) could have been written as
M

K1 (B, +p)
h___=_l_l_l_ 1 <M< (5.2)

e &
ql(o,p) =
l I(u.+p)
i=1 *t
and since
1im ql(o,t) = lim p él(o,p) = = 1 (5:3)
t + o p -«

this will require K to be a negative value. However for a long column for which

lim g(o,t) = lim il(o,p} > o (5.4)
t > p -+ o0
this will not be possible if il(o,p) is of the form (5.2). Now if

there were at least one factor in the numerator of (5.2) of the form (—Yi+p)

where vy, is a vositive real number
o B



= 0 =
then clearly both (5.3) and (5.4) are satisfied. Therefore (5.1) must at
least have one real root in the closed right half-complex plane and hence

the non-minimum-phase effect should be existant.
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initial slope of equilibrium curve approximation

plase angle of the complex variable g

phase angle of Laplace variable p.

frequency of sinusoidal inputs

interval of frequency mafks on Nygquist diagrams

magnitude of the complex variable g

superscript denoting Laplace transforms w.r.t normalised time

normalised distance

transfer function of accumulator and reboiler

unit diagonal 2 x 2 matrix

(-1)%

transfer function d.c. gain

small changes in molar flow of liquid in rectifier or stripper

normalised length of entire rectifier or stripper

Laplace variable w.r.t normalised time.

(p2 + 2p)k

vector difference of total of wvapour and liquid composition
changes

vector of associated equilibrium values

vector of total and difference vapour and reflux rate changes

small changes of molar flow of vapour in rectifier or stripper
small changes in liquid compositions in rectifier and stripper

v'/a

small changes in vapour composition in rectifier and stripper

x/a

normalised time - constants of accumulator and reboiler
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