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Synopsis

Edge fracture occurs frequently in non-Newtonian fluids. A similar instability has often been

reported at the free surface of fluids undergoing shear banding and leads to expulsion of the

sample. In this paper, the distortion of the free surface of such a shear banding fluid is calculated by

balancing the surface tension against the second normal stresses induced in the two shear bands,

and simultaneously requiring a continuous and smooth meniscus. We show that wormlike micelles

typically retain meniscus integrity when shear banding, but in some cases can lose integrity for a

range of average applied shear rates during which one expects shear banding. This meniscus

fracture would lead to ejection of the sample as the shear banding region is swept through. We

further show that entangled polymer solutions are expected to display a propensity for fracture

because of their much larger second normal stresses. These calculations are consistent with

available data in the literature. We also estimate the meniscus distortion of a three-band

configuration, as has been observed in some wormlike micellar solutions in a cone and plate

geometry. VC 2011 The Society of Rheology. [DOI: 10.1122/1.3621521]

I. INTRODUCTION

Many complex fluids are dramatically influenced by shear flow, which can easily dis-

rupt the slow microstructural relaxation of these fluids. Examples include polymer solu-

tions [Boukany and Wang (2009)], wormlike micellar [Schmitt et al. (1994)] and

lamellar [Diat et al. (1993)] surfactant solutions, colloidal suspensions [Chen et al.
(1994)], and telechelic polymer networks [Michel et al. (2001)]. In many cases, shear

flow can induce an apparent transition to a state with a different microstructure and appa-

rent viscosity, which can lead to macroscopic bands of material that coexist, much like

phase separation, in flow [Olmsted (2008); Fielding (2007)]. In the most commonly

observed scenario, the system forms two or more “shear bands”; layers of high and low

shear rate materials (of equal shear stress) that coexist at volume fractions consistent with

an imposed average shear rate [Schmitt et al. (1994); Britton and Callaghan (1999);

Cappelaere et al. (1997)]. As the average shear rate is increased, the width of the high

shear rate band increases, while a constant stress is maintained (in an idealized planar
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Couette geometry). The measured shear stress as a function of applied average shear rate

is the flow curve and contains a broad stress plateau for shear rates in the banding range.

Shear banding can result when the constitutive relationship between shear stress and

shear strain rate, assuming homogeneous flow, has a stress maximum and is thus nonmo-

notonic [Spenley et al. (1993)] [see Fig. 3(a)]. Homogeneous flow is unstable for applied

shear rates in the region of the constitutive curve with a negative slope, and this instability

can be resolved by adopting the shear banding state. This constitutive instability is present

in the Doi–Edwards (DE) reptation model for entangled polymers [Doi and Edwards

(1989)], for sufficiently weak levels of convected constraint release (CCR) [Graham et al.
(2003)], and was only recently been observed in polymer solutions [Tapadia and Wang

(2003); Hu et al. (2007); Boukany and Wang (2007, 2009); Adams and Olmsted (2009b)].

Wormlike micelles have a similar constitutive instability, due to the combination of repta-

tion and micellar breakage [Cates (1990); Rehage and Hoffmann (1991); Spenley et al.
(1993)], and shear banding has been studied in these systems for decades [Berret (2005)].

In many experiments on shear banding the free surface fractures and the sample is ejected

from the device. Although it is often reported as a nuisance and anecdotally, it is widespread

in both wormlike micellar solutions [Britton and Callaghan (1997); Berret et al. (1997);

Lopez-Gonzalez et al. (2006)] and entangled polymer solutions [Inn et al. (2005); Sui and

McKenna (2007)]. Fracture and ejection can occur at some point on the stress plateau, which

corresponds to a certain minimum width of the high shear rate band before fracture occurs.

This is evident in the experiments of Berret et al. (1997), in which they reported surface frac-

ture on the stress plateau in a cone-and-plate rheometer. They attributed this to a well-known

secondary flow instability in cone-and-plate rheometers, due to the balance of the second nor-

mal stress difference with surface tension c [Tanner and Keentok (1983); Larson (1992)]

jN2j >
2c
3W

; (1)

where W is the maximum cone-plate separation and N2¼ Tyy� Tzz is the second normal

stress difference. The balance of normal stresses with surface tension leads to a radius of

curvature R� c=N2. If this radius is too small, then the interface must curve too tightly to

fit inside a wide gap W, and fracture results.

In this paper, we propose a simple model that generalizes this idea to incorporate shear

banding, which can also address this lack of surface integrity. We study the entire menis-

cus shape, as determined by second normal stresses in the two shear bands and contact

angles, and find a range of conditions under which the meniscus cannot maintain the

shape demanded by mechanical equilibrium. As the shear bands change size, for increas-

ing imposed average shear rate, one of the bands develops a width that cannot support

the meniscus curvatures demanded by the normal stress balances in both shear bands and

continuity. We establish the conditions for mechanically stable bands and illustrate this

behavior using nonmonotonic forms of the Johnson and Segalman (1977) and Giesekus

(1982) constitutive models.

We compare this explicitly to data in the literature. There are significant data on

wormlike micelles, which are for the most part consistent with our calculations. We also

compare with recent work on entangled polymer solutions [Inn et al. (2005); Sui and

McKenna (2007); Tapadia and Wang (2004)], which are now known to shear band and

have generated much discussion in the literature. We show that the larger apparent vis-

cosities of entangled polymer solutions lead to more unstable shear bands; we hope that

this helps to resolve some of the contradictory results in the literature as to whether shear

banding is intrinsic to the constitutive behavior or due to a meniscus distortion. In our
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view, shear banding can initiate the distortion and fracture seen in some recent experi-

ments [Inn et al. (2005); Sui and McKenna (2007)].

In Sec. II, we present our model, flow geometry, and mechanical balance conditions.

In Sec. III, we calculate the meniscus shapes, and derive meniscus integrity criteria that

depend only on the second normal stresses, the gap size, the surface tension, and the con-

tact angle. In Sec. IV, we compare our calculations with experiments on wormlike

micelles and polymer solutions, and we conclude in Sec. V. Appendix B collects the rele-

vant information for the Giesekus and Johnson–Segalman (JS) models, and Appendix C

contains the details for calculations in which a center high (or low) shear rate band is

sandwiched between two low (or high) shear rate bands.

II. MODEL AND MENISCUS INTEGRITY CONDITIONS

A. Constitutive equations

We consider an incompressible fluid obeying the following relation between shear

stress and shear strain rate:

T ¼ �pIþ 2gDþ R; (2)

where I is the identity tensor, D � 1=2½rvþ ðrvÞT �, p is the isotropic pressure deter-

mined by incompressibility ðr � v ¼ 0Þ, g is an assumed Newtonian viscosity (due to sol-

vent or other fast modes), and v is the velocity field. The stress tensor R is an additional

viscoelastic stress that has its own dynamical equation of motion. We will illustrate our

results using the JS and Giesekus models, whose details are presented in Appendix B.

We will consider steady creeping flow, so

r � T ¼ 0: (3)

Shear banding usually develops only two bands, although occasionally more complex

structures are seen, such as a three-band configuration in cone-and-plate (Fig. 1). The stress

gradient in cylindrical Couette flow typically ensures that two bands develop with the high

shear rate phase near the inner cylinder [Olmsted et al. (2000)], while the much weaker

stress gradient of cone-and-plate flow could explain the more complex structures [Adams

et al. (2008)]. Alternatively, Kumar and Larson (2000) showed that unidirectional shearing

flow, in the cone and plate geometry, of adjacent fluids with different normal stresses is in-

compatible with momentum balance. Based on this three-band state, we calculate the

FIG. 1. (Left) Flow birefringence image of shear banding in a cylindrical Couette rheometer; the bright band is

flowing at the higher shear rate. (Reprinted Fig. 5c with permission from Cappelaere et. al., Phys. Rev. E, 56,

1869 (1997). Copyright VC 1997 by the American Physical Society.) (Right) NMR image of shear banding in a

cone-and-plate rheometer, with a high shear rate central band (white or black). (Reprinted Fig. 2a with permis-

sion from Britton and Callaghan, Phys. Rev. Lett. 78, 4930 (1997). Copyright VC 1997 by the American Physical

Society.) A free exterior fluid surface is specified.
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meniscus distortion of two-band and three-band configurations. We specialize to a planar

Couette geometry for all calculations. We may sometimes refer to a particularly shear banding

configuration as “unstable” if the mechanical balance condition does not yield a physical rea-

sonable interface. However, we emphasize throughout that we do not calculate the conditions

for dynamic instability, but rather the conditions under which a meniscus solution is consistent

with momentum balance. This “instability” or lack of solution may, of course, be preempted

by an instability due to secondary flow arising from purely dynamical considerations.

