
This is a repository copy of An incremental verification framework for component-based 
software systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/75438/

Version: Accepted Version

Proceedings Paper:
Johnson, Kenneth Harold Anthony, Calinescu, Radu Constantin orcid.org/0000-0002-
2678-9260 and Kikuchi, Shinji (2013) An incremental verification framework for 
component-based software systems. In: CBSE '13 : Proceedings of the 16th International 
ACM Sigsoft symposium on Component-based software engineering. 16th International 
ACM Sigsoft symposium on Component-based software engineering, 17-21 Jun 2013 
ACM , CAN , pp. 33-42. 

https://doi.org/10.1145/2465449.2465456

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



An Incremental Verification Framework for
Component-Based Software Systems

Kenneth Johnson
Dept. of Computer Science

University of York
York, YO10 5GH, UK

kenneth.johnson@york.ac.uk

Radu Calinescu
Dept. of Computer Science

University of York
York, YO10 5GH, UK

radu.calinescu@york.ac.uk

Shinji Kikuchi
Fujitsu Laboratories Limited
4-1-1 Kawasaki, Kanagawa

211-8588, Japan
skikuchi@jp.fujitsu.com

ABSTRACT

We present a tool-supported framework for the efficient rever-
ification of component-based software systems after changes
such as additions, removals or modifications of components.
The incremental verification engine at the core of our IN-

cremental VErification STrategy (INVEST) framework uses
high-level algebraic representations of component-based sys-
tems to identify and execute the minimal set of component-
wise reverification steps after a system change. The general-
ity of the INVEST engine allows its integration with exist-
ing assume-guarantee verification paradigms. We illustrate
this integration for an existing technique for the assume-
guarantee verification of probabilistic systems. The result-
ing instance of the INVEST framework can reverify proba-
bilistic safety properties of a cloud-deployed software system
in a fraction of the time required by compositional assume-
guarantee verification alone.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification]: Model check-
ing; D.2.11 [Software Architectures]: Languages

Keywords

Incremental Verification; Probabilistic Assume-Guarantee Ver-
ification; Domain-Specific Languages

1. INTRODUCTION
Formal verification techniques such asmodel checking have

an excellent track record of successfully verifying critical
hardware and software [8]. Given a finite state-transition
model, model checking performs an exhaustive exploration
of its state space in order to establish the satisfiability of a
property expressed in some variant of temporal logic. The
result is an irrefutable proof that the property is satisfied, or
a counterexample comprising a sequence of state transitions
that lead to its violation. The approach works particularly
well for individual components and small systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’13, June 17–21, 2013, Vancouver, BC, Canada.
Copyright 2013 ACM 978-1-4503-2122-8/13/06 ...$15.00.

For larger systems, standard model checking is rendered
ineffective by high computation and memory overheads, and
compositional verification techniques [1, 2, 7, 13, 15] are used
instead. These techniques operate with significantly reduced
overheads through verifying a large system one component
at a time. Component interdependencies are taken into ac-
count by composing the models of individual components
with assumptions that summarise the properties of other
parts of the system they interact with.

In this paper, we are interested in a class of component-
based software systems that are difficult to verify even us-
ing compositional techniques, namely systems whose compo-
nents and structure change dynamically over time. Such sys-
tems are increasingly common, and include business-critical
and safety-critical software from domains as diverse as health-
care, transportation and finance [3, 18]. Verifying these soft-
ware systems only at design time is insufficient [5, 10], and
reverifying them after each change that involves additions,
removals or modifications of components is challenging [6].
To address this challenge, we propose an INcremental VEr-

ification STrategy (INVEST) that augments compositional
verification with the ability to identify the minimal sequence
of components requiring reverification after each change.

As illustrated in Figure 1, the core functionality of the
INVEST framework is provided by a generic incremental

verification engine. This engine drives the reverification of
a component-based software system by using high-level al-
gebraic representations of (a) the hierarchical structure of
the system; and (b) a generic assume-guarantee verification
paradigm. INVEST instances that integrate the engine with
a specific assume-guarantee model checker can be further
specialised through the use of a domain-specific adaptor, to
support the incremental reverification of software systems
from that domain.

The main contributions of the paper are:

• An algebraically specified incremental verification engine

Figure 1: The layered architecture of the INVEST
incremental verification framework



that extends, generalises and formalises the preliminary
results we reported in [6]. Our approach is guided by the
algebraic theory of data types [17], which designs algebras
comprising system components and operations.

• The integration of the INVEST engine with the approach
for the assume-guarantee verification of probabilistic sys-
tems introduced in [15]. The result of this integration is a
framework for the incremental verification of probabilis-
tic safety properties.

• The development of an INVEST adaptor that specialises
the framework above for the incremental verification of
probabilistic safety properties of multi-tier software ap-
plications deployed on cloud computing infrastructure.

• A prototype INVEST tool that integrates three elements:
a Java implementation of our incremental verification en-
gine, the widely used probabilistic model checker PRISM
[14], and an adaptor for the incremental verification of
component-based software systems deployed on cloud in-
frastructure.

The rest of the paper is organised as follows. Sections 2
to 4 present the three layers of the INVEST incremental
verification framework. Section 5 describes our prototype
implementation of the framework, and the experiments that
we carried out to assess its effectiveness and scalability. We
then discuss related work in Section 6, and finish with a brief
summary and several concluding remarks in Section 7.

2. INCREMENTAL VERIFICATION
This section formulates the mathematical description of

our incremental verification engine. The workflow of the
engine is shown in Figure 2. It takes as input a high-level
algebraic description S of a component-based system, and a
function G that associates the system S and its components
with properties from a property set P . The properties spec-
ified by G take values from a value set V , and need to be
verified to “guarantee” compliance with the system require-
ments. The engine workflow comprises two stages:

1. In the set-up stage, S and G are provided to the engine
for the first time, and standard compositional verification
is used to form assumptions A : P → V u that associate
the properties in P with the appropriate values in V . Any
properties from P that do not correspond to S or one of
its components are by default mapped to an undefined
value u ∈ V u = V ∪ {u}. The actions associated with
this stage of the workflow are depicted using continuous
lines in Figure 2.

