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Multi-slit interferometry and commuting functions of position and momentum

Johannes CG Biniok∗ and Paul Busch†

University of York, York YO10 5DD, UK
(Dated: June 18, 2013)

In a recent, modified double-pinhole diffraction experiment the existence of an interference pattern
was established indirectly along with a near-perfect imaging of the double pinhole. Our theoretical
analysis shows that the experiment constitutes a preparation of a quantum state that is, to a
good approximation, a joint eigenstate of commuting functions of position and momentum. Gaining
information about the momentum distribution by means of the particular experimental setup is thus
possible with negligible impact on the position distribution. Furthermore, we construct explicitly a
class of states simultaneously localised on periodic sets in position and momentum space, which are
therefore eigenstates of the observables being measured jointly (to a good approximation) in multi-
slit interferometry. Finally, we show that with an appropriate change of settings the experiment
demonstrates the mutual disturbance of position and momentum measurements.

I. INTRODUCTION

Still at the heart of quantum mechanics, the double-slit
experiment remains the subject of ongoing investigation
with surprising results that attract wide attention. For
example, a recent interference experiment [1] exhibited
“average trajectories” via weak measurements. Here, we
revisit another experiment, reported in 2007 [2], which
investigates the influence of a wire grating placed at the
nodes of the interference pattern on the image of the
double-pinhole. While the authors’ own theoretical ac-
count seems untenable and has been criticised, the exper-
iment itself remains interesting. As we argue here, in this
experiment a quantum state is prepared that is approx-
imately a joint eigenstate of position and momentum on
periodic sets, and verified with negligible disturbance.
Multi-slit interference experiments, such as Young’s

double-slit experiment, consist of a coherent source, an
aperture mask and a detection screen (placed in the far-
field). Within the framework of quantum mechanics,
such an experiment is viewed as follows: While the aper-
ture mask prepares a particle in a quantum state with
a certain position distribution, the observed interference
pattern is a measurement of the associated momentum
distribution.
Traditionally, the momentum distribution is captured

on a detection screen, but this clearly destroys the quan-
tum state. Establishing the existence of an interference
pattern indirectly, i.e. without destroying the quantum
state, is possible by removing the screen and replacing it
by a wire grating, each wire carefully placed at the loca-
tion of a node in the interference pattern [2]. The exis-
tence of an interference pattern may be deduced from the
practically undiminished intensity passing the wire grat-
ing. Using a lens, a geometric image of the aperture is
produced, which allows detection of the quantum particle
on the very set of positions it was prepared on – after it

∗ jcgb500@york.ac.uk
† paul.busch@york.ac.uk

was subjected to a momentum measurement. While indi-
rectly observing an interference pattern without chang-
ing the localisation properties of a system may not be
surprising from the point of view of classical physics, it
is rather curious when considered in terms of quantum
mechanics: Information about a quantum state was ob-
tained, but apparently without changing the properties
of that quantum state. In particular, information about
a pair of incompatible observables was obtained; in this
context, the measurement seems ‘classical’, revealing al-
ready existing information without changing the system
properties.

This observation indicates that the experiment should
be described in terms of two commuting observables
which yield information about position and momentum
respectively. While position and momentum do not com-
mute, functions of position may commute with functions
of momentum. Indeed, as will be shown here, the ex-
periment can be considered an approximate realisation
of a joint eigenstate of mutually commuting functions of
position and momentum. In the next two sections, the
experimental setup and joint eigenstates of periodic sets
of position and momentum are discussed. This is fol-
lowed by a description of multi-slit experiments in terms
of joint eigenstates.

The experiment reported in [2] was performed with
photons; its analysis would require a treatment in terms
of photons as massless spin-1 particles, which are known
to be only unsharply localisable. (A review of the prob-
lem of photon localisation and relevant literature where
unsharp localisation observables for the photon are intro-
duced can be found in [3].) For simplicity, the treatment
here is non-relativistic and strictly only applies to mat-
ter waves. There is nevertheless good qualitative and
quantitative agreement between our theoretical analysis
and the experiment, suggesting that an analogue of the
non-relativistic argument applicable to photons should
exist, and showing that the experiment demonstrates a si-
multaneous determination of compatible, coarse-grained
versions of the complementary position and momentum
observables.
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FIG. 1. Simplified illustration of the setup used to indirectly
establish the existence of an interference pattern of a coher-
ently illuminated double-slit aperture.