B. Shear flow and mechanical balance conditions

We consider steady laminar flow between two parallel plates a distance W apart; one

plate is stationary and the other plate moves with a constant speed V in the x direction

(see Fig. 2). The flow gradient and shear rate only vary in the y direction, @vx=@y ¼ _cðyÞ.
The applied average shear rate is _capp ¼ V=W. The free surface (meniscus), specified by a

height h(y), is in the z direction, and we assume no-slip boundary conditions at the solid walls.

If the free surface is considered at all it is usual for the meniscus to be flat (parallel to

the plane z¼ 0). Curvature of the free surface is problematic; stress balance at the surface

implies that the base flow near the surface will, generally, no longer be given by

v ¼ ð _cy; 0; 0Þ. For h0 � 1 this may not be a problem; otherwise, secondary flows will de-

velop and, generally, we expect hydrodynamic instabilities to preempt our estimates of

nonexistence of surface integrity. This is discussed in Appendix A.

The fluid is assumed to have a nonmonotonic constitutive relation, with shear bands that

form at shear rates have _c1 and _c2, as shown in Fig. 3(a). The shear band widths w1 and w2

are given by ŵ1 ¼ �ð _capp � _c2Þ=ð _c2 � _c1Þ and ŵ2 ¼ ð _capp � _c1Þ=ð _c2 � _c1Þ, where here

and throughout this paper all lengths with a carat ^ have been normalized relative to the

plate gap size W. The shear bands are assumed to partition, and vary in thickness, along the

flow gradient direction.

Stress balance Eq. (3) implies that Txy and Tyy are the same in each shear band. This

implies that Rð1Þxy ¼ Rð2Þxy , where (1) and (2) refer to the two shear bands. Moreover,

Rð1Þyy � p1 ¼ Rð2Þyy � p2: (4)

Since the normal stresses will generally be different in the two bands, the pressures p1

and p2 will differ. These pressures must then balance, together with Rzz, against the cur-

vature of the meniscus and the atmospheric pressure patm

TðiÞzz ¼ �pi þ RðiÞzz ðciÞ ¼ �patm �
cs

Ri
ði ¼ 1; 2Þ; (5)

FIG. 2. (Left) Schematic diagram of planar Couette flow. The plate in the y¼ 0 plane is stationary, while a par-

allel plate distance W away moves with velocity V. The free surface at large z is open to the atmosphere. (Right)

Velocity profiles for an applied average shear rate _capp ¼ V=W : (a) unbanded or (b) shear banded. For banded

flow _c1 ¼ v=w1 and _c2 ¼ ðV � vÞ=w2, where w1 and w2 are the widths of the two shear bands.
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where Ri is the radius of curvature of the meniscus in the ith band and cs is the surface tension.

From Eq. (4), the difference in Tzz between the two bands is given by the difference in the sec-

ond normal stress differences, Tð1Þzz � Tð2Þzz ¼ N
ð2Þ
2 � N

ð1Þ
2 . Making use of this and Eq. (5), we

can relate the second normal stress differences to the radii of curvature of the two bands

DN2

cs

¼ 1

R2

� 1

R1

; (6)

where DN2 ¼ N
ð2Þ
2 � N

ð1Þ
2 . This can be easily calculated for a given constitutive relation,

and together with the surface tension defines a characteristic “elasto-capillary” length for

the shear banding configuration

f ¼ cs

jDN2j
: (7)

The three Eqs. (4) and (5) relate four unknown quantities: the pressures and meniscus

curvatures in each band. By eliminating the pressures we can relate curvature radii, but

more information is needed to absolutely determine the shape. This will follow by con-

structing a continuous and smooth meniscus. The balance at the meniscus, Eq. (5), deter-

mines the pressure in each band in terms of the meniscus curvature. We will find below

that the curvatures must change in order to maintain a physical meniscus, which thus

determines the pressure in each band.

III. MENISCUS SHAPE AND INTEGRITY

A. General shape (two bands)

We ignore deviations due to complex flows near the contact line, and approximate the

meniscus of each band as the arc of a circle of radius Ri, which may be positive or

FIG. 3. (a) Flow curve (thick line) and constitutive curve (thin line) for shear banding flows. Banding occurs on

the stress plateau at T�xy, for applied shear rates _capp such that _c1 	 _capp 	 _c2. A “lever” rule relates the widths of

the shear bands to the applied shear rate, w1 ¼ Wð _c2 � _cappÞ=ð _c2 � _c1Þ and w2¼W�w1. (b) Profile of the fluid

surface (meniscus) between flat plates (flow in the x̂ direction). Each band has a circular profile, and the surface

is continuous and differentiable; /1 and /2 are the contact angles at the two plates. The contact lines between

fluid and plates move up and down as the widths of the shear bands alter; H is the height difference between the

contact lines. Note that the curvatures may be positive or negative.
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negative. We demand continuity of the surface and its tangent at the interface between

two bands. The conditions above can be fulfilled either by:

(i) the contact angles being fixed and the fluid adopting a height H difference

between the contact lines along each plate [movement of the contact lines has

been observed by Crawley and Graessley (1977)]; this height difference will vary

in response to the widths of the shear bands [see Fig. 3(b)];

(ii) the contact lines being pinned such that H is fixed and the contact angles vary in

response.

In both cases the meniscus profiles are governed by the same equations.

The height profiles of the two bands are given by

hðyÞ ¼
R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y

R1

þ cos /1

� �2
s

� sin /1

 !
ð0 	 y 	 w1Þ

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y�W

R2

� cos /2

� �2
s

� sin /2

 !
þ H ðw1 < y 	 WÞ;

8>>>>><>>>>>:
(8)

where /1 and /2 are the contact angles at either wall, and h(0)¼ 0 and h(W)¼H. Conti-

nuity of h at y¼w1 requires

H ¼ ðR1 � R2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w1

R1

þ cos /1

� �2
s

þ R2 sin /2 � R1 sin /1 ; (9)

and continuity of h0 at y¼w1 requires

w1

R1

þ w2

R2

¼ � cos /1 � cos /2 : (10)

B. Fixed contact angles

We allow the surface tensions at the fluid, walls, and atmosphere interface to determine

the contact angles and assume that the contact angles persist through the onset of band-

ing. Then, Eqs. (6) and (10) completely specify the shape

R̂1 ¼
1

� cos /1 � cos /2 � ŵ2A
and R̂2 ¼

1

� cos /1 � cos /2 þ ŵ1A
; (11)

where the dimensionless distortion parameter,

A � WDN2

cs

¼ �W

f
; (12)

controls the shape. In the limit of high surface tension, jAj^ 0, both radii are equal and

completely determined by the contact angles. We have chosen negative values for A
here, since we expect N

ð2Þ
2 < N

ð1Þ
2 	 0 in the high shear rate band for most polymer and

micellar solutions (a similar analysis can be done for A> 0). In Sec. IV, we analyze

recent experiments and estimate �A� 0.8 – 3 for shear banding wormlike micelles and

�A� 3 – 140 for entangled polymer solutions.
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C. Integrity of meniscus

An interface solution exists under two conditions, one mathematical and the other

practical:

• The curves should not have infinite slope or pass through each other. This leads to the

condition

jŵ2 cos /1 � ŵ1 cos /2 � ŵ1ŵ2Aj < 1: (13)

• The increase H in height across the gap should not be large enough for the sample to

climb out of the cell. This, obviously, depends on the loading conditions, and can gen-

erally preempt the mathematical condition above.