2. In the runtime stage, the engine is notified whenever
changes occur in the system. Changes such as compo-
nent removals, additions or modifications correspond to
substituting a term t from the algebraic description of the
system S with another term t′. Accordingly, the engine
handles a change S[t/t′] by updating the system descrip-
tion and using incremental reverification to update the
assumptions A : P → V u. Figure 2 depicts the actions
taken by the engine in this stage using dotted lines.

2.1 Specifying Component-Based Systems
A component signature Σ is a finite set C of component

sorts, representing the hardware and software of a system.
We use the symbol C(Σ) to denote all components with the
signature Σ and call C(Σ) a component class. A compo-

nent algebra is a component class C(Σ) and a family F =

Figure 2: Incremental verification workflow

{f1, . . . , fm} of operations on components. Given a compo-
nent algebra we may choose any components and apply a
sequence of operations. Such a sequence is represented as
an algebraic expression called a component term or simply
a term. Terms are defined recursively by the rules

t ::= c1 | · · · | cn | f1(t1, . . . , tn1
) | · · · | fm(t1, . . . , tnm

) (1)

where ci ∈ C(Σ) and the tj ’s are terms.
Given a component algebra we can choose some (basic)

components and apply a sequence of operations to create
complex components, using the technique to describe the
hierarchical structure of a component-based system. The
terms used for this define the calculations carried out in the
construction of the system description, and specify the order
in which the operations on components are applied. Com-
ponent algebras organise the operations we define, while the
inductive properties of terms provide a natural data struc-
ture for defining an incremental verification process.

2.2 Component Model Checking
Let M be a set of models, P a set of properties and V

a set of values. A model checker is an automated process
in which the state space of a model m ∈ M is exhaustively
checked to verify the satisfiability of a property p ∈ P , re-
turning a verification result v ∈ V . We suppose that the
model checking process always terminates, potentially due
to failure. If a failure does occurs then a special unverified
value u is returned. We extend the set V to include this
value by defining V u = V ∪ {u}.
We consider verification paradigms for which the verifi-

cation process may rely on values obtained from verifying
other properties in P . We call total functions of the form
P → V u assumptions, and denote the set of all assumptions
as [P → V u]. We define an assume-guarantee model checker
as a function mc : M × P × [P → V u] → V u such that

mc(m, p,A) = the value obtained from verifying (2)

property p on model m, assuming A,

for a model m ∈ M , a property p ∈ P and assumptions
A : P → V u ∈ [P → V u].

2.3 Set-up Stage: Compositional Verification
In order to carry out model checking on components in

the class C(Σ), each component is associated with a model
and a property to verify by defining the total functions

m : C(Σ) → M and G : C(Σ) → P,

called themodel and (guaranteed) property functions respec-
tively. The naive approach to model checking a component-
based system S ∈ C(Σ) comprising n components c1, . . . , cn



requires evaluating standard parallel composition [7, 8]

m(S) = m(c1) ‖ · · · ‖ m(ci) ‖ · · · ‖ m(cn), (3)

and obtaining a verification result from the model checker:

mc(m(S), G(S), A)

such that A(p) = u for all p ∈ P , and G(S) represents
the system requirements of S. As parallel composition con-
structs a model of all possible interleavings of the compo-
nents that make up the system, it can lead to extremely
large model sizes. Despite recent advances improving sym-
bolic model checking, this often results in an intractable ver-
ification task, even for medium-sized systems.

Compositional verification techniques are based on a di-
vide and conquer approach that carries out component-wise
verification of local properties in order to infer global prop-
erties of the system. Our approach of building up the system
description S from basic components using a sequence of op-
erations in the algebra C(Σ) allows us to define a function
cv : C(Σ) × [P → V u] × [C(Σ) → P ] → [P → V u] to carry
out the compositional verification process such that

cv(S,A,G) = updated assumptions obtained from

verifying properties G : C(Σ) → P

for the model m(S), assuming Au

where Au : P → V u is such that Au(p) = u, for all p ∈ P .
We formulate a recursive definition of the function cv by

induction on the structure of terms in C(Σ).
Base case: The simplest case of compositional verifica-
tion is on a component-based system comprising a single
component. For each c1, . . . , cn ∈ C(Σ) from (1) we define

cv(ci, A,G)(p) =

{

mc(m(ci), p, A) if p = G(ci),

A(p) otherwise.
(4)

for all p ∈ P .
Structural induction on terms: For component terms
t1, . . . , tm we consider the value of property p ∈ P on the
model associated with component f(t1, . . . , tm), for an op-
eration f ∈ F of the form f : C1 × · · · × Cm → C0. We
have the following equation defined by two cases. First, if
p is not a property associated with f(t1, . . . , tm), i.e. p 6=
G(f(t1, . . . , tm)) then no verification is required and

cv(f(t1, . . . , tm), A,G)(p) = A(p). (5)

Otherwise, if p = G(f(t1, . . . , tm)) then

cv(f(t1, . . . , tm), A,G)(p) = mc(m(f(t1, . . . , tm)), p, Am).

The assumption function Am is formed by recursively ap-
plying compositional verification to each of t1, . . . , tm, i.e.,

A1 = cv(t1, A,G), and Ak+1 = cv(tk, A
k, G). (6)

2.4 Runtime Stage: Incremental Verification
In systems operating in dynamic environments changes

such as the addition, removal or modification of components
occur in rapid succession. Despite the significant improve-
ments gained when applying compositional verification to
large systems, it is inefficient to completely reverify the sys-
tem after every such change.

To formulate an incremental verification procedure that
performs only the necessary reverifications at runtime, we

suppose that the INVEST engine is notified of changes to the
system. When a change notification arrives, the engine

1. updates the system representation to reflect the change,

2. constructs a sequence of the components affected by the
change, and

3. performs the necessary reverification using results ob-
tained in the previous (re)verification step, which may
be the initial full verification of the system or the pre-
ceding incremental verification step.

