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Abstract

Identification of nonline r systems which can be represented by
combinations of linear dynamic and static nonlinear elements are
considered. Previéus results by the authors based on correlation
analysis are combined to provide a unified treatment for this class
of systems. It is shown that systems composed of cascade, feedforward,
feedback and muléiplicative connections of linear dynamic and zero
memory nonlinear elements can be identified in terms of the individual
component subsystems from measurements of the system input and output

only.

b INTRODUCTION

Various authors have studied the class of systems which can be
represented by interconnections of linear dynamic and zero-memory
nonlinear subsystems. A transform representation and rules for algebraic
manipulation were developed by George (1959). The analysis and
synthesis of cascade systems has been studied by Smets (1960) and
Shanmugam and Lal (1976,, and a structure theory was developed by Smith
and Rugh (1974). Zames (1963) and Narayanan (1970) studied nonlinear

feedback systems and numerous authors (Narendra and Gallman (1966) ;



Economakos (1971): Goldberg and Durling (1971); Gardner (1973);
Korenberg (1973a,b); Webb (1974); Cooper and Falkner (1975);

Haber and Keviczky (1976); Douce (1976); Sandor & Williamson (1978);
De Boer (1979)), have considered the identification of systems within
this class. A review of these algorithms and alternative approaches
to nonlinear systems identification are contained in a recent survey
paper (Billings 1980).

In the present study previous results (Billings and Fakhouri,
1978a,b) derived for the general model defined as a linear system in
cascade with a static nonlinear element followed by another linear
system are briefly reviewed. By considering the separable class of
random processes it is shown that computation of the first and second
order cross-correlation functions when the input is white Gaussian
effectively decouples the identification of this class of non-linear
systems into two distinct steps; identification of the linear sub-
systems and characterisation of the non-linear element. The
relationship between the first and second order correlation functions
also provides valuable information regarding the system structure;
notably the position of the nonlinear element with respect to the
linear systems. Although the algorithms cannot be directly applied
for pseudorandom inputs an alternative procedure (Billings and
Fakhouri, 1980 ) based on compound pseudorandom excitation is presented
and the selection of inputs is discussed.

The results are extended to include the identification of the
component subsystems in nonlinear feedback systems (Billings and
Fakhouri, 1979a), feedforward systems (Billings and Fakhouri, 1979b),
systems containing multiplicative connections of linear dynamic elements

(Billings and Fakhouri, 1979d) and other common system structures



(Billings and Fakhouri, 1979c). In all these cases the identification
procedure provides estimates of the individual elements of the system
such that the components can be synthesised in a manner which preserves

the system structure and provides valuable information for control.

2. THE OPEN-LOOP GENERAL MODEL

The general model illustrated in Fig.l consists of a linear system
hl(t) in cascade with a zero memory nonlinear element F[;] followed by
a second linear system h2(t). For generality it is assumed that the
measured output contains an unknown additive noise component v(t) and
that the nonlinear element can, in theory, be represented by a poly-

k ;

nomial y(t) = Z Yixl(t). The identification problem can now be
defined as ide;;ification of the individual components hl(t), h2(t)

and a suitable representation of the static nonlinear element F[{] from

measurements of the input u(t) and noise corrupted output z2{t).

2.1 BSeparable Process Inputs

The identification algorithm for the general model is based on the
theory of separable processes which is briefly reviewed below
(Nuttall 1958, Billings and Fakhouri 1978b).

Let p(a,B;T) be the joint probability density function for the

stationary processes o(t) and Rf(t) and define

<o

g(B,t) = f ap(a,B; 1) do (1)

- 00

If the g-function in egn (1) separates as

g(B,T) = gl(B)gz(T) M B,t (2)

then o(t) is said to be separable with respect to B(t). The separable

class of random processes is fairly wide and includes the Gaussian



process, sinewave process, phase or frequency modulated process,
squared Gaussian process etc.

Previous research has shown that separability is not in general
preserved under either linear or double non-linear transformation.
However both properties hold for the special case where wa(t) is
Gaussian and separable with respect to B(t).

The importance of separable processes in the identification of
nonlinear systems becomes apparent when analysing the system
illustrated in Fig.2 where F[-] is the transfer characteristic of
an instantaneocus nonlinear element. It can readily be proved that

the separability of xl(t) with respect to x,(t) is a necessary and

2

sufficient condition for the invariance property

® ¥ (1) = C_¢ (t) ¥ F and 1 (3)

1%, ol =

to hold where CF is a constant. When Xl(t) = xz(t) = x(t) which is

separable, egn (3) relates the input/output cross-correlation function

to the input autocorrelation function

¢Xiy2(T) - ch¢Xx(r) ¥ Foand 1 (4)
where
c o=t fo[}jp(x)dx (5)
F = 5. (0)
% XX

is a constant.