D. Equal contact angles

We first consider equal contact angles /1¼/2¼/, for which the meniscus integrity

condition is

ðŵ2 � ŵ1Þ cos /� ŵ1ŵ2Aj j < 1; (14)

where the criterion,

� 1� cos / <
ŵi

R̂i

< 1� cos /; (15)

is required for Eq. (9) to yield real solutions. Figure 4(a) shows regions of integrity for

A¼�3.5 and two chosen cases. For a wall and fluid combination that fixes /¼ 60
, the

entire shear stress plateau is accessible and supports an integral meniscus. However, for a

wall and fluid combination that fixes /¼ 40
, some values of w2 are not allowed and the

corresponding applied shear rates are not accessible on the stress plateau. For small con-

tact angles, the low shear rate portion of the plateau is accessible, while for high contact

angles the high shear rate portion of the plateau is accessible. Figure 4(b) shows a possi-

ble flow curve for the /¼ 40
 case.

FIG. 4. (a) Integrity contours for equal contact angles /2¼/1¼/, for A¼�3.5. For a wall and fluid combina-

tion that fixes /¼ 60
 all shear band widths are allowed and the applied shear rate will traverse the plateau. For

a wall and fluid combination that fixes /¼ 40
 not all shear rates accessible; the surface of the fluid becomes

fractured for some widths ŵ2 of the high shear rate band satisfying ŵ�2 < ŵ2 < ŵþ2 . All widths allow meniscus

integrity for jcos /j< cos /*¼ 0.661. (b) Flow curve (thick line) for a wall and fluid combination with /¼ 40
,
showing the inaccessible segment of the stress plateau.
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To understand the lack of integrity of the meniscus, we must examine the meniscus

shapes. These are shown in Fig. 5, as a function of increasing the applied shear rate _capp

across the stress plateau, for both an integral case (/¼ 60
) and a nonintegral case

(/¼ 40
), for A¼�3.5. Note that banding first initiates when the high shear rate band

develops a nonzero width, i.e., when ŵ2 grows from zero for _capp � _c1.

First, consider the /¼ 60
 case [Fig. 5(a)]. At ŵ2 ¼ 0:2 the contact line of the higher

rate shear band has dropped, while that of the lower shear rate band has risen. Both surfa-

ces have negative radii of curvature. By ŵ2 ¼ 0:4 the radius of curvature of the lower

shear rate band has become positive. The height difference between the contact lines

increases and reaches a maximum at ŵ2 ’ 0:65, but the surface still maintains its integ-

rity. For larger ŵ2 the height difference decreases until shear banding ceases at ŵ2 ¼ 1

ð _capp ¼ _c2Þ. For the /¼ 40
 case, however [Fig. 5(b)], the integrity of the surface cannot

be fulfilled when the width of the high shear rate band satisfies 0:6 < ŵ2 < 0:83 [see Fig.

5(d)]. As can be see in Fig. 5(b), the interface develops a kink immediately before the

FIG. 5. (a,b) Meniscus profiles h(y); and (c,d) height difference Ĥ and curvatures normalized by the gap size,

wi=Ri, as a function of the high shear band width ŵ2; for A¼�3.5. The dotted lines are the integrity limits on

wi=Ri from Eq. (15). For the /¼ 60
 case (a,c), the surface remains integral for all shear rates in the plateau

region, while for the /¼ 40
 case (b,d) the surface of the fluid will fracture on some portion of the stress

plateau.
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onset of fracture. In the region of fracture, we find that there is no continuous solution to

the meniscus profiles.

Figures 5(c) and 5(d) show the height difference Ĥ, and the surface curvatures for the

different shear bands wi=Ri normalized by the respective band size, as a function of shear

band width ŵ2 (or equivalently the applied shear rate _capp). The surface will maintain in-

tegrity so long as solutions for h0(y) (and consequently H) exist. The dotted lines indicate

between which values ŵ1

�
R̂1 and ŵ2

�
R̂2 must lie in order to maintain integrity.

The integrity contours for a range of distortion parameters A are shown in Fig. 6, and

the different regions of integrity are summarized in Table I. For A>�2, the meniscus is

always integral. For �4<A<�2, the meniscus is integral for contact angles satisfying

cos2 / 	 cos2 /� ¼ jAj 1� jAj
4

� �
: (16)

For large magnitude jAj> 4 the meniscus looses integrity at all contact angles, for some

regions of the stress plateau. For A< 0, as in our case, this occurs when the width of the

high low shear rate band is between the limits

ŵ6
2 ¼

1

2
1þ 2 cos /

jAj

� �
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4jAj 1þ cos /ð Þ

jAj þ 2 cos /ð Þ2

s" #
: (17)

FIG. 6. Regions of integrity for equal contact angles / and for different values of the distortion parameter A.

TABLE I. Criteria for (lack of) integrity as a function of the distortion parameter A,

for equal contact angles /1¼/2¼/.

Range of A Integrity of meniscus

A<�4 Fractures for all contact angles /, for ŵ�2 < ŵ2 < ŵþ2 .

�4<A<�2 Fractures for jcos /j> jcos /*j and ŵ�2 < ŵ2 < ŵþ2 .

�2<A< 0 Integral for all contact angles /.
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These limits also apply for �4<A<�2, for jcos /j � jcos /*j.

E. Different contact angles

For different contact angles, the situation is more complex. For A< 0, the meniscus

remains integral for all ŵ2 for A>�8 and

cos /2 >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cos /1 � 1j

p
�

ffiffiffiffiffiffi
jAj

ph i2

�1:

For A<�8 the meniscus fractures somewhere along the stress plateau for any combina-

tion of contact angles. This condition is illustrated in Fig. 7, which shows the regions of

integrity and fracture as a function of both contact angles, for A¼�3.5 [Fig. 4(a) is a

slice through this figure for /1 ¼/2]. Figure 7(b) shows that an asymmetry in contact

angle increases the region for meniscus fracture. For /1¼ 0, corresponding to a wetting

surface, a larger contact angle leads to a fractured meniscus for jAj< 2, which would

always be integral for equal contact angles.

F. Pinned contact lines

For pinned contact lines we ascribe a particular value to H. Equations (6), (9) and (10)

are not sufficient to specify R1, R2, /1, and /2; the fourth condition is the requirement of

FIG. 7. (a) Regions of integrity as a function of contact angles /1 and /2, and the width ŵ2 of the high shear

rate band for distortion parameter A¼�3.5. The meniscus is integral for any combination of ŵ2, /1, and /2 in

the integral region. Figure 4(a) is the intersection of this integrity surface with the plane /1 ¼/2. (b) For A¼�1

and /2< 90
 the meniscus is integral for all ŵ2 (i.e., across the entire stress plateau). For A<A*¼�2 the me-

niscus fractures at some shear band width ŵ2 for all contact angles /2. (c) The meniscus fractures at some ŵ2

for all /2 if A < �ð3þ 2
ffiffiffi
2
p
Þ. (d) Contours specified by A* as a function of contact angles (/1,/2) that enclose

regions of integrity across the whole shear stress plateau. On the dashed line /1 ¼/2. For A*¼�3.5, the dotted

arrows indicate the contact angles for which the meniscus will be integral for all ŵ2. The dotted lines indicate

fracture at some ŵ2 as shown in Fig. 4(a).
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volume conservation for an incompressible fluid. Figure 8 is a typical example in which

the contact lines have been pinned so that their difference in height H is zero. For applied

shear rates associated with the stress plateau the meniscus contorts but retains integrity

for all shear rates when �8<A< 0; for A<�8 not all shear rates are accessible and the

meniscus will fracture at some shear rate.

G. Three bands

Figure 1 shows an example of three shear bands, visualized in a cone-and-plate rhe-

ometer by Britton and Callaghan (1997) using NMR velocimetry. Three bands have not

been observed in cylindrical Couette flow, and this difference was rationalized by Adams

et al. (2008) as due to a combination of boundary conditions that favor the low shear rate

phase and the relatively weak stress gradient of cone-and-plate flow. Motivated by this

result, we have calculated the distortion of the meniscus in such a configuration and find

that a three-band state does indeed allow meniscus integrity, for certain ranges of param-

eters. This analysis is given in Appendix C.