Step 1: Component Change.
We model change in a system represented by the term S

algebraically as a transformation on terms in the component
class C(Σ). For terms t, t′ ∈ C(Σ), we define the change

transformation

S′ = S[t/t′] (7)

that results in the component term S′ representing the changed
system, with all instances of t in S substituted with t′.

Step 2: Reverification Sequences.
We formulate an incremental verification technique that

involves the construction of a reverification sequence

σ = (t1, . . . , tk)

comprising all S′ sub-terms affected by (7). The sequence σ
is constructed incrementally starting with t1 = t′ and each ti
of σ satisfies the property ti is a sub-term of ti+1 for 1 ≤ i <
k, where tk = S′. To ensure this property, we assume that
the constants in the system’s component term are unique
(i.e. appear only once in the system specification).

A straightforward induction on the structure of C(Σ) is
used to construct a reverification sequence. Let Seq denote
the set of sequences where () ∈ Seq is the empty sequence,
and a is the concatenation operation on sequences. We
define the function σ : C(Σ)× C(Σ) → Seq as follows:
Base case: For a component c1, . . . , cn ∈ C(Σ) we have

σ(ci, t
′) =

{

(t′) if t′ ≡ ci,

() otherwise.

Structural induction on terms: Let f ∈ F be an oper-
ation of the form f : C1×· · ·×Cm → C0. If t

′ is a sub-term
of f(t1, . . . , tm) then

σ(f(t1, . . . , tm), t′)=σ(t1, t
′)a · · ·aσ(tm, t′)a(f(t1, . . . , tm)).

Otherwise, σ(f(t1, . . . , tm), t′) = ().

Step 3: Incremental Reverification.
For this step, we suppose that compositional verification

of the original system S has been carried out on the prop-
erties specified by G : C(Σ) → P . In symbols,

Acv = cv(S,Au, G).

However, note that the results below also apply in the case
when this compositional verification was followed by a num-
ber of incremental reverification steps.

We define the reverification function ρ : Seq × [P →
V u]× [C(Σ) → P ] → [P → V u] such that ρ(σ,Acv, G) = Ar

are the updated assumptions obtained from reverifying prop-
erties G for the components in the reverification sequence σ,
assuming Acv. We have the following definition:



Base cases: For the empty sequence we have ρ((), Acv, G) =
Acv. For the sequence (t1) we have

ρ((t1), A
cv, G)(p) =

{

mc(m(t1), G(t1), A
cv) if p = G(t1),

Acv(p) otherwise.

If p = G(t1) then the property p is model checked by mc
on the component model m(t1), using the assumptions Acv.
The value resulting from the verification is returned and re-
places the previous value A(p) associated with p. Otherwise,
the value associated with p remains unmodified.

Inductive step: Let σ = (ti) a α, where α is a non-empty
sequence; we define

ρ((ti) a α,Acv, G) =

{

A′ if Stop(ti),

ρ(α,A′, G) otherwise.
(8)

where A′ = ρ((ti), A,G) and

Stop(ti) = compare(A′(G(ti)), A
cv(G(ti)))

provides a mechanism to terminate the reverification based
on the satisfiability of the test

compare : V u × V u → B. (9)

Note that the value-equality function

compare=(v
new, vold) ≡ [vnew = vold]

can always be used for this purpose. As we will show in Sec-
tion 3, less demanding compare functions exist for specific
assume-guarantee verification paradigms, enabling an earlier
stop of the incremental verification process than compare=.
When such a “relaxed” compare function is used, the Ar =
ρ(σ,Acv, G) property-to-value mappings produced by the in-
cremental verification is an under-approximation of the sys-
tem properties. This is acceptable whenever the mappings
Acv satisfy the high-level system requirements, and compare
is chosen such that an early stop in (8) occurs only after
sufficient evidence was accumulated to conclude that the
changed system is “equally or better able than before” at
satisfying its requirements.

2.5 Summary
The primary elements of the incremental verification en-

gine can be described succinctly as the tuple

e = (C(Σ),M, P, V, compare,mc). (10)

The engine e is applied to a domain-specific problem by

• selecting a verification technique mc supporting assume-
guarantee reasoning;

• formulating the models M , properties P and verification
results V used by mc, and the compare function;

• defining components C(Σ) and choosing operations rele-
vant to the problem.

3. PROBABILISTIC ASSUME-GUARANTEE

VERIFICATION
In this section we illustrate the integration of our INVEST

incremental verification engine with the assume-guarantee
paradigm proposed in [15]. This integration is achieved by
fixing the following elements of our algebraic engine (10):

• M is the set PA of probabilistic automata;

• P is the set of deterministic finite automata (DFA) spec-
ifying probabilistic safety properties;

• V = [0, 1] is the set of probability values;

• the probability values are compared by compare : V u ×
V u → B from (9), defined as

compare(vnew, vold) ≡ [vnew ≥ vold],

where inequality is extended to the special symbol u such
that v < u, for all v ∈ V ;

• mc : M × P × [P → V u] → [P → V u] is the assume-
guarantee verification technique presented in [15].

Each of these elements from [15] is summarised below.

Modelling components as probabilistic automata

A probabilistic automaton is a tuple (S, s0, α, δ, L) compris-
ing a finite set of states S corresponding to all the possible
states of the real-world component being modelled, with the
initial state denoted s0. The set α contains action sym-
bols and L : S → 2AP labels each state in S with atomic
propositions from a set AP . The probabilistic transition
function δ ⊆ S × (α ∪ {τ}) × Dist is a function modelling
the transitions between states, where Dist is a set of discrete
probability distributions over the states in S, and τ denotes
a non-action symbol causing a self-looping transition (i.e.
remaining in the current state). The possible transitions
from a current state s ∈ S to another state are given by
the set δ(s) = {(s, a, d) | (s, a, d) ∈ δ}. Thus to determine
the next state s′, an element from the set δ(s) is chosen
non-deterministically, and the state s′ is selected randomly
according to the distribution δ(s).

