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Abstract - 22 . \W-BO

The problem of pole and zero retention in multivariable
system reduction is regarded as the generation of a series
factorization of the system transfer function matrix.
Necessary and sufficient conditions for the existence of
the factorization are derived in terms of the decomposition
of the state space into A-invariant and {A,B }-invariant

subspaces.

1. Introduction

The facility to retain dominant poles and zeros of an
mxm linear time-invariant system S(A,B,C) in R" as poles
and zeros of a reduced model S(Ar,Br,Cr) i Rnr is an
important part of model reduction methodology. In the
case of a single-input,single-output system with strictly
proper transfer function, g(s),of order n, this can always
be achieved by series factorization of g(s) in the form

g(s) = gq(s)h(s) v ulf B3

where g.(s) and h(s) are proper transfer functions of order
1

and n.

5 respectively, n1+n2 = n, and the dominant poles

ny

and ze?os of g(s) are subsets of the poles and Zeros Bt gi(sﬁ,
A reduced model gr(s) of g(s) of the required form is then
obtained by computing a reduced model hr(s) of h(s) and

setting

g,.(s) = g1(s)h (s) L (2)

This paper considers the extension of this approach

to the multi-input, multi-output case in the natural manner



by considering the existence of the series factorization
of the system transfer function matrix,G(s), in the form

G(s) = Gl(S)H(S) sewit 3)

where G1 and H are proper transfer function matrices
possessing realizations of order ny and n, respectively,

1+n2 = n, and the dominant poles and zeros of G are subsets

of the poles and zeros of G,. The condition n = n,+n

is required to ensure that we do not introduce any extra

n

2

system states.
A general solution of this problem is not presented.
A useful solution is obtained however for the case when

Gl(s) is strictly proper and H(s) is taken to have the form

H(s) = I + Gz(s) cea(4)
where G2(s) is strictly proper. This decomposition is
illustrated in Fig.1. It has the advantage that it can

be generated by state feedback transformations and enables
the problem to be examined using geometric methods.

The geometric formulation of the problem is described
in section 2, where necessary and sufficient conditions for
the existence of the decomposition.are derived in terms of
the existence of direct sum decompositions of the system
state space. The resultis are illustrated by an example
in section 3 and, in section 4, their application to medel

reduction is outlined.



2. Factorization of the Transfer Function Matrix

Consider the mxm system S(A,B,C) and the factorization
of G(s) = C(SI~A)"1B into the form defined by equations (3)
and (4). The following lemmas establish the connection

between this problem and geometric feedback theory.

Lemma 1: Let F be an arbitrary mxn matrix, then
G(s) = C(sI -A+BF)"'B{I_ + F(sI_-A) 1B}
- n m n

Proof: TFollows directly from the identity

1.-1

i§ o
(In+BF(SIn—A) ) B

C(sI_-A+BF)™'B 1

C(sIn—A)_

1 1 1

1t

C(SIHFA)_ B(Im+F(SIn—A)_ B)~

Lemma 2: G(s) has a factorization of the form

G(s) = Gl(s)(I+Gz(s)) where each strictly proper transfer
function matrix Gi has a realization of dimension n.

= n if, and only if, there exists

(i =1,2) with n,+n

1 72
an mxn matrix FO such that

B =y 4 _ =1
Gl(s) = C(SI~A+BFO) B , GZCS) = Fo(sInA) B

T
have a realization of dimension n . (i = 1,2) and n1+n2 = n.
Furthermore, if S(A,B,C) is controllable, then for a
specific choice of Gl(s) and GE(S) the matrix FO is
unique.
Proof: Given G1 and 62 satisfying equation (7) with

n1+n2 = n then sufficiency follows from Lemma 1 with

F = FO. Conversely, if G(s) has a decomposition of the



required form, let Gi(s) have a realization of dimension
n, described by the triple (Ai,Bi,Ci) (i = 1,2). A state
representation of the system is hence

Xl(t) = Alxl(t) + Blv(t)

v{t) = W(i) + B2(1)

Xz(t) = Azxz(t) + Bzu(t)

y(t) = Cyxq(t) ,  2(t) = Coxy(t) ... (8)

or, using the composite state x(t) = (xlq(t), sz(t))T,

A, B.,C B
%(t) = : 3 2} x(t) + ! u(t)
0 A, B,
y(t) = [c1 , 0] x(t) ... (9)

Then the choice of F_ = [0, C,| satisfies the desired

conditions.
Finally if S(A,B,C) is controllable and Gz(s) = FO(SI_A)_lB

= FO(SI—A)_lB for some matrices F_,F_, it follows that

F al-lp = F ai-1
O

" B (1 = 1,2, «n1)

whence

(F_-F) [B,AB,...,A""'B] = 0

and controllability implies that FO = F

The immediate interpretation of Lemma 2 is that if we
drop (for the moment) the condition that the pole and zero
sets of Gl contain specified subsets of the pole and zero
sets of G, then the factorization problem reduces to the
generation of conditions for .the existence of FO. These

are described in the following theoremn.