II. ON THE EXPERIMENTAL SETUP

The setup illustrated in Figure 1 depicts a simpli-
fied version of the experiment reported in [2]. While
the experiment was performed using a double-pinhole,
here a double-slit setup is considered. A particle prop-
agates through the device along the z-axis (from left
to right). We model its wavefunction as a product,
Ψ(x, y, z) = φ(x)η(y)ζ(z), and focus on the component
φ(x), where the x-axis is along the transversal (vertical)
direction. The state ζ(z) is a means of keeping track
of the times of passage through the experimental setup.
As is detailed in Appendix A and used later on, in the
appropriate limit this problem can be simplified so that
only φ(x) needs to be considered, removing any explicit
time dependence but retaining an identification of the
quantum state at different times with distinct locations
in the setup.
The wavefunction φ(x) is diffracted at location (i),

where the double-slit aperture mask is depicted. A wire
grating is placed at location (ii), where the interference
pattern would be expected. The separation of the wires
depends on the spacing of the slits in the aperture mask
via the indicated reciprocal correspondence T ↔ 2π/T ,
although in general the wavelength of the source must be
taken into account. A lens is placed immediately behind
the wire grating for the purpose of producing the geo-
metrical image of the original aperture at location (iii),
where the detectors are placed. As is argued below, the
sequential character of the setup, with the aperture at
(i) and the grating at (ii), actually constitutes a joint
preparation/measurement.
The action of the aperture mask at (i) is modelled by the
following transmission function that gives the wavefunc-
tion ψ (up to normalisation) after passage through the
aperture:

φ(x) → χA(x)φ(x) ≡ Cψ(x). (1)

Here C is a normalisation constant and χA(x) is the in-
dicator function of set A, with value 1 for x ∈ A and

0 otherwise; A being the set that describes the effective
aperture. Incidentally, Eq. (1) defines the action of an
operator that is defined as a function χA(Q) of the posi-
tion operator Q:

(χA(Q)φ) (x) := χA(x)φ(x).

This operator has eigenvalues 1 and 0 with associated
eigenfunctions given by functions φ(x) either localised
within A or within the complement of A. Thus, the state
vector φ is projected onto an eigenvector of the spectral
projector χA(Q) of Q associated with the set A. For co-
herent illumination of both slits, a wavefunction with two
isolated peaks is prepared. Such a superposition state is
henceforth denoted ψ2. A single-slit wavefunction, de-
noted ψ1, is used to describe a single-slit state.

The aperture mask at location (i) prepares the quan-
tum state represented by the wavefunction ψ, which then
propagates freely until it arrives at (ii). In the Fraunhofer
limit, upon arriving at (ii) the wavefunction has evolved
so as to have a profile approximately identical (up to

scaling) to that of the Fourier-transform ψ̃ of the wave-
function at (i). For more details, the reader is referred
to Appendix A.

The effect of the wire grating is modelled by a trans-
mission function similar to the one specified in (1), but
with a set B of intervals complementing the regions oc-
cupied by the wire grating:

ψ̃(k) = (Fψ)(k) → χB(k) ψ̃(k) ≡
(
χB(P ) ψ̃

)
(k),

where the arrow indicates passage through the wire grat-
ing and χB(P ) denotes the spectral projector of momen-
tum P associated with the set B and F denotes the uni-
tary operator effecting the Fourier transform,

f̃(k) = (Ff)(k) = 1√
2π

∫ ∞

−∞

f(x) ei k x dx.

In the experimental setup of [2], a total of six wires is
used, each with a diameter of 0.127mm and a separation
of 1.3mm. It should be noted that for a single-slit in-
terference pattern the wire grating would not be in the
exact centre, but shifted sideways by a small amount. (In
the experimental setup reported in [2], the wire grating
is shifted by 0.250mm while the single-slit interference
pattern is of the order of tens of millimetres.)