Assume-guarantee verification of probabilistic systems

Probabilistic assume-guarantee reasoning extends composi-
tional verification to probabilistic systems. Both the as-
sumptions made about the system and their guarantees are
probabilistic safety properties.

A probabilistic safety property-value pair 〈E〉
≥v is speci-

fied by a probability bound v, and a DFA tuple

E = (Q,α, δ, q0, F )

with state set Q, alphabet α, transition function δ : Q×α →
Q, initial state q0 and accepting states F ⊆ Q. The finite
words in the alphabet of E express sequences of actions as-
sociated with prefixes of paths that do not satisfy the prob-
abilistic safety property. The verification of a probabilistic
safety property specified by E ∈ P on a model m ∈ M de-
termines the minimum probability v ∈ V of not reaching an
accepting state of E . In symbols,

〈E〉
≥v ⇐⇒ mc(m, E , A) = v

where mc carries out probabilistic assume-guarantee verifi-
cation using assumptions A : P → V u as described below.
Given the probabilistic safety propertiesA and G and their

corresponding component models m1 ∈ M and m2 ∈ M ,
respectively, mc is used to determine the probability v2 such
that m1 ‖ m2 satisfies 〈G〉

≥v2
in two steps:

1. Starting with assumptions Au, standard model check-
ing is performed to obtain v1 = mc(A ‖ m1,A, Au).
A new assumption function A is obtained such that



Figure 3: Three-tiered architecture of a cloud-deployed service

A(A) = v1, the minimum probability of not reaching
the accepting states of A, over all adversaries of m1.

2. Using assumptions A, the probabilistic safety property
G is verified on the parallel composition of m2 and
DFAs A and G, to obtain

v2 = mc(A ‖ G ‖ m2,G, A)

using multi-objective model checking [9]. A new as-
sumption function A′ is obtained where A′(G) = v2 is
the minimum probability of not reaching the accepting
states of G, over all adversaries of m2 and under the
assumption 〈A〉

≥v1
.

These steps describe the probabilistic assume-guarantee rule
introduced in [15], written in standard sequent notation as

〈true〉m1〈A〉
≥v1

, 〈A〉
≥v1

m2〈G〉≥v2

〈true〉m1 ‖ m2〈G〉≥v2

(11)

where 〈true〉 stands for the assumption function Au.

4. DOMAIN-SPECIFIC ADAPTOR
To illustrate the application of the INVEST framework,

we develop an adaptor specialising it for the analysis of prob-
abilistic safety properties of multi-tier software services de-
ployed on cloud computing infrastructure. This specialisa-
tion corresponds to fixing the element C(Σ) of the INVEST
algebraic engine (10), and enables administrators of multi-
tier software to obtain answers to questions such as:

• what is the maximum probability of a service failing over
a one-month time period?

• how will the probability of failure for my service be af-
fected if one of its database instances is switched off to
reflect a decrease in service workload?

A typical example of a software service that the adaptor
developed in this section can handle is shown in Figure 3.
This three-tiered service comprises functions for web, ap-
plications (app) and databases (db). Several instances of
these three functions are run on different virtual machines
(VMs) that are located on four physical servers. Note that
although we chose this small example for illustration pur-
poses, the framework is capable of handling systems that
are significantly larger, as reflected by the experimental re-
sults presented later in the paper, in Section 5.

To apply the INVEST framework to multi-tiered services,
we require a formalisation of the service and of the reliability
properties to verify. A service deployed on the cloud consists

of components for hardware, software and logistics for man-
aging the scaling up and down of the service. We specify
an algebra for each sort of component and the operations
we define will be used to construct a term representation of
the whole service. In order to verify safety properties of the
probabilistic automata associated with each component and
with the service as a whole, we construct properties to be
used as input for the INVEST engine.

4.1 Physical Server Components
Physical servers comprise a quantity of Nmem memory,

Ndisk hard disk and Ncpu CPU blocks that are initially op-
erational, but are subject to failure over time. If a sufficient
number of blocks fail, a signal is issued by the server’s hard-
ware failure detection and attempts are made to migrate all
hosted virtual machines.

Let C(ΣPS) denote the class of physical servers that rep-
resent the hardware infrastructure of the cloud data-centre.
Each component in C(ΣPS) is represented by a probabilis-
tic automaton that models its operation over a specified
time interval (e.g. one year). The model comprises a set
of states corresponding to combinations of operational and
failed blocks, with the initial state corresponding to the
server state where all blocks are operational.

Figure 4 depicts the state transition diagram for the prob-
abilistic automaton associated with a generic server. The
sets of state transitions corresponding to the same action
are annotated wih the following action labels:

• mem op, disk op and cpu op, denoting the operation of
individual components;

• server detect, server warn, denoting correct operation of
the failure mechanism;

• server up and server down, denoting the server operat-
ing correctly or failing by the end of the analysed time
interval, respectively.

The states of the probabilistic automaton are labelled with
atomic propositions expressing the amount of operational
blocks in each state. We used illustrative values for the
failure probabilities in order to aid readability, as the prob-
abilities used in the experiments described in Section 5 (and
which are based on results from [19, 21]) had too many dec-
imal digits to fit in the diagram.