IV. COMPARISON WITH THE LITERATURE

A. Theoretical method

We examine existing data in the literature, which exhibit both stable shear banding

across the entire stress plateau and an instability such that the entire stress plateau could

not be accessed; we then assess whether or not meniscus fracture is expected, based on

an estimation of the distortion parameter A¼WDN2=cs. We fit the data from the flow

curves, including the stress plateau and the shear rates _c1 and _c2 in the two shear bands,

to both the Giesekus and JS constitutive models. From the models, we can evaluate the

predicted second normal stress difference N2 in the two shear bands (see Appendix B),

while the gap size W is taken from the experimental conditions and the surface tension cs

is estimated using literature values. With this in hand, we can then compare the stability

or instability of banding states, inferred from the experiments, with our calculations.

FIG. 8. Stability regions of profiles for contact lines pinned such that H¼ 0. (a) The full width of the shear

stress plateau is accessible for �8<A< 0. For A<�8, the surface will fracture at some applied shear rate

< _c�. (b) Meniscus profiles for A¼�8. The surface maintains integrity for applied shear rates up to _c� at which

rate the high shear rate band has achieved w2¼ 0.3 of the width of the gap.
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Since the contact angles are unknown, we can only determine whether our criteria for

instability are consistent with the numerical values for A (assuming equal contact angles).

We are also limited by the quality of the available constitutive models: neither the JS nor

the Giesekus model is expected specifically to apply to wormlike micelles, but they can

support shear banding and have nonzero second normal stresses. These models, devel-

oped for polymer melts, may be more applicable to semidilute polymeric solutions,

which have an explicit Newtonian solvent. Fischer and Rehage (1997), Yesilata et al.
(2006), and Helgeson et al. (2009) show that the steady state nonlinear rheology and

shear thinning of wormlike micelles is well described by the Giesekus model; we offer

the JS model for comparison. In fact, the two models yield very similar quantitative pre-

dictions, and thus do not substantially differ insofar as determining the properties of the

meniscus.

B. Wormlike micellar solutions

Wormlike micellar solutions of both cetyltrimethylammonium (CTAB) and cetylpyri-

dinium chloride=sodium salicylate (CPCl=NaSal) have been extensively studied. Figure

9 shows the data of a CTAB solution, as measured by Helgeson et al. (2009) and fitted by

them to the diffuse Giesekus model. In this case, the entire stress plateau was accessible.

We have fitted it to the nondiffuse Giesekus and JS models. Strictly, one should fit the

stress plateau using a nonlocal (or diffuse) model [Lu et al. (2000)]; however, our fits

obtained by choosing the stress plateau “by hand” differ insignificantly from more pre-

cise fitting. Hence, we use a local model for the remaining fits in this paper. The Giesekus

model fits the high shear rate branch much better than does the JS model.

The fitting parameters are shown in Table II. The difference between the diffuse and

nondiffuse Giesekus models values for DN2 is less than 3%. We estimate the distortion

parameter to be A ^ �0.8, which is well within range (A � �2, from Table I) for which

we expect to find stable shear bands across the entire stress plateau for all contact angles.

We have found a few experiments that show a clear instability as the stress plateau is

traversed or that cannot reach the end of the stress plateau. Berret et al. (1994, 1997)

studied CPCl=NaSal solutions at different concentrations and temperatures, in a cone-

and-plate rheometer with a free surface. They found stable stress plateaus for micellar

solutions close to a nonequilibrium critical point, where the difference between the shear

banding phases vanishes. Farther from the critical point, where the shear banding phases

are more distinct, and hence one expects DN2 to be larger, they report unstable stress pla-

teaus [see Fig. 6 of Berret et al. (1997)]. Figure 10 shows the data and fits for an 8% solu-

tion at T¼ 30 
C, which was close to the nonequilibrium critical point. The fitting leads

FIG. 9. (a) Flow curve for a CTAB solution fitted to the (numerical) diffuse Giesekus model, measured in a

Couette rheometer with a gap W¼ 0.5 mm (Helgeson et al., 2009). Fits to the nondiffuse Giesekus (b) and JS

(c) models (fitting parameters are given in Table II).
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to a distortion parameter between A ’ �1:0 and A ’ �1:3, which is consistent with the

meniscus maintaining integrity across the entire stress plateau.

The data for an unstable CPCl solution are shown in Fig. 11, at 12% and T¼ 20 
C. In

this case, the stress plateau can only be traversed as far as _capp ¼ 7:1 s�1, at which point

the fluid became unstable [Berret et al. (1997)]. To calculate the distortion parameter, we

require the shear rate _c2 in the high shear rate phase, which we estimate from Fig. 8 of

Berret et al. (1997) to be _c2 ’ 54 s�1. This is consistent with the measurements of the

high shear rate branch performed by Lopez-Gonzalez et al. (2006) on the same material

with a free surface: Fig. 11 of their paper shows a 10% sample at 25 
C. Fits to the Giese-

kus and JS models, respectively, yield A ’ �2:4 and A ’ �2:0, for the 12% sample of

Berret et al. (1997) at T¼ 20 
C. In the range A<�2, we expect meniscus fracture for

some contact angles, and across some region of the stress plateau. The experiments show

an instability at ŵ2 ¼ 0:12. Figure 6 shows that such a small value of ŵ2 ¼ 0:12 and

A. � 2 would be consistent with a contact angle near 180
, or complete wetting. We

caution, however, against using the numerical results from applying these fairly crude

constitutive models. It is clear, however, that the distortion parameter predicts that the

12% fluid at T¼ 20 
C should be more unstable than the 8% fluid at T¼ 30 
C. We have

also estimated the distortion parameter from the closely related experiments of Lopez-

Gonzalez et al. (2006) (see Fig. 5 from that paper), for which we estimate

�A ’ 2:3� 2:6, again just into the predicted range of possible meniscus fracture.

FIG. 10. Data and fitted constitutive curves for the experiments of Berret et al. (1997) on CPCl at 8% (by

weight) and T¼ 30 
C, using the (a) Giesekus (b) JS models. The geometry was a cone and plate rheometer.

Parameters are shown in Table II.

TABLE II. Parameters used to fit the flow curves in Figs. 9–11, for the Giesekus (Gi) or JS model. We estimate

a surface tension cs ’ 37 mN=m for aqueous CTAB (Christian et al., 1998) and cs ’ 32 mN=m for CPCl=NaSal

(Akers and Belmonte, 2006). For the stable solutions (CTAB and 8% CPCl) the shear rate _c2 of the high shear

rate band was taken from the end of the stress plateau, while for the unstable solution (12% CPCl) _c2 was esti-

mated from the scaling in Fig. 8 of Berret et al. (1997). *The entire stress plateau not traversed; hence _c2 was

estimated from fitted curve.

Parameters

Figure Material go=(Pa s) T=
C W=mm G=Pa s=s a e _c1=s�1 _c2=s�1 DN2

G A

9 CTAB 2.1 32 0.5 112 0.018 0.9 0.008 65 1530 �0.48 �0.8 Gi

115 0.017 0.43 0.022 40 1430 �0.52 �0.8 JS

10 CPCl 18 30 0.5 165 0.11 0.88 0.015 11 60 �0.38 �0.9 Gi

8% 168 0.09 0.41 0.056 8 90 �0.48 �1.2 JS

11 CPCl 240 20 0.5 260 0.94 0.87 0.002 1 54* �0.60 �2.2 Gi

12% 268 0.88 0.38 0.010 0.85 54* �0.49 �1.9 JS
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FIG. 11. Data and fitted constitutive curves for the experiments of Berret et al. (1997) on CPCl at 12% (by

weight) and T¼ 20 
C, using the (a) Giesekus and (b) JS models. The geometry was a cone and plate rheometer.

Parameters are shown in Table II. The fluid became unstable at the rightmost datum point �, at _capp ¼ 7:2 s�1.

The open circle 
 shows our estimate of the shear rate in the high shear rate branch based on extrapolation from

the rheology of Fig. 8 of Berret et al. (1997), together with the temperature dependences in Figs. 5 and 7 of the

same reference and Fig. 4 of Berret et al. (1994).

TABLE III. Values of the distortion parameter A calculated from experimental studies on wormlike micellar

solutions using either the Giesekus (Gi) or JS model. “Stable” experiments accessed the full stress plateau, while

in “unstable” cases an instability occurred at the apparent shear rate _c�app for a high shear rate band of width ŵ�2.