Finally, the action of the lens located at (ii) is modelled
as spatial inversion, expressed by mappings Q 7→ −Q and
P 7→ −P , for the position and momentum respectively.
This corresponds to the unitary parity transformation P,
which coincides with the square of the Fourier transfor-
mation F . As a result, the divergent wave rays emerg-
ing, say, from the double pinhole and arriving at the wire
grating and lens are inverted so as to be refocused into
an image of the original double slit.



3

III. COMMUTING FUNCTIONS OF POSITION

AND MOMENTUM

While the canonical commutation relation [Q,P ] = i
(we will put ~ = 1 throughout) represents the fact that
the position and momentum observables are incompati-
ble in a strong sense, a function of position may commute
with a function of momentum. A first characterisation
of commuting functions of position and momentum was
given in [4] in the context of an analysis of interference
experiments, with the aim of explaining non-local mo-
mentum transfers in the Aharonov-Bohm effect. A first
full proof of necessary and sufficient conditions for the
commutativity of functions of position and momentum
was was reported in [5], who were unaware of the work
of [4]. A first construction of a set of joint eigenstates
was given in [6]. Here, we present a construction of joint
eigenstates that is readily identified with multi-slit inter-
ferometry. In Appendix C an alternative, rigorous con-
struction is included that generalises [6].
Considering the commutation relation in a form due to

Weyl,

ei pQei q P = e−i p qei q P ei pQ,

the existence of commuting functions of Q and P is sug-
gested since the operators ei pQ and ei q P commute for
pq = 2πn with n ∈ N. Though Q and P do not commute,
the spectral projections χX(Q) and χY (P ) for periodic
sets X and Y commute if the sets have periods T and
2π/(nT ), respectively, where n ∈ N:

[χX(Q), χY (P )] = 0.

(A set X is called periodic with (positive minimal) period
T , if T is the smallest positive number by which X can
be shifted such that the shifted set X+T = X, or equiva-
lently, if its indicator function is a periodic function with
minimal period T .)
Physical systems exhibiting such doubly periodic be-

haviour occur naturally. A well known example is found
in solid state physics: The wavefunction of an electron
in a crystal is not only periodically localised in accor-
dance with the periodic potential that is due to a crystal
lattice; the wavefunction is also periodically localised in
momentum space (this is encapsulated in the notion of
the reciprocal lattice). While solid state physics often
deals with systems containing a very large (essentially
infinite) number of lattice points, even finite multi-slit ex-
periments can be regarded as an approximate realisation
of joint eigenstates of χX(Q) and χY (P ) over periodic
sets as is argued below.
The following construction of a class of joint eigenvec-

tors is carried out using the Dirac comb ∆T , defined as

∆T (x) =

∞∑

n=−∞

δ(x− nT ),

where δ denotes the delta-distribution. This has heuris-
tic value and also makes the identification with multi-
slit experiments more intuitive. We note that under a

Fourier transformation the Dirac comb ∆T with period
T becomes a Dirac comb with period 2π/T :

F (∆T ) (k) =
1

T
∆ 2π

T
(k). (2)

The sought joint eigenstates of χX(Q) and χY (P ) must
have position and momentum representations that are
localised in the periodic setsX and Y , respectively. Their
construction makes use of the following identity involving
functions W and M which will be suitably chosen:

F
(
W ∗ (∆T ·M)

)
(k) =

(
W̃ ·

(
1

T
∆ 2π

T
∗ M̃

))
(k). (3)

The order of the two operations in (3), convolution (∗)
and multiplication, may be chosen freely, though the re-
sult is different in general. Here, both orders appear nat-
urally because of the Fourier transformation present. (A
special case of (3) is applied in [7] for the construction of
functions invariant under Fourier transformation.)