Provided x2(t) is separable with respect to xl(t) = x2(t) = x(t)
this result can be extended to include the case when the top lead in
Fig.2 contains a square law device,

by bl =t o, 5l ¥ F and T (6)
X X X

1 Yo



= B o«
where
e 2 ¢
Cep = % ) f xF[x]p (%) ax (7)
X 2 2
X X
is a constant. Other important properties of separable processes

and a rigorous derivation of the above results are discussed in a
previous publication (Billings and Fakhouri 1978b).

The results of egn's (4) and (6) indicate the relationships
between correlation functions taken across a nonlinear element for
separable input processes and provide a fiyrm basis for the development
of identification algorithms for block oriented nonlinear systems.

Consider the extension of these results to the cascade nonlinear
system illustrated in Fig.l. It will be assumed throughout that all
random signals are ergodic, so that ensemble averages may be replaced
by time averages over one sample function. All the systems considered
are assumed to be asymptotically stable.

The output of the general model, Fig.l can be expressed as

2, (E) = [[n,(8)Q(t=0,1, suy,h)u, (£-8-T))d6dT, +v (t) (8)

where Q(t_e'Tl’uz’hl) is a function of t,rl,u2 and hl(t) and can be

readily evaluated by considering the Volterra series expansion for

zz(t). The output correlation function can then be defined as

(o} (e} = ffhz(G)Q(t—S,Tl,uZ,hl)uz(t—G-Tl)ul(t—a)dTld9+v(t)ul(t—£)

%%

(9)
If ul(t) is separable with respect to x(t), then from (3) the invariance
property

= Vv a b5

¢u y(G) CFG¢u x(o) F and ¢ (10)
1 1

exists across the nonlinear element where CFG is Booton's equivalent

gain. Expanding egn (10)



jQ(t,Tlfuth )U

1 2(t—Tl)ul(t“U)dT = C b (7. )ua (t—Tl)ul(t—U)dT

1 FG* 1 1" 2 1

(11)

and substituting in eqn (9) yields

¢lez(s) = CFijhz(B)hl(Tl)¢ulu2(e—G—Tl)dedTl+¢ulv(€) (12)

In a similar manner defining the second degree correlation

function

2
¢ , f(e) = ffh2(e}Q(t—6,rl,u2,hl)u2(t—G"Tl)ul (t-g)dedr
Y1 %

L
(13)
and expanding the invariance property egn (6) for double nonlinear

transforms

b 5 (g) = C
u

- 2(0)"% F and ¢ (14)
u, x

1Y 1

and substituting into eqgn (13) gives

¢u1222(e) = CFFGIIIhz(G)hl(Tl)hl(T2}u2(t—9—Tl)U2(t“9—T2)

ulz(t—e) dTldT2d8+¢ 5 (e) (15)
u v

The results of egn's (12) and (15) hold for the general class of
separable inputs providing separability is preserved under linear and
double nonlinear transformation respectively (Billings and Fakhouri
1978b) . Both these properties are preserved when the input is a
Gaussian process.

For the special case when ul(t) = u(t), u2(t) = u(t)+b where

u(t) is a zero mean white Gaussian process and 'b' is a nonzero mean

level eqgn's (12) and (15) reduce to (Billings and Fakhouri, 1978b)
b 1 (€)= CFGIhl(Tl)h2(€—Tl)dTl (16)

2
¢u22'(s) = CFFGth(Tl)hl (e=n, dory (17)

2
+ul (t-eg)v(t)



2 2
c +2Y2bfhl{8)d6+3y3fhl ()d +3y5b ffhl(Tl)hl(rz)dTldT2+...

Fe 1
(18)

B, = 2y2+6y2bfhl(8)de+... (19)

where provided hl(t) is stable bounded-inputs bounded outputs, CFG

and CFF are constants and the superscript ' is used throughout to
indicate a zero mean process. The noise terms ¢uV(E) and ¢ 5 (e) in
egn's (12) and (15) tend to zero when v(t) is zero mean and ?ngependent
of the input. These are the usual conditions assumed in the
identification of linear systems.

Equations (16) and (17) represent a generalisation of Korenberg's
algorithm (Korenberg 1973a,b). Korenberg did not consider separable
processes but derived the first and second degree correlation functions
by considering the time average of each term in a Volterra series
expansion. Additional calculations were necessary (Korenberg 1973a,b)
depending on whether the nonlinearity was even or odd and a Fourier
transform procedure was used to estimate the linear subsystems.