The physical servers from the case study are represented
algebraically as component terms

serverA, serverB, serverC, serverD ∈ C(ΣPS), (12)

where each server comprises four CPUs, three hard disks and



{disks = NDISK ,

cpus = NCPU ,

mem = NMEM}

{disks = NDISK−2,

cpus = NCPU ,

mem = NMEM}

{disks = NDISK−1,

cpus = NCPU ,

mem = NMEM}

{disks = 2,

cpus = NCPU ,

mem = NMEM}

{disks = 1,

cpus = NCPU ,

mem = NMEM}

{disks > 0,

cpus = NCPU ,

mem = NMEM}

{disks > 0,

cpus > 0,

mem = NMEM}

{disks > 0,

cpus = 1,

mem = NMEM}

{disks > 0,

cpus > 0,

mem = 2}

{disks > 0,

cpus > 0,

mem = 1}

{disks = 0∨
cpus = 0∨
mem = 0}

{disks > 0,

cpus > 0,

mem > 0}

{disks = 2,

cpus = NCPU ,

mem = NMEM

detect}

{disks > 0, cpus = 1,

mem = NMEM

detect}

{disks>0, cpus>0,

mem = 2, detect}

disk op

warndetect

server downdisk op disk opdisk op

cpu op

warndetect

cpu op
cpu op

cpu op

mem op

warndetect

mem op
mem op

mem op
mem op

server up1.0

1.00.005

0.995

0.005 0.005 0.0051.00.9

0.10.995 0.995
0.995

0.001

0.999

0.001 0.001 0.0011.00.95

0.050.999 0.999
0.999

0.002

0.998

0.002 0.002 0.0021.00.9

0.10.998 0.998
0.998

0.998

0.002

Figure 4: Probabilistic automaton modelling a physical server

{web = 1}

server upA

serverA down
serverA

warn

vm migrate

vm op

{web = 1}

{web = 1}

0.15

0.85

0.95

0.05

{web = 0} 1.0
web downA

1.0web upA

{web > 0}

Figure 5: Model for component deployweb(serverA)

eight memory blocks. The modelsm(serverA), m(serverB),
m(serverC) andm(serverD) associated with the four servers
are derived from the model in Figure 4 by adjusting the
names of all probabilistic automaton actions to include the
server identifier A, B, C or D, respectively (e.g., server down
is renamed serverA down in the model m(serverA)).

4.2 Function Instance Components
Services are composed of several software components or

functions Func = {func1, . . . , funck} that deliver specific
functionality required by the service. Each function is in-
stantiated on one or more virtual machines hosted on servers
across the data centre. The three-tier service in our case
study, for instance, has Func = {web, app, db} for its web,
application and database functionality.

We extend the physical server algebra to form a new al-
gebra C(ΣFI) that comprises the class of ‘function instance’
components, generated by the operation

deployfunc : C(ΣPS) → C(ΣFI),

for each func ∈ Func. For the web function used in the case
study, the component term deployweb(serverA) represents
the software function component of a single instance of the
web function on serverA.

The probabilistic automatonm(deployweb(serverA)) is de-
picted in Figure 5. The sets of state transitions labelled with
the actions serverA up, serverA down and serverA warn in
this diagram correspond to the identically labelled actions
from the model m(serverA) of serverA. These transitions
are not associated with probabilities since they depend on
the behaviour of serverA (and will be specified by the as-
sumptions used in the verification of the model). Note that
this instance of the web function can fail in several ways: if
serverA experiences a hardware failure; if the VM migra-
tion triggered by a warning fails; or if the VM fails (due to
a software defect).

{web = 1,

app = 1}

serverA down
serverA warn

serverA up vm migrate

{web = 1,

app = 1}

0.85
0.95

0.05

0.15

vm op
{web = 1,

app = 1}

app downA

{web = 0,

app = 0} 1.0
web downA

1.0

vm op

{web > 0,

app > 0}
{web > 0,

app = 1}

{web > 0,

app = 0}

0.95

0.05

1.0
web upA

1.0
web upA

app downA

1.0

app upA

1.0

vm op

{web = 0,

app = 1}

{web = 0,

app > 0}

{web = 0,

app = 0}

0.95

0.05

1.0
web downA

app upA
1.0

1.0
web downA

app downA

1.0

Figure 6: Model m(addapp(deployweb(serverA)))

To specify the deployment of additional function instances
onto an existing component in C(ΣSF ), we define the oper-
ation addfunc : C(ΣSF ) → C(ΣSF ). The component term
addapp(deployweb(serverA)) represents a composite function
instance webapp, deployed on serverA, and the probabilistic
automaton modelling it is shown in Figure 6.

Using the operations defined above, we can construct com-
ponent terms for the web, app and db functions instances of
our three-tier service as follows. First,

webappA ≡ add2app(addweb(deployweb(serverA)))
webappB ≡ add2app(addweb(deployweb(serverB))),

(13)

represent components with two instances of web and app
functions on serverA and serverB, respectively. Next,

dbC ≡ deploydb(serverC)
dbD ≡ deploydb(serverD)

(14)

represent db function instances deployed on serverC and
serverD, respectively.

4.3 Function Components
Services deployed in the cloud take advantage of its elas-

tic nature, utilising data-centre resources as demand for
the service requires. In this section, we develop a compo-
nent class C(ΣF ) of software functions that manages in-
stances of identical functions, created for improved service
availability and/or performance. We define the operation



{Database = 2} {Database = 2} {Database = 2}

{Database = 1}

{Database = 1} {Database = 0}

dbC up dbD up

d
b
C

d
ow

n

d
b
D

d
ow

n

dbD
down

dbD up

database down

database up

database up

Figure 7: Model associated with the database in (15)

{db = 1,

webapp = 1}

(b) extend(component(database), webapp)

db down

db up
service up

webapp up

webapp down
service down

service down

{db = 1,

webapp = 1}

{db = 1,

webapp = 0}

webapp up

webapp down
service down
{db = 0,

webapp = 1}

{db = 0,

webapp = 0}

Figure 8: The probabilistic automaton m(service)

functionn
func : C(ΣFI)

n → C(ΣF ) that takes n ≥ 1 function
instances that provide identical functionality, and constructs
a software function component in C(ΣF ).

For example, the component term

database ≡ functiondb(dbC, dbD) (15)

specifies a new software function component for the case
study function db, comprising two database instances dbC
and dbD specified in (14). The resulting probabilistic au-
tomaton modelling (15) is depicted in Figure 7, and com-
prises states representing the operating status of the database
instances dbC and dbD. The probabilities of the state tran-
sitions associated with the actions dbC up, dbC down and
dbD up, dbD down are obtained (as assumptions) from the
analysis the probabilistic automata m(dbC) and m(dbD).
Similarly, we construct the component term

webapp ≡ functionwebapp(webappA,webappB) (16)

from the function instances webappA and webappB in (13).