We now chooseW and M̃ to be square-integrable func-
tions that are localised on (that is, vanish exactly out-
side) intervals of lengths strictly less than T , resp. 2π/T .
(It will be convenient to use the mathematical term sup-
port (of a function) when speaking of the smallest closed
set on which the function is localised.) This ensures that
the function ψ defined via (3) is indeed square-integrable
(See Appendix B):

ψ(x) =
(
W ∗ (∆T ·M)

)
(x), (4)

ψ̃(k) =

(
W̃ ·

(
1

T
∆ 2π

T
∗ M̃

))
(k). (5)

The wavefunction ψ is now localised on a periodic set X

with period T , and its Fourier transform ψ̃ is localised
on a periodic set Y with period 2π/T . These sets are
indeed obtained by placing equidistant copies of the sup-

ports of W and M̃ , respectively. It follows in line with
the result of [5] that ψ is a joint eigenstate of the associ-
ated spectral projections of position and momentum. A
mathematically rigorous construction of such joint eigen-
states without the use of Dirac combs is included in the
Appendix B.

The vector ψ thus does not change under the action of
these spectral projections χX(Q) and χY (P ). In general,
for any wavefunction φ, the projected wavefunction

χY (P )χX(Q)φ

is a joint eigenstate of the two projectors. In fact, all
eigenstates with eigenvalue 1 may be obtained as the pro-
jection onto the intersection of the ranges of χX(Q) and
χY (P ), which is given by the product χX(Q)χY (P ) =
χY (P )χX(Q). In the analysis below we model the action
of the slits and wires as projections in this sense.
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IV. MULTI-SLIT EXPERIMENTS IN TERMS

OF JOINT EIGENSTATES OF Q AND P ON

PERIODIC SETS

As reported in [2], an initial superposition state ψ2

propagates through the experimental setup nearly undis-
turbed. By contrast, there is an effect on the image of
the single-slit state ψ1 detected at (iii): In addition to the
expected intensity peak many smaller peaks are found,
such that each peak is separated by a distance T from
its immediate neighbours. An illustration can be found
in [2], figures 1 c) and d) therein.
These two observations can be understood in terms of

joint eigenstates of Q and P on periodic sets. Firstly,
the superposition state ψ2 remains unchanged to a good
approximation, because ψ2 is already prepared at (i) as
a good approximation to a joint eigenstate of periodic
characteristic functions of position and momentum with
appropriate periodic sets X,Y . This makes ψ2 an ap-
proximation to an eigenstate of the momentum projector
associated with the opening left by the wire grating, and
hence leaves it virtually undisturbed in the presence of
the grating. This can be described symbolically by the
approximate equations

ψ2 = χX(Q)ψ2 → χB(P )ψ2 ≈ χY (P )ψ2 = ψ′
2 ≈ ψ2.

Here ψ ≈ φ is taken to mean ‖ψ − φ‖ ≪ 1 for (sub-
)normalised vectors, the arrow denotes passage through
the wire grating.
Secondly, the single-slit state ψ1 does not remain un-

changed, but instead is detected on a set of locations
expected of a joint eigenstate defined on a periodic set,
as described above. It follows that the wire grating im-
poses nodes in a manner that approximates the action of
χY (P ) to a high degree, because ψ1 remains an eigenstate
of χX(Q) after this action:

ψ1 = χX(Q)ψ1 → χY (P )ψ1 = ψ′
1 = χX(Q)ψ′

1 6≈ ψ1.

Considering that the experimental setup in [2] involves
merely six wires, this may seem surprising. Without fur-
ther analysis of the experimental details, this suggests
that the part of the wavefunction not penetrating the
wire grating must have comparatively small amplitude.
This is elaborated below.
While all quantum states that pass the aperture mask

are eigenstates of χX(Q), the combined effect of aper-
ture and wire grating represents a preparation proce-
dure for approximate joint eigenstates of χX(Q) and
χY (P ): all quantum states are projected into the range of
χX(Q)χY (P ) = χY (P )χX(Q) to a good approximation.
The superposition state ψ2 is thus already an approxi-
mate eigenstate of both projections, and the effect of the
wire grating is much smaller than on the single-slit state
ψ1, and even negligible to a good accuracy.
Using (4) and (5), we now proceed to the construction

of an example of a joint eigenstate of commuting periodic
functions of Q and P that describes the double-slit setup.