The estimates of egn's (16) and (17) which exist for all
continuous single valued nonlinearities are quite independent of the
nonlinear element F[-] except for the constant scale factors CFG and
CFFG' Correlation analysis thus effectively decouples the identification
problem into two distinct steps; identification of the linear sub-
systems and characterisation of the nonlinear element. Estimates of
the individual linear subsystems ulhl(t), uzhz(t), where ul and u2
are constants, can be obtained directly from the results of eqn's (16)
and (17) using a least squares decomposition technique (Billings and
Fakhouri 1978a). Once the linear subsystems have been identified the

problem is reduced to fitting a polynomial, a series of straight line

segments or any other appropriate function to the static nonlinearity



by minimising the sum of squares. Because the system is identified
in terms of individual linear and nonlinear elements and not as a
Volterra series even systems containing very violent nonlinearities
such as saturation and deadzone can be readily identified (Billings
and Fakhouri 1978c).

The results of egn's (16) and (17) are the estimates of the first
two Volterra kernels for the cascade system in Fig.l. Thus although
the Volterra expansion for this system may contain numerous higher
order terms these all collapse under the theory of separable processes
to the form of egn's (16) and (17) for this model structure. The
problem of isolating the individual Volterra kernels normally
encountered in nonlinear systems identification (Billings, 1980) is
therefore avoided.

The influence of record length, mean level b, power and bandwidth
of the input excitation, the effects of input and output noise, and
errors introduced by the decomposition techniques have been studied
(Fakhouri, Billings and Wormold 1980).

Analysis of higher order cascade connections of linear dynamic
and static nonlinear systems shows that the first and second order
correlation functions do not fit into the pattern of results derived
above. For example, a system consisting of a nonlinear element in
cascade with a linear system h(t) followed by a second nonlinearity
gives rise to first and second order correlation functions which are
power series in h(t). This problem arises because in general
separability does not hold under linear transformation.

A general model consisting of a linear system with pulse transfer

function




in cascade with the nonlinear device

v(t) = x(t) + 12.Ox2(t) & 6.Ox3(t) + 4.Ox4(t)

and a linear system

was simulated by recording the response to a white Gaussian input
N{0.067,0.267} with 10,000 data points. Inspection of the estimated
system parameters illustrated in Table 1 for varying degrees of output

noise clearly demonstrates the effectiveness of the algorithm.

2.2 Pseudo-random Inputs

Although it can readily be shown that a binary pseudorandom sequence
is a separable process, it is not separable under linear and double
nonlinear transformation and hence the results of section 2.1 are not
valid for these inputs. An alternative procedure must therefore be
developed for this class of inputs (Billings and Fakhouri, 1980).

When the input to the general model illustrated in Fig.l is a
compound input u2(t) defined as the sum uz{t) = xl(t)+x2(t) where
xl(t) and x2(t) are pseudorandom sequences the output 22(t) can be

expressed as
k
z, (t) = Z fy f---Jn (). hy (1), (0)

{ ) (x (t-1,-8)+x

1 i 2(t~Tj-8})de}d6}+v(t)

X
= ) W, (t)+v(t) (20)



_lo_

where wi(t) can be interpreted as the output of the isoclated i'th

order Volterra kernel. If the correlation functions are computed
directly with the measured system output egn (20), anomalies associated
with the multi-dimensional autocorrelations of the pseudo-random
sequences (Barker and Pradisthayon 1970; Barker and Obidegwu, 1973;
Billings, 1980), are introduced and the estimates do not reduce to

the form of eqgns (16) and (17). This problem can be overcome by
isolating the first and second order correlation functions of the

outputs of the first and second order Volterra kernels respectively.

2.2.1 Multilevel testing

Consider a series of experiments with multi-level compound inputs
aiu(t) where oy # aiV‘ i # &, then the output correlation function

,(g) can be expressed as
n
by v, olel = Yoo 7d .. (&) , i=1,2,...n (21)

assuming that the input signal x_(t) and noise process v(t) are

1
independent. Providing a, # 0, a 5 agﬁL i # 2 egqn (21) has a unigue
solution for ¢X o Jlei¥er 35 LeBussis Iif xl(t) and x2(t) are
i Wy
independent, ¢ (A\) = O¥ )\, zero mean, x, = %, = O, pseudo-random
xlx2 1 2
sequences with autocorrelation functions
¢XIX.(A) = Biéi(k) , 1i=1,2
A, v,
where 8, () = 1/nt; A =0 (22)

* 0 A#EO
At, is the clock interval and [§,(A)dx = 1.0 then ¢, ,({e) which can
i i X, "Wy

be isolated using the above procedure reduces to

le) = BlYlIhl(s—e)hz(B)dB (23)



= 11 =

Following a similar procedure as above and isolating the second order
correlation function associated with the second Volterra kernel

yields (Billings and Fakhouri 1980)