4.4 Service Components
The component class C(ΣSer) of service components is

generated by the operation svcn : C(ΣF )
n → C(ΣSer) such

that svcn(F1, . . . , Fn) is a service whose functionality is im-
plemented by the function components F1, . . . , Fn in C(ΣF ).

For function components database, webapp ∈ C(ΣF ) de-
fined in (15) and (16),

service ≡ svc2(webapp, database) (17)

is an algebraic specification of the service in our case study,
and its model is depicted in Figure 8. The states correspond
to the operational status of the database deployment of the
service. Transitions are labeled with actions db up, db down
and webapp up, webapp down that occur according to the
probabilities obtained as assumptions in the verification of
the database function and webapp function, respectively.

4.5 Service Probabilistic Safety Properties
This section constructs the propertiesGservice : C(ΣSer) →

P mapping each term t representing a component of service
from our case study to one or more DFAs. Since several com-
ponents are associated with more than one property (i.e.,
DFA), P is the set of tuples of DFAs.

In the following, we adopt the shorthand notation t 7→
(E1, . . . , En) to mean Gservice(t) = (E1, . . . , En), for any com-
ponent t ∈ C(ΣSer) and tuple (E1, . . . , En) ∈ P .

Physical Servers

Figures 9(a)–(b) depict DFAs E1 and E2 formed from reg-
ular expressions over actions server down and warn, speci-
fying action sequences whose prefixes correspond to server
failure and warning, respectively. For each term server ∈
C(ΣPS) representing a case study server (12), we have S 7→
(E1server, E2server) whose alphabet symbols are updated ac-
cordingly to server warn and server down.

Function Instances

We consider DFAs that have been generated specifically to
determine the probability of a specific function instance fail-
ing, or all of them failing. The component webappA ∈
C(ΣFI) is an instance of webapp, deployed on serverA and
we identify the properties E3webappA, E4webappA and E5webappA

whose DFAs are formed from the regular expressions

reg(E3webappA) = (app upA+web downA |

web downA+app upA)(web downA | app upA)∗

reg(E4webappA) = (app downA+web upA |

web upA+app downA)(web up | app downA)∗

reg(E5webappA) = (app downA+web downA |

web downA+app downA)(web downA | app downA)∗.

These regular expressions specify sequences of actions that
correspond to web failure, app failure or the failure of both
functions on serverA, and are synchronised during verifica-
tion steps with actions from the model in Figure 6. Fig-
ure 9(c) shows the DFA for the first of these properties, and
for a generic server (i.e., without the suffix ’A’ appended to
action names); the DFAs for the other two properties have
the same structure, but are labelled with the appropriate
actions from the other two regular expression.

Similarly, for component dbC ∈ C(ΣFI), the DFA E6dbC is
specified by the regular expression reg(E6db) = db downC+

that corresponds to the failure of the db function instance
on serverC. This DFA has the same structure as the DFA
from Figure 9(a). We have the following mapping

webappA 7→ (E3webappA, E4webappA, E5webappA)
webappB 7→ (E3webappB , E4webappB , E5webappB)

dbC 7→ (E6dbC) and dbD 7→ (E6dbD).
(18)

Functions

We consider DFAs specifying probabilistic safety properties
that determine the probability of the failure of a specific
software function deployed over one or more servers.

The DFAs E7 and E8 that we associate with functions
db and webapp are formed from the regular expressions
reg(E7) = database down+ and reg(E8) = webapp down+

corresponding to the failure of the db and webapp functions
across all their respective instances. We map database 7→



warn

warn

(b) E2: warn
+

e2

web down, app up

web downapp up

web down app up

app up web down

e3

(c) E3: (app up+web down |web down+app up)
(web down | app up)∗

server downwarn

warn, server downwarn, server down

e1

(a) E1: server down (warn | server down)∗

Figure 9: Probabilistic safety properties E1, E2 and E3 from the case study

E7database, and webapp 7→ E8webapp for the function compo-
nents database, webapp ∈ C(ΣF ) in our case study.

Services

The probabilistic safety property associated with a service
corresponds to the DFA specified by the regular expression
reg(E9) = service down+. Its service down action is syn-
chronised with the model m(service) from Figure 8, and the
verification of this property determines the minimum prob-
ability v9 of the service not failing during the analysed time
period. We have the mapping service 7→ E9service.

5. IMPLEMENTATION AND VALIDATION
We developed a prototype INVEST incremental verifica-

tion tool as an open-source Java application that is freely
available from www-users.cs.york.ac.uk/~ken/invest. The
core component of the INVEST tool is the generic class

IncrementalEngine<M,P,V>

parameterised by three type variables M, P and V. These vari-
ables are abstract classes for models, properties and verifica-
tion values, respectively, and the functions mc and compare
of the INVEST incremental engine from (10) are abstract
methods of M and V , respectively.

For our case study, each component class presented in
Section 4 was implemented as a Java class in INVEST. The
classes comprise methods that implement the operations on
probabilistic automata, represented in the state-based mod-
elling language of the PRISM model checking tool [14].

The incremental verification engine implements the algo-
rithms for compositional and incremental verification from
Section 2 on a tree structure representation of the component-
based system. Each node in this tree comprises a component
model, properties to verify, and the available assumptions.

The INVEST tool was used to verify the component-based
software system specified by the term service in (17) in
a range of experiments involving component additions, re-
movals and modifications. In these experiments, the system
and its components were first verified in full using compo-
sitional verification, to establish the Acv property to value
mappings for the initial system configuration shown in Fig-
ure 3; the results for this are shown in Table 1. Next, incre-
mental verification was used to analyse the effects of series of
change scenarios. A couple of these change scenarios are de-
scribed below. For each of them, we present the steps taken
by the engine when a change occurs and the new probabil-
ity values resulting from incremental reverification. We are
focusing on only two scenarios due to space constraints, but
several other scenarios were tested successfully in our exper-
iments, including physical server modifications and updates
of the virtualisation software.