a) W c) |ψ|2 = |W ∗ (∆T ·M)|2

b) W̃ d)
∣∣ψ̃
∣∣2 =

∣∣W̃ ·
(
1

T
∆2π/T ∗ M̃

)∣∣2
a, a < T

b, b < 2π/T

a

T

b
2π
T

FIG. 2. Illustration of a state localised on periodic sets in
position and momentum space. For this particular choice of

W , M̃ , the tails of |ψ|2 are negligible outside the two central
slits, so that X is well approximated by a double slit, and the

negative-outcome testing of the localisation of |ψ̃|2 within Y
does not require many more than ten wires.

For this, the two localised functions W, M̃ need to be
chosen appropriately (Fig. 2). The function W describes
the quantum amplitude contained in a single slit. We
consider the function that is constant on a single slit (a
rectangular shape):

W (x) = χ[−a/2,a/2](x) =

{
1 for x ∈ [−a/2, a/2]
0 for x /∈ [−a/2, a/2] (6)

Here, a is the width of the slit. This is illustrated in
Figure 2 a). The expression for the Fourier transform of
W is

W̃ (k) ∝ sinc(ak/2) .

The function W̃ accounts for the modulation of the inter-
ference pattern I(k). In the case of a double slit interfer-
ence experiment with slit separation T > a, the known
interference pattern Ids(k) is of the form

Ids(k) ∝ sinc2(ak/2) cos2(Tk/2).

The cosine describes a repeated pattern, and it suggests

that we choose M̃ to correspond to a single instance of
this pattern (in practice, this choice would be made based
on experimental data):

M̃(k) = cos(T ′k/2)χ[−π/T ′,π/T ′](k)

=

{
cos(T ′k/2) for k ∈ [−π/T ′, π/T ′]

0 for k /∈ [−π/T ′, π/T ′]
. (7)

This is illustrated in Figure 2 b). For the 2π/T -periodic
set

Y =

∞⋃

n=−∞

[2πn/T − π/T ′, 2πn/T + π/T ′]
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to be different from the whole real line, it is required
that T ′ > T , so that the interval [−π/T ′, π/T ′] is strictly
contained in the interval [−π/T, π/T ].

Combining the expressions obtained for W̃ , M̃ the in-
terference pattern is described by:

∣∣∣ψ̃2(k)
∣∣∣
2

∝ 1

T 2
sinc2(ak/2)

∞∑

n=−∞

cos2
(
T ′

2

(
k +

2πn

T

))
χ[−π/T ′,π/T ′]

(
k +

2πn

T

)
. (8)

This is a sum of non-overlapping terms, and the support
of this function is the periodic set Y that is made up of
equidistant copies of the interval [−π/T ′, π/T ′]. For the

quantum state in position space, W is as defined in (6),

and M follows from M̃ as defined in (7):

ψ2(x) ∝
(
W ∗

(
∆T (( · )− T/2) ·M

))
(x) =

∞∑

n=−∞

M((n− 1/2)T )χ[(n−1/2)T−a/2,(n−1/2)T+a/2](x). (9)

The Dirac comb is shifted by T/2, in correspondence with
the experimental setup. (This shift becomes a phase fac-
tor in momentum space and does not affect the momen-
tum distribution.) Figures 2 c) and d) illustrate ψ and

ψ̃ as constructed in (9) and (8), respectively.
There are two important limiting cases. The spectral

projection χY (P ) is over a strictly periodic set Y . In
contrast, the dimensions of any experiment are necessar-
ily finite, and, in particular, the experiment reported in
[2] was performed with a total of six wires only, prepar-
ing the state χB(P )ψ, where B is the complement to
the region occupied by the wires. A model calculation
shows that the difference between the states χB(P )ψ and
χY (P )ψ is undetectable given the accuracy of the exper-
iment at hand.
Finally we may consider the limiting case where T ′ →