The first column identifies the figure above that demonstrates the fit, and the weight fraction used for the experi-

ments of Berret et al. (1997). We estimate a surface tension cs ’ 37 mN=m for aqueous CTAB (Christian et al.,
1998) and cs ’ 32 mN=m for CPCl/NaSal (Akers and Belmonte, 2006). *The entire stress plateau not traversed;

hence _c2 was estimated from fitted curve.

Model parameters Instability at

Material Cell T=
C W=mm G=Pa s=s a e _c1=s�1 _c2=s�1 DN2

G A _c�app=s�1 ŵ�2

CTABa C 32 0.17 69 0.11 0.92 0.005 6 330 �0.71 �0.2 Gi Stable

70 0.11 0.5 0.01 5.5 450 �0.53 �0.2 JS Stable

CPClb CP 20 0.5 94 0.62 0.92 0.02 1.5 11 �0.48 �0.7 Gi Stable

6% 96 0.55 0.38 0.055 1.2 13 �0.51 �0.8 JS Stable

CTABc C 32 0.5 112 0.018 0.9 0.008 65 1530 �0.48 �0.7 Gi Stable

Fig. 9 115 0.017 0.43 0.022 40 1430 �0.52 �0.8 JS Stable

CPClb CP 30 0.5 165 0.11 0.88 0.015 11 60 �0.38 �1.0 Gi Stable

8%

Fig. 10

168 0.09 0.41 0.056 8 90 �0.48 �1.3 JS Stable

CTABa C 32 1 69 0.11 0.92 0.005 6 330 �0.71 �1.3 Gi Stable

70 0.11 0.5 0.01 5.5 450 �0.53 �1.0 JS Stable

CPCld C 21.5 1 108 0.48 0.88 0.012 2.5 26 �0.44 �1.5 Gi Stable

6% 105 0.51 0.65 0.036 1.5 27 �0.45 �1.5 JS Stable

CPClb CP 30 0.5 291 0.15 0.84 0.002 8 *187 �0.50 �2.3 Gi Unstable 80 0.40

12% 282 0.14 0.57 0.021 6.5 *187 �0.42 �1.8 JS Unstable 0.41

CPClb CP 20 0.5 260 0.94 0.87 0.002 1 *54 �0.59 �2.4 Gi Unstable 7.1 0.12

12%

Fig. 11

268 0.88 0.38 0.010 0.85 *54 �0.49 �2.0 JS Unstable 0.12

CPCle CP 25 0.6 224 0.32 0.92 0.007 2.5 *70 �0.62 �2.6 Gi Unstable 43 0.60

10% 225 0.29 0.4 0.022 2.2 *70 �0.54 �2.3 JS Unstable 0.60

CTABf C 28 1.13 267 0.21 0.89 0.016 4 90 �0.59 �4.8 Gi Unstable 40 0.42

290 0.18 0.43 0.033 3 95 �0.56 �5.0 JS Unstable 0.40

aCappelaere et al. (1997).bBerret et al. (1997). The shear rate in the high shear rate branch for the 12% solution

was estimated by extrapolating from Fig. 8 in this reference.cHelgeson et al. (2009).dSalmon et al. (2003).
eLopez-Gonzalez et al. (2006). The shear rate in the high shear rate branch for the 10% solution was estimated

by extrapolating from Fig. 8 in Berret et al. (1997).fLerouge et al. (2008). Although the data in this reference

are apparently stable because the entire stress plateau is traversed, the cell top was covered: for an open cell

with a free surface an instability occurs at _c�app ’ 40 s�1 Lerouge (personal communication).
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We have collected much of the available data in the literature in Table III. In many

cases, the full banding profile was found (noted as “stable” in Table III), and in all of

these cases we calculated A to be in the range A>�2, for which the meniscus retains in-

tegrity (Table I). Similarly, all of the unstable data that, we have found, correspond to

A<�2, for which meniscus fracture is expected for some contact angles (Table I).

C. Polymer solutions

Wang and co-workers revived the experimental study of entangled polymers with new

experiments that clearly show shear banding [Tapadia and Wang (2003); Hu et al.
(2007); Boukany and Wang (2007, 2009)]. Tapadia and Wang’s first experiments, on pol-

ybutadiene (PBD) entangled in its own oligomer, suggested shear banding by what they

referred to as an “entanglement disentanglement transition” (EDT); these data are also

broadly consistent with theories based on the Doi–Edwards tube model [Adams and

Olmsted (2009a, 2009b); Wang (2009)]. In the earliest experiments they apparently used

a free surface, and commented that some small edge fracture or instability could have

occurred, but that its effects were negligible.

While attempting to reproduce these experiments, Inn et al. (2005) found significant

edge fracture and instability in the region of the transition and the stress plateau and con-

cluded that the surface instability and associated mass loss was responsible for the

effects. This was then studied by Sui and McKenna (2007) using cone-and-plate rheome-

ters with gap sizes at the rim of W¼ 0.267 mm and W¼ 1.363 mm. They found signifi-

cant edge fracture or instability accompanying the shear banding transition, but their

results suggested that the surface instability could be a consequence, rather than a cause,

of the shear banding transition (or EDT). This is seen most clearly in Fig. 5 of Sui and

McKenna (2007), which shows that the stress plateau can be traversed when a plastic

film is used to suppress the instability at the surface (Philips and Wang performed the

TABLE IV. Parameters used to fit the flow curves in Figs. 12 and 13 to the JS and Giesekus (Gi) models and

evaluate the distortion parameter A for the study of Sui and McKenna (2007) of polybutadiene-in-oligomer (PBD)

and polyisobutylene-in-pristane (SRM 2490) solutions. The surface tension of pristane is around 26 mN=m (Bas-

com et al., 1964) and that of 1,4 PBD is around 30 mN=m (Brandrup and Immergut, 1989). The PBD was fitted to

the Giesekus model for three possible values of a to illustrate the robustness of the parameter A.

Cone Parameters Instability at

Material go=(Pas) Angle T=
C W=mm G=Pa s=s a e _c1=s�1 _c2=s�1 DN2

G A _capp=s�1 ŵ2

SRM 2490 85 1
 Room 0.267 1060 0.047 0.93 0.01 18 300a �0.571 �6.2 Gi None

(�24 ) 0.267 1040 0.048 0.36 0.03 17 300a �0.461 �4.9 JS Noted

6
 1.363 1060 0.047 0.93 0.01 18 300a �0.571 �32 Gi 50 0.11

1.363 1040 0.048 0.36 0.03 17 300a �0.461 �25 JS 0.12

PBD 3.9
 104 1
 30 0.267 5150 7.2 0.87 0.0001 0.1 50 �0.717 �33 Gi 2.5 0.05

5150 7.2 0.90 0.0001 0.1 71 �0.709 �32 Gi 2.5 0.05

5150 7.2 0.93 0.0001 0.1 103 �0.697 �32 Gi 2.5 0.05

0.267 5170 7.1 0.68 0.001 0.08 60 �0.515 �24 JS 2.5 0.05

6
 1.363 5150 7.2 0.87 0.0001 0.1 50 �0.717�167 Gi 0.25 0.00

5150 7.2 0.90 0.0001 0.1 71 �0.709�166 Gi 0.25 0.00

5150 7.2 0.93 0.0001 0.1 103 �0.697�163 Gi 0.25 0.00

1.363 5170 7.1 0.68 0.001 0.08 60 �0.515�121 JS 0.25 0.00

aFor the SRM solutions, the shear rate _c2 of the high shear rate band was estimated based on the parametrization

of the shear thinning behavior of the low shear rate branch and the stress plateau. The parameter A is very insen-

sitive to the precise value of _c2: values of _c2 from 200 to 600 s�1 change A by less than 10%.
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film-suppressed experiments). Schweizer (2007) also found that surface deformation

accompanied the banding, or EDT, in similar materials. More recently, Ravindranath and

Wang (2008) and Li and Wang (2010) have verified that the shear banding (or EDT) tran-

sition can persist even when the surface effects are suppressed.

To address these issues, we have estimated the distortion parameter for the experi-

ments of Sui and McKenna (2007) on PBD solutions, and on solutions of polyisobutylene

in pristane (SRM 2490) (Table IV). The distortion parameter for PBD is quite large and

negative, between A¼�120 and A¼�20 for these experiments, such that instability

should be present early into the stress plateau (see Fig. 13) for all contact angles. This is

consistent with the experimental results noted above: shear banding can be observed if

the meniscus is sealed, and an instability occurs otherwise.