¢xl,xz.w2.(s) = v, [[[h) (x))h, (1,)h, (6)

2
{ jz (xl(t—Tj—8)+X2(t—Tj—8))de (24)
2 — — — —
- jzl(xl+x2}de}(xl(t—e)—xl)(xz(t—e)wxz)de

When Xl(t) and x,(t) have the properties defined in eqn (22) this

2

reduces to

2
O vl 2.(5) = 28,8,Y,/h, “(e=0)h, (6)d6 (25)

Although multilevel inputs must be employed only ¢X 'y , (e) and
1 TR

¢ 4. ... .(e) and not the individual kernel outputs w, (t) must be
X, "%, W, )

computed, This considerably reduces the computational burden because
for stable linear subsystems the correlation functions will tend to
steady-state after a small number of wvalues.

Providing x. (t) and x2(t) are pseudorandom sequences with

1
properties defined in egn (22) the results of eqns (23) and (25) are
exact and the errors normally associated with the identification of
this class of systems using pseudorandom inputs and correlation analysis
are avoided.

Since the results of egns (23) and (25) are dependent upon xl(t)
and x2(t) having a zero mean value an obvious choice of input would

be a compound ternary sequence. It would however be far more convenient

if pseudorandom binary inputs could be employed in this application.
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However, whilst the first order correlation function egn (23) remains

unbiased for a compound prbs input, the nonzerc mean level of this

input introduces a time varying bias (Billings and Fakhouri, 1980)

e(e) into the estimate of egn (25)

- - - 2 - 2
e(e) = —2Y2{alx182+a2x281+xl 82+x2 Bl)ffhl(rl)hl(Eu@)hz(e)dTlde

(26)

where X, = ai/Ni, a, is the amplitude and Ni the sequence length.

This bias tends to zero as Nl and N2 are increased and will be

negligible in most applications. This assumption is supported by

simulation results (Billings and Fakhouri, 1980).

Uncorrelated binary and ternary pseudorandom sequences with the
same bit interval can be generated by correlating over the product of
sequence lengths (Briggs and Godfrey 1966) .

The results of eqns (23) and (25) are analogous to the results
obtained for a separable white Gaussian input when Yl'YZ # 0 and can
be used directly to identify the individual linear and nonlinear
elements of the system illustrated in Fig.l. The relationship between

the first and second order correlation functions also provides

valuable information regarding the system structure.

2.3 Structure Testing

Consider the identification of an unknown system which has been
excited by a separable white Gaussian input with mean level b.
Initially the experimenter must determine the structural form of the
model which best describes the system under test. This information
can be obtained by inspection of the first and second order correlation
functions, egns (16) and (17), for cascade connections of linear

dynamic and static nonlinear subsystems.
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If the system under test is linear then ¥ ® O 1 # 1 and eqgns
(16) and (17) reduce to

¢, 0 (6) = vy [ Dy (1), (et )dry (27)

¢, (e) = oYe (28)
u z'

Thus if(pz (e) = O¥ e the system must be linear and once a pulse

uz'
transfer function model has been fitted to ¢ ,(e) the identification
uz

is complete. The second order correlation function ¢ 5 (e) is
uz'

therefore a measure of nonlinearity.

If hl(t) = §(t) the general model reduces to the Hammerstein
model (Billings and Fakhouri, 1979b) and
= h
¢uz,(€) CFH 2(8) (29)

) 5 (e) = CFFHh2(E} (30)

u z'

If therefore ¢uz,(€) and ¢ (e) are equal except for a constant of

u z'
proportionality the system must have the structure of a Hammerstein

model.

When hz(t) = §(t) the general model reduces to the Wiener model

(Billings and Fakhouri, 1978a,b) and
= h
¢uz,(s) CFW l{E) (31)
2

¢ 5 (e) = CFFWhl (e) (32)

2
Thus when {¢uz'(€)} is equal to ¢ , (e) except for a constant of
ooz

proportionality the system must have the structure of a Wienexr model.

Finally, if none of the above conditions hold the system may have
the structure of the general model. However, this is a necessary and
not a sufficient condition which must be confirmed by parameterising
the linear systems and nonlinear element and examining the mean squared

error. Alternatively, an algorithm by Douce (1976) provides a very

convenient test for cascade systems in this class.
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Identification of cascade connections of linear dynamic and
static nonlinear systems using correlation analysis thus inherently
provides information regarding the structure of these systems.

The relationship between ¢X - ,(e) and ¢ g tw , (e) for pseudo-

11 1 %2 "
random inputs are analogous to the above results providing these

correlation functions exist.

o 2 NONLINEAR FEEDBACK SYSTEMS

The identification algorithms derived in previous sections can
be applied to nonlinear feedback systems (Billings and Fakhouri, 1979a,
1980) if the form of the Volterra kernels can be related to the
component subsystems of the original process. As in the case of
cascade systems the objective is to identify the individual elements
of the system such that the structure of the process is preserved
and truncation errors normally asscciated with a finite Volterra series

description are avoided.