T . This corresponds to the wires becoming negligibly
thin. When T ′ = T the function M is zero at every delta
peak of the periodic Dirac comb, except for two locations:
x = −T/2 and x = +T/2. Hence it follows that for this

particular choice of W, M̃ , the quantum state ψ2 exists
solely in the two slits and is an approximation to a joint
eigenstate defined on periodic sets, where the wires must
be assumed to have a very small thickness. The experi-
mental setup considered prepares this quantum state at
the aperture at location (i) as an eigenstate of χX(Q) for
the periodic set X. Passage through a periodic wire set
Y will cause a projection of the state onto one that is a
proper joint eigenstate of periodic position and momen-
tum sets. This projective measurement action causes a
disturbance of the incoming 2-slit wavefunction, which
manifests itself in the observed position distribution at
(iii): In an ideal setup with dimensions identical to those
reported in [2], 1% of the total probability would not be
found in the two detectors at (iii) where it would oth-
erwise be expected. Instead, this one per cent of prob-

ability would be distributed over the remainder of the
periodic set X. According to [2], for the double-pinhole
setup about 2% probability were found outside of the
main peaks.

V. DISCUSSION AND OUTLOOK

A description of multi-slit experiments was presented,
and in particular of the modified double-slit experiment
in [2], in terms of quantum states that are defined on pe-
riodic intervals of position and momentum. These quan-
tum states, themselves not periodic, represent a class of
joint eigenstates of periodic functions of position and mo-
mentum. Using a description in terms of such joint eigen-
states it was possible to account for the two observations
reported in [2] concerning the behaviour of a double-slit
input state ψ2 and a single-slit input state ψ1.
Firstly, an incoming double-slit superposition state is

virtually unaffected by the indirect measurement of the
interference pattern performed by the wire grating, with
each of the wires placed at a node. This is, of course, be-
cause the superposition state shows an interference pat-
tern. An explanation in terms of joint eigenstates over
periodic sets, though, goes further and makes it possible
to explain why a superposition state can be localised on
essentially the same set of positions after it was subjected
to such a measurement – after all, measuring the inter-
ference pattern corresponds to measuring the momentum
distribution. The information about position and mo-
mentum of the superposition state is approximately rep-
resented by commuting observables. It follows that there
is no conflict with the principle of complementarity. The
experimental setup constitutes a good approximation to
a joint determination of compatible coarse-grainings of
position and momentum.
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Secondly, an incoming single-slit state does not remain
unchanged on passage through the wire system, but is in-
stead detected on a set of locations expected of a joint
eigenstate of projectors onto periodic sets in position and
momentum space. The additional intensity peaks are
found, such that each peak is separated by the same dis-
tance from its immediate neighbours as the two slits in
the aperture. This is compatible with the interpretation
that the single-slit state was projected onto an approxi-
mate joint eigenstate of spectral projections of position
and momentum on periodic sets. Indeed, the original
single-slit state, being already localised on a periodic set,
has been changed into a state that is a good approxima-
tion to a joint eigenstate through the projective action of
the wire grating.

The fact that a single-slit input state is affected by
the wire grating in such a way that the detected out-
put state is found to be localised in many periodically
spaced intervals is a demonstration of the mutual dis-
turbance of measurements of incompatible observables.
The projector χA(Q) onto a state localised in the single-
slit region A is not compatible with the projector χB(P )
onto a state localised in the set B of intervals in momen-
tum space defined by the gaps in the wire grating or its
idealised substitution by a periodic set. Consequently, a
state originally prepared to be localised in A is changed
by the projective action of the wires so as to be less well
localised in A and instead localised in a periodic set.

In this way the present experiment serves as a beauti-
ful, new demonstration of complementarity that comple-
ments the existing illustrations. Usually one considers a
perfect interference setup and then shows how the inter-
ference pattern is degraded by the introduction of a path-
marking interaction with a probe system storing (partial)
path information. Here one starts with a perfect path-
marking setup which then, by introducing the wires, is
changed into an interference experiment, degrading the
accuracy of path determination.