Table 1: Compositional verification results from the
set-up verification stage of the case study

Class Model Property value

C(ΣPS)
serverA-D v1 = 1− 1.2326E−6

v2 = 1− 4.8332E−4

C(ΣFI)

webappA-B v3 = 0.9975, v4 = 0.9975

v5 = 1− 5.5814E−5

databaseC-D v6 = 0.95

C(ΣF )
database v7 = 0.9975

webapp v8 = 1− 1.3571E−5

C(ΣSer) service v9 = 0.9975

Function Instance Removal.
Suppose that the physical server represented by the com-

ponent serverA has an unexpected hardware failure, and
webappA function instance becomes unavailable. The IN-
VEST verification tool performs the following steps:

1. The term service is updated using the substitution
service1 ≡ service[webapp/functionwebapp(webappB))].

2. The sequence σ = σ(functionwebapp(webappB), service1)
of terms that may require verification is constructed.

3. Reverification is performed by calculating A1 = ρ(σ,Acv,
Gservice) yielding the new assumption function A1. The
reverification of functionwebapp(webappB) results in the
new value v8new

= 0.9949, and comparison with the old
value v8 = 1− 1.3571E-5 yields

compare(v8new
, v8) = [0.9949 ≥ 1−1.3571E-5] = false.

Since the stopping condition is not satisfied, reverifica-
tion continues to the component service1 resulting in the
new verification value v9new

= 0.9924. None of the other
components is reverified.

Adding a Function Instance.
To improve the robustness of the service’s database func-

tion, we suppose that the system administrator deploys (or
considers deploying) a new instance of the db function on
the physical server represented by the component serverE.
The new db function instance is represented by the compo-
nent term dbE ≡ deploydb(serverE). Once we extend the
properties function Gservice with the mappings serverE 7→
(E1E , E2E) and dbE 7→ (E6E). The INVEST incremental
verification engine carries out the following steps:

1. The term service1 is updated by term substitution:
service2 ≡ service1[database/function(dbC, dbD, dbE)].

2. The reverification sequence σ = σ(serverE, dbE, service2)
is constructed.

3. Reverification involves calculatingA2 = ρ(σ,A1, Gservice).
Since the components serverE, dbE have not been previ-



ously verified, they are included in the reverification pro-
cess. The reverification of functiondb(dbC, dbD, dbE) re-
sults in the new verification value v7new

= 1−1.2535E-4.
Comparison with the old value v7 = 0.9975 yields

compare(v7new
, v7) = [1−1.2535E-4 ≥ 0.9975] = true,

and the incremental reverification process terminates.

Tool Performance.
To evaluate the performance of the INVEST tool, we ran

a range of experiments in which we started from the system
configuration in Figure 3, and then changed the system over
a number of steps. The changes in these steps involved ad-
ditions of webapp and db function instances (to assess the
effect of increases in the system size) and modifications of ex-
isting components. The experiments were run on a standard
2.66 GHz Intel Core 2 Duo Macbook Pro computer with 8GB
of memory, and all results (comparing the execution times
of compositional and incremental verification) were averaged
over multiple runs of each experiment. The results of three
of these experiments are shown in Figure 10:

• In the experiment whose results are presented in the top-
most graph, additional webapp instances similar to those
from eq. (13) were added to the three-tier service from
Figure 3, one instance at a time. After each such addition
of a component, the properties of the upgraded system
were reverified, using both compositional and incremen-
tal verification. The time taken by incremental verifica-
tion was consistently lower than the time to reverify the
system using compositional verification.

• The middle graph depicts the result of an experiment
in which additional database instances with the form in
eq. (14) were added to the original three-tier service from
our case study. Like in the first experiment, incremen-
tal verification required significantly less time to reverify
the changed system than compositional verification. The
verification times were smaller than in the first experi-
ment because a new database instance is associated with
a single property to verify compared to three properties
for a webapp instance, as shown in eq. (18).

• The last graph shows an experiment in which a disk block
was removed from serverC in our case study, causing a
degradation in the reliability of this server. The experi-
ment was run for different system sizes, obtained through
adding between 1 and 20 webapp and database instances
to the original system. The incremental verification times
were below 500ms for all system sizes in the experiment,
while the compositional verification time grew rapidly
with the system size, although the modification of a phys-
ical server was a localised system change. Even higher re-
ductions in verification times were obtained when a phys-
ical server modification led to improved server reliability,
in a separate experiment not shown in Figure 10 due to
space constraints. In this case, the incremental verifica-
tion time never exceeded 60ms, while the compositional
verification completed in times similar to those from the
last graph in Figure 10.

We expect that the use of the INVEST tool in a real-world
environment will support a combination of scenarios similar
to those from the experiments above, therefore providing
significant reductions in the time required to reverify the
properties of component-based systems after changes.

Figure 10: Experimental results

6. RELATED WORK
Although the concept of incremental analysis has been

around for a number of decades, the need and possibility to
adopt it in the area of formal verification have been identified
and advocated only in recent years [5, 4, 10, 12]. As a result,
only a few projects have explored the use of incremental
verification so far, as described below.

The approaches reported in [16] and [11] exploit the strongly
connected components of Markov decision processes to achieve
incremental probabilistic verification after changes in state
transition probabilities and model guards (i.e., predicates
that describe permitted state transitions), respectively. These
approaches support only a subset of the INVEST change
scenarios, and are specific to a single type of models.

Ulusoy et al. [20] propose an incremental approach to syn-
thesising Markovian models whose level of detail increases
from one incremental step to the next. However, unlike IN-
VEST, the analysis of these incrementally constructed mod-
els is performed using standard verification techniques.

Finally, the results presented in [10] use parameterised
Markov chains whose property values are first computed al-
gebraically, and then re-evaluated after each change in the
model parameters. This technique handles well system mod-
ifications that correspond to changes in the transition prob-
abilities of the analysed model. In contrast, INVEST also
supports structural system changes, including component
additions, removals and modifications that correspond to
structural changes of individual component models.

