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ABSTRACT

An algorithm for the identification of non-linear systems
which can be described.by a Wiener model consisting of a linear
system followed by a single-valued non-linearity is presented.
Cross-correlation techniques are employed to decouple the

identification of the linear dynamics from the characterization

of the non-linear element.



INTRODUCTION

Although the functional series expansioﬁ of Volterra provides
an adequate representation for a large class of non-linear systems,
practical identification schemes based on this description often result
in an excessive computational burden. It is for this reason that

several authors™ '’

have considered the identification of specific
configurations of non-linear systems, notably cascade systems composed
of linear subsystems with memory and continﬁous zero-memory non-linear
elements.

The Wiener model, illustrated in Fig.l, consists of a linear
system followed by a continous no-memory non-linear element. The
model is a much simplified version of Wiener's original non-linear
system characterization3 and belongs to the class of models studied
by Cameron and Martiné, and Boses- In the present study, correlation
analysis is used to decouple the identification of the linear and
non-linear component subsystems when the input is a white Gaussian

process. The results of a simulation study are included to illustrate

the validity of the algorithm.

IDENTIFICATION OF THE LINEAR SUBSYSTEM

Consider the Wiener model, Fig.l, where the linear time-invariant
system has an impulse response h(t) and the continuous single-valued
non-linear element can be represented by a finite polynomial of the

form

2 k
y(t) = qu(t) + 1! (t) + ... + ¥, 9 (t) (1)

The measured system output, z(t), can then be expressed as
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which has the form of a Volterra series with the special property
that the kernals are separable.

If the input signal x(t) is a zero mean white Gaussian process
with a spectral density of 1 watt/cycle, then its i'th dimensional

autocorrelation function is given byG

x(tl)x(tz)...x(ti) (o] for i odd

(3)

I I 8(t ~t) for i even
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where the summation is over all ways of dividing 'i' objects into
pairs.

If the input to the Wiener model comprises a Gaussian white
process x{t) with a mean level 'b', then from egn (1) the measured

system output z(t) is given by

z(t) = wl(_t) + wz(t) + ...+ wk(t) + n(t) (4)
where wi(t) =V {m g8 % Imh(Tl).,.h(Ti){x(t-Tl}+b}
_— {x(t—Ti)+b}dTl...dTi (5)

The first order cross-correlation function between the Gaussian

white input x(t) and the measured system output is defined as




¢ (o) = E{z(t)x(t-0)}
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A wk(t)x(t—c) + n(t)x(t-0) (6)

Evaluating the first term on the rhs of egn (6)
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Considering the second texrm on the rhs of egn (6)
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Similarly, for the third term
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Higher order terms are evaluated in a similar manner.

Collecting terms

©
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¢, (0) = h(o) {y +2by, Imh{Tl}dTl+3Y3 Imh (r))ar,
+ 3Y3b2 Ii h(t,)h(ty)dr,dry + ...} +n(t)x(t-0) (10)
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Assuming that the input signal and the noise process are statistically




independent, and providing the linear subsystem is stable, bounded-

inputs bounded outputs, the first order cross-correlation function
eqn (10) becomes directly proportional to the impulse response of

the linear system

4., = ghlo) (11)

This represents an application of a result due to Nuﬁﬂll?, who showed
that for a wide class of signals the input-output cross-correlation
function for a non-linear no-memory device is proportional to the
input autocorrelation function.

If the identification is performed with the aid of a digital
computer, the cross-correlation function egn (11) will be in sampled
data form and estimates of the coefficients in the pulse transfer

function representation of the linear system

-1
z{gh(c)} = 2EL (12)
A(z 7)

can be obtained using a least squares algorithm.

IDENTIFICATION OF THE NON-LINEAR ELEMENT

Consider the schematic diagram of the identification procedure
illustrated in Fig.l. The error e(i) between the sampled process

output z (i) and the output of the Wiener model y(i) can be defined

as
ei) = z(i) - y(i) (13)
where y(i) = Yllcf:[ci) + 721%2(1) e & yklc}k(i) (14)
a(i) = —al&(i—l) Yy —agé(i—l) + blx{i—l)

- +b£x(i—2) (15)
and Te = Btytl, t =1,2..k. Combining eqn's (13), (14) and (15),

and considering (N+%) measurements of the sampled process input and

output gives the matrix equation
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Since all the elements of the matrices Z and ¢ can either be

measured or estimated, a least squares estimate of the coefficients

le, j =1,2...k associated with the non-linear element can be

readily computed

6 = (670) o7z (17)

and the identification is complete.

SIMULATION RESULTS

The identification procedure outlined above was used to identify
the parameters in a Wiener model consisting of a linear system with

transfer function

Gls) = ——* (18)
s + 65 + 25
in cascade with a non-linear element of the form
2 3
y(t) = 5.0g(t) + 50.0g (t) + 500.0q (t) (19)

To provide a realistic simulation study, the model was simulated on
an Applied Dynamics 4 analogue computer with an input signal
produced from the summation of a dc level and the output of a

white Gaussian noise generator. Samples of the input-output signals
were processed using a CONPAC 4020 process computer to provide an

estimate of the sample cross-correlagram illustrated in Fig.2.




Ieast squares estimates of the parameters in the linear pulse
transfer function model and the polynomial representation of the

non—-linear element are summarised in Table 1.

Parameter al a2 bl b2 Yl 72 Y3
True value | -1.58 0.67 0.215 0.0 5.0 50.0 500.0
Estimate =1.57 0.66 0.216 -0.004 | 5.14 52.421 518.12

Table 1 A Summary of the Identification Results

CONCLUSIONS

A procedure for the identification of systems having the structure
of the Wiener model has been presented. Provided the non-linear
system can be excited by a Gaussian white process with a4 non-zero
mean, the impulse response of the linear system can be identified
independently of the non-linear element. This effectively decouples
the identification procedure and simplifies considerably the

identification of this class of non-~linear system.
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PIG. 1.

FIG. 2.

Figure Captions

Schematic diagram of the identification

procedure for the Wiener model.
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A comparison of impulse responses.
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