Theorem 1:

Suppose that S(A,B,C) is both controllable and
observable. Then there exists an FO satisfying the
conditions of Lemma 2 if, and only if, there exist sub-

spaces n4 and Ng in R™ of dimension ny and n, such that

Anz(::nz + R(B) ; an = {0} . 3 el 1)

any C ny C.(11)
. .n

TH.€9n2 = R ...(12)

Proof

Given (10)-(12), there exists FO such that

(A—BFO)nzCn:3 , F_ny = {0} . ..(13)

so that No is just the unobservable subspace of S1 = S(A—BFO,B,C)
and ny is just the unobservable subspace of 82 = S(A,B,FO).

It follows directly that G1 and G2 (as given by (7)) have
realizations of the required dimensions.

Conversely, suppose there exists FO satisfying the
conditions of Lemma 2. Note that S1 and 82 are controllable
but not observable. Let Ny (resp.rng) be the unobservable
subspace of 82 (resp. Sl), then controllability and
observability imply that Ny has dimension n., i = 1,2,

It is easily verified that equations (10) and (11) are

satisfied by this choice of Ny and Ny - Equation (12) is
proved by using the definitions to show that nlf\nz is an
A-invariant subspace in the kernel of C. Observability

then implies that n,{)n, = {0} which proves (12).




- B s

Our originallproblem now reduces to the problem of
choosing subspaces nq and No which satisfy (10)-(12) and
such that the pole and zero sets of G1 contain specified
subsets of the pole and zero seté of G. Note that the
conditions of Theorem 1 take a natural form for the analysis
of this problem, as

(a) The A-invariant subspace Ny can be associated
with poles PysPgs - Py of S(A,B,C) obtained by computing

1
the characteristic polynomial pl(s) = (s—pl)...(s—pn ) of
1
the restriction A|n1 of A to ni.
(b) The {A,B}-invariant subspace No in the kernel

of C can be associated (Wonham, 1974) with invariant zeros

Zig 3 Zyy s oo B of S(A,B,C) obtained by computing the

1272 n,

characteristic polynomial pz(s) = (s—zl)...(s—zn ) of
2

(A-BF ) |n,.

These considerations enable us to characterize the pole-
zero structure of G1 and H explicitly in terms of the choice
et Ny and No - Let p(M) denote the characteristic polynomial
of a square matrix M. Then it is trivially verified from
(10)-(13) that

P(A-BF ) = D(Alnl)p(A—BFOlnz) = py(s).py(s)

...(14)

Using this expression we can prove the following corollary
to Theorem 1.
Corollary:

With the preceding notation, if the conditions of
Theorem 1 are satisfied then pl(s) is the characteristic
polynomial of any minimal realization of Gl(s), and pz(s)

is the zero polynomial of any minimal realization of H(s).



Proof :

Note first that a minimal realization of a controllable
system is obtained by factoring out the unobservable sub-
space, or unobservable modes corresponding to cancelling
poles and zeros.

If S(A,B,C) is controllable and observable then (c.f.
proof of Thm. 1) Ny is the unobservable subspace of
S(A—BFO,B,C). Hence by (14), pl(s) is the characteristic
polynomial of any minimal realization of Gl(s).

The zero polynomial (Owens, 1978) of S(A,B,FO,I) is

given by
sl _-A -B
Zy(s) = = Isrn_A+BFO; = p(A-BEF.)
F I
o m
by application of Schur's lemma.  As nq is the unobservable

subspace of S(A,B,Fo), (14) implies that the zero polynomial

of any minimal realization of H(s) is just pz(s).

This result could also be obtained by direct transformation
to the basis (nl,nz) for R™ and using the system state
equations in the form (9).

We are now in a position to solve our original
problem. The following theorem summarizes the development

so far and provides necessary and sufficient conditions.

Theorem 3:
Let the m-input,m-output system S(A,B,C) be invertible,

controllable and observable and have nZ Zeros. Let



z B
B = {p1’p2""’p2} be a subset of the poles of S(A,B,C)
and let g, = {an—r+1""’znz} be a subset of its zeros.