3.1 Unity Feedback Systems

Consider the unity feedback general model illustrated in Fig.3.
Notice that in general the system cutput will be corrupted by noise
and hence the feedback signal cannot be computed and the problem
cannot be reduced to one of open-loop identification.

Applying the operator calculus developed by Brilliant (1958) and
George (1959) it can readily be shown that the Volterra kernels of

the equivalent open-lcoop system G can be expressed as



o 15 o,
G, = [I+ H*c']'l*y H*C (33)
~1 2 2
G, = [Ty E*C] “*[y,Ho(CT)o((z-6) )] (34)
: -1 [2 n
- * *
G, = [z+yE*C] "4 ) 1y, Ho(C))o (XK, ..k, )] (35)
n=2 1 n
where 51 = 2791' §£ = —§£ for #>2.

A schematic representation of this expansion is illustrated in
Fig.4. Comparison of eqns (33)-(35) and Fig.4 indicates the
definitions of the operators o and * (George 1959).

Although the series is an infinite operator series the structural
form of the first two kernels can be exploited to provide estimates of
C, F[-] and H. Applying the multilevel testing algorithm of section
2.2.1 to isolate ¢uw , (e) for a separable white Gaussian input process

L
u(t) with mean level b, yields from egn's (16) and (33) the estimate

¢uwl.(e) = Je, (n{ult=D#HFult-e)dr = G () (36)

Taking the Z-transform of egn (36), a pulse transfer function model

can be fitted to ¢uw , (e) to yield

1
Ng, (27)  yE(z ez )
29, (e)} = ————= s (37)
.3 Dgl(z ) l+ylH(z yelz )

and estimates of the numerator and denominator can be obtained from

1 -1 Ng, (z l)
v,H{z 7)C(z 7) = =% = (38)
L Dg (z_l)—Ng (z_l)
1 1
-1 -1 Dgl(z 1)
Lty H(z )C(z ) = 7 (39)

Dgl(z_l}—Ngl(z_ )
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The output data z(t) can now be filtered using the estimate of eqn
(39), such that the kernels of the equivalent open loop system)eqn's

(33) to (35), reduce to

@
Il

H*C
L= = (40)

2 2
[v,B o (€T)o((z-6)))]

Y

@
I

Inspection of egn (40) and the schematic diagram in Fig.4 shows
that the filtered output wrz(t) of the second order kernel is related
to the input u(t) by a general model Fig.l where F[-j s Y2(‘}2-
Following the procedure outlined in section 2 the second order
correlation function can then be evaluated by combining the results

of egn's (17), (40) and section 2.2.1 to yield

2

¢ 5 l(s:) = 2y, J'H(B)Tl (e-06)d6 (41)
uw
r2
where T, = g*[;—gl]. Taking the Z-transform of egn (41) a pulse
transfer function can be fitted to ¢ 5 (e) to give
uw '
rd
-1 -
z{¢ , (e)} = 2y, H(z 1)IT(z ) (42)
uw '
2
=L 2 :
where TT(z =) is the Z-transform of Tl ’ The estimates of egn's (38)

and (42) (Billings and Fakhouri 1979a,1980) are analogous to the
results for the cascade system egn's (16) and (17) and can be solved
in a similar manner using a least squares decomposition algorithm to
provide estimates of the pulse transfer functions ulH(z_l), p2C(z_l)
where My and u, are constants. A suitable function can then be fitted

to the nonlinear element by minimising the sum of squared errors using

an algorithm by Peckham (1970).
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Because the unity feedback Wiener and Hammerstein models are
subclasses of the unity feedback general model the identification
procedure is applicable to systems with these structures.

The identification procedure outlined above was used to identify

a general model consisting of a linear system

=k

n, .z
_ g.2
C(z l) - Ll . -

1+d4d z 1—0.882_1

-1

in cascade with a nonlinear element
2 3
v(t) = g(t) + 0.4q (t) + 0.2g7 (t)

and another linear system

-1
-1 Mgy op B (5 3
Hlz ) = ST -1
+ =1,
1 d2,lz 1-0.7=z
in a unity negative feedback loop. The system response was recorded

for eight levels of input aiu(t), i =1,2..8 where u(t) is a white
Gaussian process N{0.4,0.8} and aj = uj_l—0.04, @, = 1.0. The

estimated parameters are summarised in Table 2.