7. CONCLUDING REMARKS
We presented the INVEST incremental verification frame-

work for the reverification of component-based systems after



changes such as component additions, removals and mod-
ifications. The generic incremental verification engine at
the core of the framework can augment existing assume-
guarantee verification approaches with the ability to rever-
ify component-based systems after changes efficiently, by
reusing previous verification results whenever possible. To
illustrate this characteristic of the INVEST engine, we de-
scribed its integration with an existing approach for the
assume-guarantee verification of probabilistic systems, and
we “specialised” the result of this integration for the in-
cremental verification of probabilistic safety properties of
component-based software services deployed on cloud com-
puting infrastructure. The effectiveness of the framework
was assessed using a prototype implementation of all three
layers of INVEST—the incremental verification engine, its
integration with a probabilistic model checker, and the adap-
tor for the verification of cloud-deployed software services.

One advantage of our framework is its early completion
of the incremental verification process. The reverification of
the sequence of components affected by a change is stopped
as soon as it is clear that the system as a whole is not any
worse than prior to the change. To take full advantage of
this capability, we are planning to extend INVEST with the
ability to link property values to the overall system require-
ments, which can be regarded as predicates on the values
of these properties. This will provide a basis for choosing a
suitable definition for the compare function that underpins
the early termination of an incremental verification step.

Another area of future work is the development of a domain-
specific language (DSL) that will enable cloud datacentre
administrators to use the INVEST tool to examine the re-
liability of cloud-deployed software services, and to explore
“what if” scenarios associated with software and hardware
upgrades and reconfigurations that they are planning, prior
to implementing them. Without such a DSL, significant
knowledge is required to take advantage of the capabilities
of INVEST. Finally, we are investigating the integration
of the INVEST incremental verification engine with other
assume-guarantee verification paradigms, and the develop-
ment of INVEST adaptors for other application domains.
This integration will “fill in” the INVEST elements in Fig-
ure 1 with alternative building blocks. Another direction
for future work is to explore the effectiveness of INVEST in
handling property changes in an incremental manner.

Acknowledgements

This work was partly supported by the UK Engineering and
Physical Sciences Research Council grant EP/H042644/1.

8. REFERENCES

[1] S. Berezin, S. V. A. Campos, and E. M. Clarke.
Compositional reasoning in model checking. In
International Symposium on Compositionality: The

Significant Difference, pages 81–102. Springer, 1998.

[2] C. Blundell, D. Giannakopoulou, and C. S. Pasareanu.
Assume-guarantee testing. ACM SIGSOFT Software

Engineering Notes, 31(2), 2006.

[3] R. Calinescu. Emerging techniques for the engineering
of self-adaptive high-integrity software. In J. Camara
et al., editors, Assurances for Self-Adaptive Systems,
volume 7740 of LNCS, pages 297–310. Springer, 2013.

[4] R. Calinescu et al. Dynamic QoS management and

optimization in service-based systems. IEEE Trans.

Softw. Eng., 37:387–409, 2011.

[5] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and
R. Mirandola. Self-adaptive software needs
quantitative verification at runtime. Communications

of the ACM, 55(9):69–77, 2012.

[6] R. Calinescu, S. Kikuchi, and K. Johnson.
Compositional reverification of probabilistic safety
properties for large-scale complex IT systems. In
Large-Scale Complex IT Systems, volume 7539 of
LNCS, pages 303–329. Springer, 2012.

[7] E. Clarke, D. Long, and K. McMillan. Compositional
model checking. In Proc. 4th Intl. Symp. Logic in

Computer Science, pages 353–362, 1989.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled. Model

Checking. MIT Press, 1999.

[9] K. Etessami, M. Kwiatkowska, M. Vardi, and
M. Yannakakis. Multi-objective model checking of
Markov decision processes. In TACAS’07, pages
50–65. Springer, 2007.

[10] A. Filieri, C. Ghezzi, and G. Tamburrelli. A formal
approach to adaptive software: continuous assurance
of non-functional requirements. Formal Asp. Comput.,
24(2):163–186, 2012.

[11] V. Forejt et al. Incremental runtime verification of
probabilistic systems. In Runtime Verification, volume
7687 of LNCS, pages 314–319. Springer, 2012.

[12] C. Ghezzi. Evolution, adaptation, and the quest for
incrementality. In Large-Scale Complex IT Systems,
volume 7539 of LNCS, pages 369–379. Springer, 2012.

[13] Y. Kesten and A. Pnueli. A compositional approach to
CTL* verification. Theor. Comput. Sci.,
331(2–3):397–428, 2005.

[14] M. Kwiatkowska, G. Norman, and D. Parker. PRISM
4.0: Verification of probabilistic real-time systems. In
CAV’11, volume 6806 of LNCS, pages 585–591.
Springer, 2011.

[15] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu.
Assume-guarantee verification for probabilistic
systems. In TACAS’10, pages 23–37. Springer, 2010.

[16] M. Kwiatkowska, D. Parker, and H. Qu. Incremental
quantitative verification for Markov decision processes.
In DSN-PDS’11, pages 359–370, 2011.

[17] K. Meinke and J. V. Tucker. Universal algebra. In
S. Abramsky and T. S. E. Maibaum, editors,
Handbook of logic in computer science, volume 1,
pages 189–368. Oxford University Press, 1992.

[18] I. Sommerville et al. Large-scale complex IT systems.
Communications of the ACM, 55(7):71–77, 2012.

[19] K. Thomas. Solid state drives no better than others,
survey says. http://www.pcworld.com/
businesscenter/article/213442/solid_state_

drives_no_better_than_others_survey_says.html.

[20] A. Ulusoy, T. Wongpiromsarn, and C. Belta.
Incremental control synthesis in probabilistic
environments with temporal logic constraints. In
CDC’12, pages 7658–7663, 2012.

[21] K. V. Vishwanath and N. Nagappan. Characterizing
cloud computing hardware reliability. In SoCC ’10,
pages 193–204, New York, NY, USA, 2010. ACM.