Then the system transfer function matrix G(s) has a
factorization of the required form where PO and Zo are
subsets of the poles and zeros of a minimal realization
of GI(S) if, and only if, there exists subspaces N, and

n, satisfying the conditions of theorem one and such that

2
(a) (s—pl)(s—pz)...(s—pg) divides p,(s)

(b) pz(s) divides (s—zl)(s—zz)...(s*z )

n_ =
Z

(Note: in particular it is necessary that nlzﬁ and

n,<n_-r)
- Z

2

Proof
The proof follows from the previous development noting
that, if Gl(s) is to have ZO as a subset of its zeros, then

the zeros of H(s) are a subset of {21’22"" A ¥,

2 rﬁ* r

Giﬁen the subspaces Ny and Ng satisfying the conditions
of theorem 3, the matrix Fo can, in principle, be computed
from equation (13). The procedurerfor choosing Ny and N,
is particularly simple if S(A,B,C) has distinct eigenvalues

and zeros. In this case let {wl,wz,...,wn} be the linearly

independent eigenvectors corresponding to the poles {pl’pZ""

of A and let {Vl’VZ""’Vn } be the linearly-independent
Z

zero-directions corresponding to the zeros {21,22,..,zn }a

Z
It is trivially verified that a subspace is A-invariant if,

P

and only if, it is spanned by a finite subset of {wl,wz,...,w },

}



and {A,B}-invariant if, and only if, it is spanned by a

finite subset of {Vl’vz""’vn 1. There are hence only
Z

a finite number of candidates for Ny and Mg - The number
of candidates is further reduced by noting that we must

have

~

A
ny = span{wl,wz,...,wﬂ}cj ny iinwil 25)

and

~

nzcz_span{vl,vz,...,vnz_r} N, sewl 18)

>

(If the system state-space is transformed to the basis
{wl,...wn}, and the zero directions recalculated, selection
of suitable N4 and No becomes particularly simple as the
eigenvectors are now just unit vectors el,ez,...,en).

Given suitably chosen ny andrnz, transformation to

a basis matrix LEI,Ez] for ﬂfﬁDﬂz yields the system

S(A,B,C) in the form of equation (9), i.e.

= >
]
>
1]

s O] .17

B ~
IJ ;, €= [C

In this representation, B1 is full rank (for le = 0 implies
*
that BX%EHZC:V , and invertibility then implies that x = 0),

1) thét C, may be calculated uniquely. Hence minimal

2
realizations S(Ai,Bi,Ci) of Gi(S) (i = 1,2) can be derived
directly from the transformed system of eqn. (17).

The following simple numerical example has been

constructed to illustrate the application of the preceding

theory.
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i Example of Transfer Function Matrix Factorization

Consider the invertible system S(A,B,C) defined by

A=(2 o 1 0o 0 1) : B=( 1 0); C-=
2 1 8 1 =3 1 ' o 1
3 5 4 1-7 1 0o 2
8 =% -8 <2 B8 D 1 0
2 4 3 1-6 1 0o 2
-6 0-1 0 0 -5 -0.9 0.1

which is controllable and observable, with poles at
{0,0,3,-2,-3,-4}, zeros at {-1.378,-3.387,-4.4351 1}, and

transfer function matrix

53+4.182—2.98-12.2 2.182+9.2S+3.7 ]
_ s(s+2)(s-3)(s+4) s(s-3)(s+3)(s+4)
G(s) =
2.152+8.15-0.2 s345.15%-0,85-20.3
s(s+2)(s-3)(s+4) s(s-3)(s+3)(s+4)

We wish to factor G(s) into the form of Fig.l such that Gl(s)
has {0,0,3} as a subset of its poles, and {1} as a subset
of its zeros.

With the eigenvalues {0,0,3} and the =zeros

{-1.378,-3.387,-4.435,1} are associated the eigenvectors

r ~ ¢

w, =[ 0 ., wy = | 1 , wg=[1
3 =7 1

0 | 2

-3 0 -2

-1 < 1

0 | -1 ] Py

100000

010000



and the zero directions

respectively.

n &
2

the conditions of Theorem 3.

0

0
-0.608

1

-0.608

(-0.14

= F1 =

1.721

0.334 |

H 1 1 f
basis {Vl Vo 'sVg } for Ny as

1

V1

then transformation of the system S(A,B,C) to

A

1

0 )

s

{wl,wz,wg,vl',v2 Vg

where -

A =

rooom%
0 0 0 —
0o 0 3 %
0 0 0 -2
0 0 0 0
O 0 0 O

'} yields S(A,B,C) of the

o Wi Wl

~

ik

o b wl win

~ A

wH
1]

1

[ 1.025]

.41

The subspaces Ny 4 span{wl,wz,wg} and

span{v,,v,,V,} do not intersect, and hence satisfy
1772473

the basis

form (17)