3.2 Precascaded Feedback Systems

The first two Volterra kernels for the precascaded feedback system

illustrated in Fig.5 can be expressed as

-1
= * +X A * *

gl Kl E. {[£ l—l] %_1} P (43)

i

= * = = )\ *
G, = V,*P = {-V; o A, (v,") }*P (44)
Following the procedure of the previous section it can readily be

shown that the first two Volterra kernels can be computed as

o ,(e) = Jv (e-8)P(8)d6 (45)
uwl 1

2
b (e) = 2A2fGl (e-0)v, (6)d6 (46)

_l -
Estimates of plvl{z ) and U2P(z l) can be obtained by decomposing the
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pulse transfer functions Z{ciwuw (e ), z{¢ 9 (e)}, and a suitable
1 uw,’
function can be fitted to the nonlinear element by minimising the
sum of squared errors.
Although all the results for feedback systems have been derived
for separable white Gaussian inputs analogous results can be
obtained for a compound pseudorandom input by computing ¢X . , (e} and

L. L

o ,_ 4. ,(g) (Billings and Fakhouri, 1980). The selection of
¥1 %2 "

pseudorandom inputs and the error analysis for binary sequences is

exactly the same as the open-loop case section 2.2,

4, MULTIPLICATIVE SYSTEMS

Consider the multiplicative system illustrated in Fig.6 and
commonly referred to as the factorable Volterra system where the
factorable kernel of order k can be realised as a system composed of
k linear dynamic subsystems connected in parallel with outputs
multiplied in the time domain. Concepts of reachability and
observability for this class of systems were studied by Harper and
Rugh (1976) who developed an identification scheme based on the
system response to two-tone sinusoidal inputs.

Identification algorithms based on both white Gaussian and
pseudorandom excitation have been developed by the authors (Billings

and Fakhouri, 1979d) but only pseudorandom inputs will be considered

in the present analysis.

4.1 Identification of Factorable Kernels

Although the outputs of the factorable kernels zi{t), i=1,...22
in Fig.6 can be isolated using multilevel testing, section 2.2.1, this
may involve a long experimentation time and can be avoided by

implementing the sequential algorithm outlined below.
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Consider a factorable Volterra system which is composed of

factorable kernels up to order 22%. When the system is excited by
e

the compound input u(t) = E xj(t) the system response can be
j=1

expressed as a Volterra series

28 29
yit) = )] =z ()= J [...[n e Do
521 3 551 1,201
sy
hj,lﬁ(tj){.él Exk(t—ti)dtl...dtj+v(t) (47)

If the individual inputs xj(t), j =1,2..2% are zero mean independent

processes with autocorrelation functions ¢X % (1) = Bjd(T), 3§ = 1,808,

33
then the system output correlation function defined as

9 28
y' (B)x (t-0,) T x, (t-0) = 'Z {ossf 15
i=2 j=1
Joag 29
h, . (£)(1I Z x (t-t.)).x (t-o,) I
z i=1 k=1 = L 4 m=2
L4
x (t-g)dt....dt +v'(t)x_ (t-g) T x. (t-0) (48)
m 1 j 1 jop L

reduces to the output correlation function for the 22'th kernel

28
v'(t)x, (t-o.) I x,(t-0) = ¢ ,(o.,0...0)
1 1 j=p L xl...xigy 1
= ¢ , (g,,0-..0) (49)
Xl"'xggzgg 1
Thus by computing ¢ (o, ,0..0) the correlation function associated
SRR I 1

with the 22'th kernel has been automatically isolated. This result
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holds exactly even for a compound prbs input. Notice that

¢X 5 ,(Gl,d,...c) is a second order correlation function which
1"

does not increase in dimensionality with the order of the kernel
being estimated as in the Lee and Schetzen algorithm (Lee and
Schetzen, 1965).

When the inputs xj(t) have the properties defined above

9 o (Ul;U..U) reduces to
177708728
22 2%
¢ , (6.,0..0) = (R2-1)'( TR )
By ooBpoBee n=1 " i=1
%
h
{hi’gg(ci).§ j,ﬂﬂfc)} (50)
=1
j#L
and the function wgg(dl'g) can be defined as
(0,,0) = ( ) 2
wzz R R ¢xl..x2£z££ By e =I5 = 29
(20-1)'( T B)
n
n=1
Iy 20
s Y'ih Ae) T b, {e)} (51)
i1 1081 ] J-22
j#L

The above results can be realised exactly using independent white
Gaussian inputs xj(t) or independent ternary sequences. If prbs
inputs are employed the errors introduced in the estimates of the
first and second order factorable kernels have the same form as the
errors for the cascade general model section 2.2.1 which tend to zero
as the sequence lenghts become large. This is supported by simulation

results (Billings and Fakhouri, 19794d).
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Once wzl(cl,a) has been computed estimates of the individual

linear subsystems h, (t) can be obtained by decomposing egn (51).