On the other hand, we estimate the lower viscosity material SRM 2490 to have a

much smaller A. These values are consistent with the data of Sui and McKenna (2007),

who noted explicitly that reducing the rim gap delays the onset of instability and expul-

sion as does reducing the modulus (G); both of these changes reduce jAj. They reported

controlled strain rate data for the larger 6
 cone angle (and wider gap), for which we esti-

mate A ’ �30, which is well within the regime where one expects fracture. They

observed noticeable meniscus distortion at _c ’ 20 s�1, and fluid expulsion at _c ’ 50 s�1;

see Fig. 12. This suggests only a very small window of stability on the stress plateau,

which is consistent with our calculations. For the smaller 1
 cone angle they performed

only controlled stress experiments and did not observe mass loss at the accessible strain

rates (� 95 s�1). We estimate values of A ’ �4:9 (JS) or A¼�6.2 (Giesekus), which is

just beyond the limits where we predict meniscus integrity across the shear plateau.

Hence, their controlled stress experiments can access a large part of the stress plateau;

moreover, we expect that a fracture would occur before the end of the plateau is reached,

based on earlier work on the same fluid by Schultheisz and Leigh (2002). In their discus-

sion they noted:

“The conditions at the edge of the cone and plate (gap 0.49 mm) can impact the meas-

urements in several ways, but these effects are not easily quantifiable. Perhaps, the most

significant difficulty is that the fluid can escape from the cone and plate. One indicator of

loss of fluid would be a decrease in the moment with increasing shear rate. This decrease

was only observed in three experiments at 0 
C in the step from a shear rate of 63 s�1 to

a shear rate of 100 s�1. Those three measurements were discarded. The only other evi-

dence of edge effects occurs at the three highest shear rates at all three temperatures (0,

25, and 50 
C), where there is an increase in the relative scatter of the viscosity data. For

this reason, data at the three highest shear rates (40, 63, and 100 s�1) are provided as

FIG. 12. Data and flow curves for the experiments of Sui and McKenna (2007) on SRM 2400, using a 6
 cone

angle. n indicates rate-controlled and � stress-controlled rheometry. Fits are to the (a) Giesekus and (b) JS

models.
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reference data only, since the sample geometry might not match our assumptions, and the

uncertainty in the data cannot be completely quantified.” —[Schultheisz and Leigh

(2002), p. 22]

We estimate the stress plateau to end at _c � 300 s�1. The measurements of Schultheisz

and Leigh (2002), with a cone and plate gap of 0.49 mm, thus show that meniscus distor-

tion has started by 40 s�1. Even allowing for the narrower gap of Sui and McKenna

(2007) 1
 cone and plate, we would expect their fluid to fracture before achieving a shear

rate of 300 s�1.

V. CONCLUSION

A. Discussion

Our meniscus distortion calculation leads to a result that is similar to that of Keentok

and Xue (1999), which was not devised for shear banding fluids. They considered a more

detailed calculation that incorporated not only the flow field due to a small perturbation,

but also led to a stability condition that balanced the normal stresses with the surface ten-

sion. By contrast, we have effectively assumed that the radius of curvature is large

enough, compared to the gap size, so that one can focus entirely on the integrity of the

free surface. Hence, we expect our condition for fracture of the meniscus to be preempted

by secondary flows as the radius of curvature decreases.

It would be difficult to experimentally probe the dependence on contact angle, because

entirely different sample cells or surface preparations would be needed. However, for

highly viscous materials, the contact angles can be set by the loading protocol [Schweizer

and Stockli (2008); Schweizer (2007)], and the experiments performed much more

quickly than the true equilibrium contact angle can be reached. Hence, one could system-

atically vary the contact angle to qualitatively test our predictions (e.g., Fig. 7). Other

more obvious experimental tests would be to change the gap size and directly observe the

deformation of the meniscus as shear banding proceeds.

Although our calculation was performed with shear banding fluids in mind, our predic-

tions could be tested on simpler fluids. For example, two immiscible fluids with different

second normal stress behaviors could be prepared as disks of different thicknesses below

Tg, loaded into a cone and plate rheometer, and then brought into the melt state before

shearing and observing the meniscus.

FIG. 13. Data and flow curves for the experiments of Sui and McKenna (2007) on PBD under controlled strain

rate conditions, fitted to either the Giesekus (a) or JS (b) model. The Giesekus fits show several different fits, to

illustrate the difficulty of precise characterization of the constitutive models. Table IV shows that the distortion

parameter A is only very weakly sensitive to these different fits. Here, ~ indicates 1
 gap and � indicates 6
.
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B. Summary

Motivated by edge-fracturelike instabilities that occur during shear banding, we have

calculated the distortion of the free meniscus in the gradient shear banding configuration.

The second normal stress difference between two shear bands determines the radii of cur-

vature of each band, and the conditions of continuity and smoothness of the interface

lead to integrity conditions for the interface. The integrity limit is defined to occur when

the meniscus is entirely vertical and thus on the point of overhanging itself; this is prob-

ably a conservative estimate of meniscus integrity, since we have not explicitly calculate

the detailed velocity field in the region of the surface. It must be stressed that we have

presented a simplified calculation ignoring the complicated flow field and shear condi-

tions near the surface. The necessary calculation has been outlined in Appendix A.

We have calculated integrity diagrams as a function of contact angle and the average

applied shear rate, for given values of the distortion parameter A¼WDN2=cs. Since the sam-

ple will climb up one wall to maintain integrity, expulsion would usually be expected to

occur before our theoretical integrity limit has been reached. The integrity diagrams depend

only on the values of A and the contact angles, regardless of the constitutive behavior.

By comparison with parameters extracted from experiments, we find that wormlike mi-

cellar solutions are often expected to have stable shear bands, although they can sometimes

be unstable; this is consistent with the experimental record. Berret et al. (1997) found that

micellar solutions became more unstable when the shear bands were more different from

each other (i.e., farther from the nonequilibrium critical point in concentration-temperature

space), and at lower temperatures where the modulus, and hence N2 and thus A, are higher.

Entangled polymer solutions, on the other hand, are predicted to easily become unsta-

ble due to their much higher normal stresses. This is consistent with the recent body of

experiments that show shear banding in entangled polymers: unless the surfaces are pro-

tected or the meniscus shielded, the meniscus develops an instability [Inn et al. (2005);

Sui and McKenna (2007)].

We also considered the meniscus integrity of three bands, as was seen by Britton and

Callaghan (1999) in a cone and plate rheometer. fA cone and plate is a good candidate

for three bands because of its very weak stress gradient due to curvature [Adams et al.
(2008)].g To resolve whether or not the three bands can be symmetrically arranged, we

calculated the surface energy (proportional to the surface tension). The stability of this

energy leads to a rich variety of possible configurations: the high shear rate band can be

stable in the center, off-center, or the three-band state is unstable.

Since the second normal stress difference is difficult to measure, we used the JS and

Giesekus models to evaluate it for the experimental examples of micellar solutions (low

shear modulus) and polymer solutions (high shear modulus). We have not used more

molecularly motivated models; the Graham-Likhtman and Milner-McLeish (GLAMM)

model is too complex to solve under shear banding conditions [Graham et al. (2003);

Milner et al. (2001)], while the Rolie–Poly model has zero second normal stress (Likht-

man and Graham (2003)].