Finally, we used a construction of a specific class of
joint eigenstates of periodic sets of position and momen-
tum, which showed that in an idealised experiment with
periodically placed slits and wires one can input such
states that would propagate entirely unchanged through
the setup, so that the presence of the interference pat-
tern would be established without disturbing the quan-
tum state at all. The work of Corcoran and Pasch [7] sug-
gests that the construction of realistic approximations to
such quantum states is possible experimentally as well.

It is interesting to note that the work of [4] has been
developed further in [8] and [9]. Modular (periodic) mo-
mentum variables are introduced there since they are
found to be sensitive to relative phase shift of spatially
non-overlapping partial wavefunctions and are thus indi-
cators of the disappearance of interference fringes due to
a path measurement. By comparison, here we are con-
cerned with the diminishing path knowledge from creat-
ing an interference pattern, for which we found periodic
characteristic functions of Q and P particularly useful.

The cited work also introduces uncertainty relations al-
lowing a quantitative description of the trade-off between
path knowledge and quality of interference. It seems that
there is an intimate connection between these uncertainty
relations involving modular variables and trade-off rela-
tions between the overall width of a wavefunction and
the fine structure of its Fourier transform that were for-
mulated in [10]; an application of the latter uncertainty
relation to the present experiment and a comparison with
the uncertainty relation for modular variables are work
in progress.
To summarise, we have shown that it is appropriate

to view the experiment reported in [2] as a preparation
procedure for approximate joint eigenstates on periodic
sets of position and momentum, whatever the input state.
The validity of this interpretation can be supported by
numerical simulations of the experiment and variants of
it (with different numbers and thickness of the wires)
[11].
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APPENDIX A: DETERMINATION OF THE

MOMENTUM DISTRIBUTION VIA LATE-TIME

POSITION MEASUREMENT

From classical optics it is known that the interference
pattern of a wave passing through a double slit can be
described by the Fourier transformed aperture profile.
Additional analysis is necessary to justify the same appli-
cation in quantum mechanics. In particular, it is required
to show that after free evolution the position represen-
tation of the state ψt at location (ii) is, up to scaling,
approximated by the momentum representation of ψ0, at
the aperture at (i):

ψt ∝ ψ̃0 (approximately).

We give a simple ‘rough and ready’ argument here to
show how this approximation can be obtained. The solu-
tion of the Schrödinger equation for free time evolution
is given by

ψt(x) =

√
m

2πit

∫ +∞

−∞

ψ0(x
′) exp

(
i
m(x− x′)2

2t

)
dx′.

With the limits of integration bounded by the apertures,
the actual integration takes place from −(T + a)/2 to
(T + a)/2. In the limit of large t then, the term de-
pending on (x′)2 in the exponential can be neglected to
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a good approximation, because it is bounded by the finite
dimensions of the aperture.

ψt(x) ≈
√

m

2πit

∫
ψ0(x

′) exp

(
i
mx2

2t

)
exp

(
i
mx

t
x′
)
dx′

After trivial rearranging, the desired expression is ob-
tained.

ψt(x) ≈
√
m

it
ei

mx2

2t
1√
2π

∫
ψ0(x

′) ei
mx
t x′

dx′

≈
√
m

it
exp

(
i
mx2

2t

)
ψ̃0

(m
t
x
)

The parameter t can be eliminated using pz

m t = L, with
the distance to the lens L = 0.55m, where pz denotes
the longitudinal momentum component. In doing so, the
limit of large t becomes a limit of large distance L in re-
lation to the aperture size. Considering the dimensions
of the setup used in [2], where the centre-to-centre sepa-
ration of the two pinholes is 0.25mm, this is reasonable.
Furthermore, as px/pz will be small given these dimen-
sions, we can also substitute pz approximately with the
magnitude of the mean momentum, p0 so that for the
mean wavelength λ of the packet we can use the value