i, 28

If the estimate in egqn (51) is computed by fixing o = Sj, j=1,2..m

(0. ,0) for all . =6 ,68_,.

and in each case evaluating wgz 1 1 185

.6 this
m

yields m2 equations in £2.m unknowns, hj,ﬁﬂ(ai)’ J=1,2..%8,
i=1,2..m
L8 28
Vop (8,08 = izl{hi’gg(ép)jzl By gq (803 (52)
j#L

where g = 1,2..m, p = 1,2..m for each value of g, and

(6 _,8 ) # wgi(aﬁ,dep L g # f.

p'q
Equation (52) can be solved for the 2f.m unknowns by minimising

wZR

the cost function

m % = 5
gthi = § {v,  (6.,6.) =¥ (6.,8,)} (53)
§1 Het L8 4 1 L8 73771
T
h = [hl’zl(ﬁl)...hlrgl(ém),h2’2£(61)..h2'££(6m),...hgﬂ’zg(ﬁm)]

using a modified Marquardt algorithm (Marquardt 1963; Fletcher 1971).

Whilst the linear subsystems hj (6,) can only be evaluated to within

L0801

constant scale factors this does not jeopardize the final identification

results.

Once estimates of hj M(61), j=1,2..28, 1i =1,2..m are

14

available the following matrix equation can be formulated

s f zQuQ; ~ 'Q"Q' Lol b ("
wgg(t'ﬁl) ‘H hi,iﬂ(dl)' .H hi,RR(Sl) hl,ll(t)
i=2 i=1
i#28
= : . . (54)
L8 . 20 5
wgg(t'6m) I hi,RQ(am)' .H hi,iﬂ{ﬁm) Qg,gz(t)
=2 i=1
J L i#84 d



. &
F._ = 6h
or & &
and estimates of the individual linear subsystems hi Ri(t)' i=1,2..28
r
can be evaluated by solving
~ -1
h =8 "F for m = 2%
ik t
# T -1T (253
or ht = (B 0) B Ft for m>24%

for a range of t from zero to the system settling time.
When the linear subsystems associated with the 28'th kernel have

been estimated using the algorithm outlined above the predicted output

~

Zzﬂ(t} can be computed
" " = 2L L
= |.. £ ) ek £ C(t-t.)dat,..dt
Zos 't / fhl,ﬂﬁ( 1 P, B! T .Z ¥, LE-E s, . 8t
j=1 i=1
(56)
and a reduced system output yy' (t) = y'(t)-z! (t) can be defined.

28-1 L9

Continuing the above procedure the (2£8-1) 'th kernel can be
identified by computing the (£4-1)'th system output correlation

function

¢

X (Ul,o..c) = ¢ , (UlrU--G) (57)

- vy -
17 % -1 (02-1) Xy Foe-1%(g8-1)

to provide an estimate of (0, ,0) which can be decomposed using

22-1""1
h (t), i =1,2.8¢1. The linear

the Marquardt algorithm to yield h,
1,88-1

systems associated with the remaining kernels can be identified by
continuing this procedure.

It can readily be shown that providing any noise corrupting the
system output y(t) is independent of the input process this tends to
zero in the analysis and unbiased estimates are obtained.

To illustrate the above algorithm a second order factorable

Volterra system, Fig.6, was simulated using a compound prbs input
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u(t) = xl(t)+x2(t) where x, and x, were defined by the difference

1 2
equations
(I®2D3$2D7)xl = 0
(I$2D1$2D6)x2 =0
respectively, where D is the delay operator and 62 denotes modulo
two addition. These two seguences are uncorrelated when correlation
is performed over N1N2 = (27—1)(26—1) = B0OCl points. The system

included both 1lst and 2nd order kernels and was defined as

"l
3 i 0.2

1-1.52 Y+0.622

3 -1 0.2z
B gl ") = ;] .
: 1-1.82z “46. Tz
3 0.2z %
H, p'# ") = -1 =2
' 121, Slg . T

The system was simulated with m = 3, 61 = 3, 62 =5, 53 = 7 in eqn's
(52) and (54) and convergence of the Marquardt algorithm was achieved
in seventeen iterations. The estimated parameters are summarised in
Table 3. Although a slight bias can be detected in the estimated

parameters due to the error term introduced when using a prbs input

this is quite small and can be considered as negligible.