Our model may, thus, explain some recently reported phenomena: for example, reduc-

ing the rim gap delays the onset of meniscus instability [Sui and McKenna (2007)]; a

larger modulus G apparently increases the possibility of instability (when comparing

wormlike micelles to entangled polymer solutions); and there are variations in how far

the applied shear rate progresses along the stress plateau [Berret et al. (1997)]. Finally,

our results allow one to rationalize the experiments on entangled polymer solutions that

show a contentious mixture of shear banding and edge fracture: because of the relatively

large second normal stresses of typical entangled polymer solutions, we naturally expect
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edge fracture to be associated with shear banding, which obviously complicates such

measurements (as is apparent in the literature).
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APPENDIX A: FREE SURFACE

Here, we outline the conditions necessary for a complete calculation of the free sur-

face problem, which would determine the base state, including secondary flows, from

which a true instability could be calculated. We consider steady creeping flow for which

r � T ¼ 0. Further, for planar Couette flow uniform in the x̂ direction, stress gradients in

x̂ are zero. The free surface is subject to the boundary condition

T � n̂� ð�pan̂Þ ¼ ðcsr � n̂Þn̂�rscs ; (A1)

where

n̂ ¼ ẑ� h0ŷffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02
p ; (A2)

and

r � n̂ ¼ �h00ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02
p� �3

; (A3)

is the curvature and h : h(y). We take the surface tension to be uniform so rscs ¼ 0.

Eqs. (A1)–(A3) give

x̂ : � h0Txy þ Txz ¼ 0; (A4)

ŷ : � h0Tyy þ Tyz � h0pa ¼ �h0ðcsr � n̂Þ; (A5)

ẑ : � h0Tzy þ Tzz þ pa ¼ csr � n̂: (A6)

These three conditions determine the relation between the local curvature of the meniscus

h0(y) and the stress components of the fluid evaluated at the meniscus. As h0 ! 0, the free

surface becomes flat and we recover simple shear conditions. However, generally h0 can

range from �1 to þ1 as the shape of the meniscus changes, and this describes the limi-

tation of our calculation.

The remaining conditions are no flux through the free surface, v � n̂ ¼ 0; a stationary

plate vðx; 0; zÞ ¼ ð0; 0; 0Þ; and a moving plate vðx;W; zÞ ¼ ðV; 0; 0Þ. Far from the menis-

cus we require vðz! �1Þ ¼ ðvxðyÞ; 0; 0Þ, and the flow must reduce to simple shear

flow given by uniform Tyy and Txy, with Txz¼Tzx¼Tyz¼Tzy¼ 0. From incompressibility

r � v ¼ 0, and the total stress is given by T¼�pIþ 2gDþR, where

D � 1=2½rvþ ðrvÞT � and R depends on the particular model.

It is a challenging problem to find the flow and normal stresses at the free surface,

while also finding the shape of the free surface, which is generally not circular. For exam-

ple, Tanner and Keentok (1983) assumed an initial semicylindrical crack in their
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calculation of edge fracture, while Lodge (1964) showed that a spherical surface leads to

a solution consistent with mechanical balance. Neither calculation will apply for a shear

banded state where there must, by necessity, be different curvatures in the two bands due

to different normal stresses. Additionally, there is the complication of two (or more)

bands with different shear rates in the bulk.

APPENDIX B: CONSTITUTIVE EQUATIONS

In this Appendix, we present the homogeneous steady states of the two constitutive

models; we have used to fit the data in Sec. IV. We fit the total shear stress

Txy ¼ Rxy þ g _c to the measured flow curves of shear stress as a function of shear rate.

Note that the flow curves include the stress plateau, while the constitutive curves are non-

monotonic. We fix the position of the stress plateau based on the experiments, rather than

fitting to a nonlocal model [Lu et al. (2000)]. This allows us to extract the second normal

stress difference in the two shear bands, as the values N2ð _c1Þ and N2ð _c2Þ are determined

by the shear rates c1 and _c2 in the coexisting shear bands, given by the intersection of the

stress plateau with the two stable branches of the constitutive curve.

1. Johnson–Segalman model

In the diffusive JS model, the viscoelastic stress R is assumed to obey [Johnson and

Segalman (1977); Olmsted et al. (2000)]

ð@t þ v � rÞRþ ðXR� RXÞ � aðDRþ RDÞ þ 1

s
R ¼ 2

l
s

DþDr2R; (B1)

where s is the linear relaxation time and a, which satisfies �1< a< 1, parametrizes slip

of the polymer relative to the local flow field. The JS fluid has a Newtonian viscosity g
due to the solvent and a polymer viscosity l, which is related to the characteristic elastic

modulus G by l¼Gs. We define the viscosity ratio

e ¼ g
l
: (B2)

Banding occurs for 0< a< 1 and 0 < e < 1=8.

Variables are made nondimensional according

R̂ ¼ R
G
; _̂c � s _c; (B3)

in terms of which the total stress, Eq. (2), is expressed as bT ¼ �p̂Iþ 2ebDþ bR. We will

use the same scaling for the Giesekus model. For planar Couette flow, the steady state so-

lution to the homogeneous JS equation is [Larson (1988); Bird et al. (1987)]

R̂xy ¼
_̂c

1þð1�a2Þ _̂c2
; R̂zz¼0; (B4a)

R̂yy ¼
ð�1þ aÞ _̂c2

1þ ð1� a2Þ _̂c2
; (B4b)

in terms of which the second normal stress difference is given by N̂2 ¼ R̂yy.
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2. Giesekus model

In the diffusive Giesekus model, the viscoelastic stress R is assumed to obey [Giesekus

(1982); Helgeson et al. (2009)]

ð@t þ v � rÞRþ ðXR� RXÞ � ðDRþ RDÞ þ 1

s
R ¼ 2

l
s

D� a

l
R2 þDr2R: (B5)

Here, the nonmonotonic behavior comes not from slip, but from a nonlinear relaxation

term parametrized by a. The analytical solutions for planar Couette flow are given by

Bird et al. (1987) and Giesekus (1982),

N̂2 ¼
1� K

1þ ð1� 2aÞK ; R̂xy ¼
ð1� N̂2Þ2 _̂c

1þ ð1� 2aÞN̂2

; (B6a)

where

K2 ¼ 1

8að1� aÞ _̂c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16að1� aÞ _̂c2

q
� 1

� 	
: (B6b)

A nonmonotonic constitutive relation, and hence shear banding, is possible for a > 1=2

and e< (2a� 1)2=(2a).

APPENDIX C: THREE-BAND CONFIGURATION

1. Meniscus profiles

In this Appendix, we compute the configurations for three bands, with a high shear

band sandwiched between two low shear rate bands. Motivated by Britton and Calla-

ghan’s experiments, we assume a central high shear rate band of width w2 and peripheral

low shear rate bands w1 and w3, where w1þw2þw3¼W. An equivalent construction

applies to a central low shear rate band.

The height of the surface h(y) is given in the three regions by [Fig. 14(a)]

h1ðyÞ ¼ R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y

R1

þ cos /1

� �2
s

� sin /1

24 35; (C1)

h2ðyÞ ¼ R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y� w1

R2

þ w1

R1

þ cos /1

� �2
s

þ ðR1 � R2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w1

R1

þ cos /1

� �2
s

� R1 sin /1; (C2)

h3ðyÞ ¼ R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y�W

R1

� cos /2

� �2
s

� sin /2

24 35þ H: (C3)

Continuity of h at y¼w1 and y¼w1þw2 requires the difference in height H across the

gap to be given by
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H ¼ ðR1 � R2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w1

R1

þ cos /1

� �2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w1

R1

þ w2

R2

þ cos /1

� �2
s24 35

þ R1 sin /2 � sin /1ð Þ; (C4)

and continuity of h0 at y¼w1 and y¼w1þw2 requires

w1

R1

þ w2

R2

þ w3

R3

¼ � cos /1 � cos /2: (C5)

The normal stress balance conditions Eq. (6) require R3¼R1. The width of the high shear

rate band is given by ŵ2 ¼ ð _capp � _c1Þ=ð _c2 � _c1Þ, while w1 and w3 can, in principle, take

any values as long as they satisfy ŵ1 þ ŵ3 ¼ 1� ŵ2. Equations (6) and (C5) lead to

R̂1 ¼
1

� cos /1 � cos /2 � ŵ2A
and R̂2 ¼

1

� cos /1 � cos /2 þ ðŵ1 þ ŵ3ÞA
: (C6)

2. Meniscus integrity

The conditions for integrity of the surface, h0(w1)<1 and h0(w1þw2)<1, lead to

[from Eq. (C6)]

1� ŵ1ð Þ cos /1 � ŵ1 cos /2 � ŵ1ŵ2Aj j < 1; (C7a)

1� ŵ1 þ ŵ2ð Þ½ � cos /1 � ðŵ1 þ ŵ2Þ cos /2 þ ŵ2 1� ŵ1 þ ŵ2ð Þ½ �Aj j < 1: (C7b)

These conditions apply at both interfaces of the central high shear rate band, and must be

satisfied simultaneously for the meniscus to maintain integrity. The contact angles /1,

/2, and the distortion parameter A are properties of the fluid, while the width of the high

shear rate band w2 is determined by the applied shear rate.