λ = 2π/p0 ≈ 2π/pz, and so t ≈ mLλ/(2π). This gives
the intensity as

|ψt(x)|2 ≈ 2π

Lλ

∣∣∣∣ψ̃0

(
2π

Lλ
x

)∣∣∣∣
2

Hence, measuring the interference pattern at location (ii)
by determining the distribution of position Q constitutes
a measurement of a scaled momentum observable with
respect to the input state ψ0. We can express this in
terms of the spectral measures of Q and P :

〈
ψt

∣∣χ
LλZ/(2π)

(Q)ψt

〉
≈ 〈ψ0|χZ

(P )ψ0〉 ,

where Z is any (Borel) subset of R. The separation of
the wires in Fig. 1 was indicated as being proportional
to 2π/T ; the above consideration gives the separation in
spatial dimensions as Lλ/T .

APPENDIX B: SQUARE-INTEGRABILITY

The relation (3) may be used to define a wavefunction
ψ via equations (4), (5) for square-integrable W,M if W
vanishes outside an interval of length strictly less than
T , because then the square-integrability condition is met,
i.e. if the L2-norm of ||ψ||2 is finite:

||ψ||2 =

∫ +∞

−∞

|W ∗ (∆T ·M)(x)|2 dx

=

∫
W ∗

(
∞∑

n=−∞

δ((·)− nT ) ·M
)
(x)W ∗

(
∞∑

n′=−∞

δ((·)− n′T ) ·M
)
(x) dx

=

∫
W ∗

(
∑

n

δ((·)− nT )M(nT )

)
(x)W ∗

(
∑

n′

δ((·)− n′T )M(n′T )

)
(x) dx

=

∫ ∑

n

W (x− nT )M(nT )
∑

n′

W (x− n′T )M(n′T ) dx

=
∑

n

|M(nT )|2
∫

|W (x− nT )|2 dx = ‖W‖22
∑

n

|M(nT )|2

The last line is obtained due to the localisation property
of the function W , which entails that W (x− nT )W (x−
n′T ) = 0 if n 6= n′. The square integrability of the

Fourier transform ψ̃ is ensured by the Fourier-Plancherel
theorem.

APPENDIX C: NO DELTA FUNCTIONS

BEYOND THIS POINT

The construction of Section IV involved delta func-
tions; here a different approach is presented that is math-
ematically rigorous without going into the theory of dis-
tributions. While similar to [6], the result here is more
general.

Starting by choosing a square-integrable function W
with support strictly within the interval (−T/2, T/2), we
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define a periodically-supported function ψ as

ψ(x) =

∞∑

n=−∞

cnW (x− nT ).

For each x, the sum contains exactly one term, hence the
series converges pointwise. The coefficients cn are to be
determined by further constraints below; here we note
that given the square integrability of W , ψ is square in-
tegrable if and only if the cn are square-summable. This
entails that the series also converges in norm. Note that

supp ψ =

∞⋃

n=−∞

supp (W + nT ) .

Computing the Fourier transform yields

ψ̃(k) =

∫ ∞

−∞

∞∑

n=−∞

cnW (x− nT ) ei k x dx

=

∞∑

n=−∞

cn e
i k nT W̃ (k). (10)

The coefficients cn represent the coefficients of a Fourier

series expansion of a periodic function M̃p with period
2π/T :

M̃p(k) =
∞∑

n=−∞

cn e
i k nT .

Let M̃ be a function that is supported inside the interval

[−d, d] where 0 < d < π/T . We can then specify M̃p –
and hence the coefficients cn – so that

M̃p(k) =

∞∑

n=−∞

M̃

(
k − 2π

T
n

)
.

This function is supported in a periodic set,

supp M̃p ⊆
∞⋃

n=−∞

[
2π

T
n− d,

2π

T
n+ d

]
.

We thus have that

ψ̃(k) = M̃p(k) W̃ (k).

A simple calculation shows that M̃ is square integrable if
and only if the cn are square summable. As noted above,
this condition is equivalent to ψ being square integrable.

With such a choice of M̃ we can also see directly from

the last formula that ψ̃ is square integrable, in line with
the Fourier-Plancherel theorem.
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