5. S SYSTEMS
m

The Sm model illustrated in Fig.7 consists of a series of general
models with reduced nonlinear elements connected in parallel with

outputs summated. This class of systems was originally studied by
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Baumgartner and Rugh (1975) and later by Wysocki and Rugh (1976) and
Sandor and Williamson (1978). Identification algorithms based on
steady-state sinusoidal measurements were developed by these authors.
Complete identification of the component subsystems in the Sm
model can be achieved (Billings and Fakhouri 1979c¢) by isolating
the first and second degree correlation functions associated with
each of the m branches. Since each branch has the structure of a
general model the results of egn's (16) and (17) are immediately
applicable when the input is a Gaussian white process with mean b.
Thus using the multilevel testing algorithm of section 2.2.1 the first
and second degree correlation functions for the k'th branch can be

expressed as

Yh _(e-1_)dT

B t 181 =6 k2 e |

uw Fthkl(Tl

(Tl)h 2(8-T ydrt (58)

These estimates are identical, except for the constant scale

factors CF C to the results for the open-loop general model

k' TFFk'
eqn's (16), (17) and estimates of the linear subsystems hki(t},
i=1,2, k=2,...m and the nonlinear coefficient Y; can be obtained

directly using the procedure outlined in previous sections.

6. CONCLUSIONS

A unified approach to the identification of nonlinear systems
which can be represented by interconnections of linear dynamic and
static nonlinear elements has been presented. Although the algorithms
utilize the structural properties of the first two kernels in the
Volterra series expansion characterization in terms of these kernels

is avoided and truncation errors are not incurred. Thus even
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systems with very violent nonlinearities can be identified.

Cascade and multiplicative systems prove to be particularly
tractable and estimates of the individual component subsystems can
be readily obtained from single test experiments. The information
regarding system structure which is inherent in the results for
cascade systems should be particularly valuable. Although multi-
level testing is necessary in the identification of feedback and
Sm systems this is often necessary in nonlinear systems identification
although several authors aveid this problem by considering systems
which are defined by a single kernel. This constraint can be
avoided by using the technique of Lee and Schetzen (1965) but this
involves the computation of multidimensional correlation functions
even for simple systems. Whilst the algorithms presented are based
upon the calculation of first and second degree correlation functions
both these are defined as functions of a single argument and
estimates of the component subsystems can be obtained by using |
simple extensions of established linear techniques.

All the algorithms can be implemented for Gaussian white inputs
but the convenience of pseudorandom sequences suggests that the
compound input method would be more appropriate in many applications.

The algorithms can be readily applied to the identification of
other nonlinear systems within this class including feedforward systems
(Billings and Fakhouri 1979b) and other common system structures.

A complete anal?sis of the estimation errors associated with the
identification of the general model has been compiled (Fakhouri,
Billings and Wormold 1980) and recent results (Fakhouri 1980) have
shown that the algorithms can be implemented using Gaussian non-white

inputs with typically 4000 data input/output pairs.
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Identification of nonlinear systems in terms of the individual
elements preserves the system structure and provides valuable
information for control. This approach overcomes many of the
disadvantages associated with black-box identification and provides
a very concise description of the process.

Further research is required to simplify the selection of
inputs, reduce the data record length, develop simple to implement
structure detection algorithms for feedback and factorable Volterra
systems, and investigate alternative methods of identifying nonlinear

systems (Billings 1980, Billings and Leontaritis 1981).
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Parameters nl,l dl,l 1 Y2 Y3 Yq n2,1 d2,1 MSE
Theoretical 0.6 G, 8 1.0 |12.0 6.0 4.0 11.5 |-0.4 -
values
2?;29‘ 0.6145(-0.785|1.14|12.05| 6.18{4.55/1.49|-0.406|0.0165
i
Estima~ | 8/N 0.684 [-0.716|1.41|10.95| 9.03|8.45|1.441-0.466|0.3507
ted 2.5=L 5
values ]
i 5/N : ] ’
S 0.722 -0.649/1.09|11.41[16.71}7.91/1.39 -0.51 |0.8706

Table 1. Identification results for the general model
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Parameter ny g dl,l ¥ Yo Y3 By i d2,1
Theoretical 0.2 -0.88 1.0 0.4 0.2 0.3 -0.7
value
Estimated 0.1963 | -0.8845 | 1.0145 | 0.4065 | 0.2038 | 0.303 | -0.69
value

Table 2. Identification results for the unity feedback
general model
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Parameters nl n2 dl d2
Theoretical values 0.2 0.0 -1.5 0.62
5 1(2_1)
¢ Estimates 0.197 0.004 | -1.499 | 0.620
-1 Theoretical wvalues 0.2 0.0 -1.62 0.7
H
1,2(2 )
Estimates 0.201 |-0.003 | -1.618 ! 0.699
1 Theoretical wvalues 0.2 0.0 -1.56 0.7
H
2,227
Estimates 0.198 0.004 | -1.558 | 0.701
! i
Table 3. Identification results for the factorable

Volterra system
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