I

3 3

2 1

3 3

1 1

3 3

1 0

0 1
130 T o P

.667

<210 |

Defining the more convenient
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The matrices Al’Bl’Cl’AZ’Bz are obtained by inspection,

and a simple calculation yields CZ‘ Thus
- -1 1 -
A, = (0 0 0) ; By = [-3 -3 ; g =[O0 1 1]
2 1
0 0 0 5 = -1 -1 1J
1 1
0O 0 3 3 3
and
A2 = [-2 0 0 ; B2 = 1 0 ; 02 = (0 1 1
0 -3 0 0 1 1 0 1
0 0 -4 0.1 0.1

It is simple to verify that S(Al’Bl’Cl) does indeed have a zero

%y = 1, and the desired poles. We find that
1 s5-2 i
G:{s)] = == ;
1 s(s-3) 1 i
1.1lg44.3
G,(s) = s o Lo
2 (s+4) 1.1s+4.2 0.1
(s+2) :
and G (s)(I+Gy(s)) = G(s).

The desired decomposition has thus been achieved!



4. Application to Model Reduction

Again, consider an mxm invertible system S(A,B,C)
with transfer function matrix G(s), and suppose that the
decomposition G(s) = Gl(s)(I+G2(sj), as described above,
exists, where Gl(s) contains specified subsets of the poles
and zeros of G(s). These subsets are assumed to be of
considerable importance in characterizing the system
dynamics, and we wish to retain them in a reduced model.

*
If G2 (s) is some reduced order model of Gz(s), then

* A *
G (s) = Gl(s)(I + 62 (s)) ... (18)

will be a reduced order model of G(s) which preserves the
desired subsets of the poles and zeros of G(s).
Equivalently, in state-space form, if S(A,B,C) is

in the form (17) (or ( 9)) corresponding to the transfer
%

* *
function matrix factorization (18), and S(A2 ,B2 ,C2 ) is

* *
a state-space representation of G2 (s), then G (s) is

* _x %

deseribed by S(A ,B ,C ) where

*
2
*

Al BIC
A

0

2 . .(19)

Assuming S(A,B,C) and S(Az*,Bz*,Cz*).are controllable
and observable, S(A*,B*,C*) will be a minimal realization
of G*(s), provided that the choice of GZ*(S) has not
produced any pole-zero cancellation between Gl(s) and
(146, (s)).

The use of the factorization G(s) = Gl(s)(I+G2(s))
as a means of preserving poles and zeros in model-reduction

*
has the bonus that suitable choice of reduced model, Gz (s),



ol Gz(s) will ensure that G*(s), as described by equation
(18), matches a desired number of moments of G(s) both
about s = 0 and s = ®, To state this precisely (without
proof, which is obvious) :

Proposition:

*
If G2 (s) is a reduced-order model of Gz(s) which

matches the first m terms of the series expansion about

S = [ee] 5
00 -
_ -1
Gy(s) _z M,s
i=1
and the first n, terms of the series expansion about s = 0,
_ i
Gz(s) = ‘E N;s
i=0

*
then G (s), as defined by equation (18), will match the
first mo+1 and n terms respectively of the series

expansions of G(s) about s = « and s = 0.

The application of the above ideas can be illustrated
by considering again the simple example of section (3).
Here it is clear that the unstable poles 0,0,3 and the
R.H.P. zero at z = 1 are of such importance that they must
be retéined explicitly in a reduced order model. We make
use of the given factorization G(s) = Gl(s)(I+G2(S)).

1t can be seen that the residue of the pole of Gz(s)
at -4 is small, and, applying a well-established model
reduction principle (Davison 1966, Marshall 1966), we

neglect this mode to obtain



B ~3 o 1 1 0

The reduced system has transfer function matrix

52‘3 2s+1

ctegy = | 8(s-8)(s*2) 8(3-3)(s+3)
2s s +8-5

s(s-3)(s+2) s(s-3)(s+3)

which again has poles at 0,0,3, and a zero at 1,

5. Conclusions

This paper considers one possible approach to the
problem of simultaneous retention of poles and zeros in
the derivation of reduced-order models of linear multi-
variable systems. It is based on a series factorization
of the system transfer function matfix into proper and
strictly proper parts. Because of its demonstrated
connection with state feedback, the factorization can be
shown to exist precisely when the system state-space
admits a direct sum decomposition in terms of A- and
{A,B}-invariant subspaces. These invariant subspaces
lend themselves naturally to the problem of ensuring that
one component of the factorization retains desired pole
and zero subsets of the original system; reduction of
the remaining subsystem will then yield a reduced-order
model with the desired properties.

Although consideration has only been given to the
particular case in which Gl(s) is strictly proper and

H(s) takes the form I+G2(S), with Gz(s) strictly proper,
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it may be useful to examine conditions under which the
system admits a more general factorization, e.g.
Gl(s),Hl(s) both strictly proper, or both proper but
not strictly proper. This problém together with the
computational problem presented by the result of this

paper are the subject of future work.
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