FIG. 14. (a) Profile of the meniscus for the three-band configuration for ŵ2 ¼ 0:45 and ŵ1 ¼ 0:4, with contact

angles /1¼ 140
 and /2¼ 130
, in which the outer bands have one shear rate _c1, and the inner band has a dif-

ferent shear rate. Normal stress balance ensures that the two outer bands have equal radii of curvature. The

width w2 of the inner band is given by ŵ2 ¼ ð _capp � _c1Þ=ð _c2 � _c1Þ. (b) Energy as a function of ŵ1 showing the

separate contributions from surface tension (surface) and pressure (volume). The stable configuration occurs for

ŵ1 � 0:52.
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Although a symmetric solution w1¼w3 is appealing, we will consider the more gen-

eral case where the two low shear rate bands need not be the same size. We will see that

a simple stability analysis can lead to symmetry breaking to a nonsymmetric band config-

uration. As has already been mentioned, stability should strictly be determined by dy-

namical considerations. However, since we are only treating the mechanics of the

meniscus, we will study the three-band configuration by constructing an energy function,

which roughly corresponds to the work needed to establish an interface, and whose gradi-

ent specifies a generalized force that should vanish for mechanical stability.

The mechanical energy of the surface, per unit length in the flow direction, is given by

Eðw1;w2;A;/1;/2Þ ¼ cs

ðW

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02

p
dy � Dp

ðW

0

h dy ; (C8)

which comprises the surface tension and the work done in deforming against the pressure dif-

ferences across the interface. We take E ¼ 0 at the onset of banding. For a given width of the

high shear rate band w2, we determine the position of the band by minimizing E with respect

to w1 [see Fig. 14(b)]. We will only consider the equal contact angle case, /1 ¼/ 2 ¼/. Sta-

ble configurations are defined as those for which the energy function E is a local minimum

with respect to changing the sizes w1 and w3 of the two outer shear bands at fixed w2.

3. Different three-band configurations

Three configurations of the three-band model minimize the energy, as demonstrated in

Fig. 15.

(i) central high shear rate band (w1¼w3);

(ii) off-center high shear rate band (w1=w3);

(iii) collapsed low shear rate band (w1¼ 0, or w3¼ 0), corresponding to two shear bands.

We can show that, for equal angles, there will be an extremum at w1 ¼ 1=2ð1� w2Þ.
The high shear rate band remains central so long as @2E

�
@w2

1

� �
j1

2
ð1�w2Þ � 0. Equality

defines w�2, so that the condition for stability is w2 < w�2 where w�2 satisfies

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w�2

2R2

� �2
s � 1þ A

2 cos /
w�2
W

R1

R2

� 	
þ R1

R2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w�2

2R2

� �2
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos /;

w�2
W

� �2
s ¼ 0; (C9)

together with the integrity conditions of Eq. (C7). Further, for given distortion parameter

A and high shear rate band width w2, a three-band configuration may satisfy the integrity

conditions of Eq. (C7). At a slightly greater value of w2 (or applied shear rate) the three-

band configuration becomes unstable and the fluid collapses into two-band states, with in-

tegrity governed by Eq. (13).

Figure 15 shows the energy curves and some meniscus shapes for the distortion parameter

A¼�3.5 and equal contact angles /¼ 130
, as a function of increasing the width of the cen-

tral high shear rate band ŵ2. For narrow ŵ2 the total energy has a minimum at

ŵ1=ð1� ŵ2Þ ¼ 0:5 and the low shear material splits into two equal size bands surrounding

the high shear rate band. Upon increasing ŵ2 the symmetric three-band configuration

becomes unstable to an asymmetric configuration (for ŵ2 > 0:343), and finally unstable to a

two-band configuration when the energy minima lie at either ŵ1 ¼ 0 or ŵ1 ¼ 1� ŵ2.
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Figure 16 shows all loci of states whose meniscus integrity we can estimate using this

method for A¼�3.5. This figure shows the regions, in Fig. 6, in which two bands frac-

ture at different ends of the stress plateau depending on whether the contact angle is

closer to wetting or nonwetting angles. In addition, there are accompanying regions in

which the inner of three bands is either symmetric or nonsymmetric. In this particular

example, the larger contact angles (/> 90
) correspond to a central high shear rate band,

while the smaller contact angles (/< 90
) correspond to a central low shear rate band.

There are four distinct classes of regions for which the meniscus retains integrity: (1) two

bands; (2) three bands with a central symmetric band; (3) either three symmetric bands or

two bands; or (4) either three asymmetrically distributed bands or two bands. In the last

two cases where two-band configurations allow meniscus integrity we expect factors

such as flow history, flow geometry (e.g., cylindrical Couette vs cone and plate), and

boundary conditions to determine the selected configuration.

Britton and Callaghan (1999) found the central high shear rate band to be stable and to

increase in width as the applied shear rate increased (Fig. 17). At _c ¼ 7 s�1 the high shear

rate band is stable in a central position consistent with Fig. 15(b), while at _c ¼ 10:7 s�1

the high shear rate band is no longer central but in an off-center stable position consistent

with Fig. 15(c). This would be consistent with the state diagram in Fig. 16, for /& 120
.

4. Summary

In summary, we find the following results for three bands:

1. Three bands are stable in a subspace of the parameter space, for a range of contact

angles. This stability region starts with an infinitesimally small central band, and

FIG. 15. Total energy curves (a) and meniscus shapes (b,c,d) for distortion parameter A¼�3.5 and contact

angle /¼ 130
. For widths ŵ2 < 0:343 the high shear rate band (dark gray) is central and stable (b). For

ŵ2 > 0:343 the high shear rate band is no longer stable at the central position but stabilizes, such that there is a

wide low shear rate band and a narrow low shear rate band close to the plate (c,d). For ŵ2 > 0:579 the fluid col-

lapses into the two-band configuration. The meniscus profiles are shown for ŵ2 ¼ 0:2; 0:4; 0:5, and the complete

set of states for all contact angles is shown in Fig. 16.
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continues until the central band becomes too large, after which only a conventional

two-band state is possible.

2. The stable central band is the high (low) shear rate branch when the contact angle is

closer to 180
 (0
).
3. The central of the three bands is symmetric for smaller central bands, but is destabi-

lized toward an off-center configuration for wider central bands, for a range of contact

angles.

4. In some regions of the phase space two-band and three-band states are simultaneously

stable; in other regions, the two-band state is unstable, in principle toward three-band

states. This may explain some of the experiments of Britton and Callaghan (1997), in

which three-band states are found.

5. We are not able to assess the relative stability of two or three-band state, and we spec-

ulate that this is determined by factors such as initial conditions, boundary conditions,

and the degree of curvature in the flow. For example, the highly curved flow of a wide

gap Couette rheometer may have a strong preference for the two-band state, as it also

leads to a preference for inducing the high shear rate phase next to the inner cylinder

where the shear stress is highest [Radulescu and Olmsted (2000); Adams et al.
(2008)].

FIG. 16. Integrity diagram for A¼�3.5, show regions in which two or three bands allow meniscus integrity as

a function of contact angle and the fraction of material ŵ2 in the middle band. For /> 90
 (/< 90
) the central

band adopts the high (low) shear rate.

FIG. 17. NMR images of a wormlike micellar solution undergoing shear banding in a cone-and-plate rheometer

[image from Fig. 10 of Britton and Callaghan (1999). VC Società Italiana de Fisica Springer-Verlag (1999) reprinted

with kind permission of The European Physical Journal (EPJ)]. At an applied shear rate of _c ¼ 7 s�1 the high shear

rate band, appearing as white=black, is stable and central. This would correspond to Fig. 15(b). At the higher

applied shear rate _c ¼ 10:7 s�1, the high shear rate band is stable but no longer central but positioned close to the

moving cone. This corresponds to Fig. 15(c). At even higher shear rates the material was expelled from the cell.
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