
This is a repository copy of Topography discretization techniques for Godunov-type 
shallow water numerical models: a comparative study.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/75383/

Article:

Kesserwani, G. (2013) Topography discretization techniques for Godunov-type shallow 
water numerical models: a comparative study. Journal of Hydraulic Research , 51 (4). pp. 
351-367. ISSN 0022-1686 

https://doi.org/10.1080/00221686.2013.796574

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Topography discretization techniques for Godunov-type shallow water 

numerical models: a comparative study 

GEORGES KESSERWANI, Department of Civil and Structural Engineering, University of 

Sheffield, Sheffield, UK 

Email: g.kesserwani@shef.ac.uk (Corresponding Author) 

 

ABSTRACT 

This paper compares various topography discretization approaches for Godunov-type shallow water 

numerical models. Many different approaches have emerged popular with Godunov-type water wave 

models. To date, literature lacks an investigative study distinguishing their pros and the cons, and 

assessing their reliability relating to issues of practical interest. To address this gap, this work reviews 

and assesses five standard topography discretization methods that consist of the Upwind, the surface 

gradient method (SGM), the mathematically balanced set of the SWE (Etta-SWE), the hydrostatic 

reconstruction technique (Hydr-Rec) and the RKDG2 model. The study further considers mix-mode 

approaches that incorporate wetting and drying together with the topography discretization. Steady and 

transient hydraulic tests are employed to measure the performance of the approaches relating to the 

issues of mesh size, topography�s differentiability, accuracy-order of the numerical scheme, and impact 

of wetting and drying. 
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1. Introduction	

Godunov-type shallow water models are featured with the inherent ability to accommodate 

complex flow transitions within the numerical solution (Toro 2001, Guinot 2003, Toro and 

García-Navarro 2007). In recent years, they have received applied improvements and have 

been incorporated into water industry standard software (Lhomme et al. 2010), and used to 

support flood risk management (Néelz and Pender 2010). In this context, applicable 

Godunov-type water wave models are at most second-order accurate and require a topography 

discretization technique and a wetting and drying condition (see Delis and Kampanis 2009 for 

a comprehensive review). 

In its simplistic view, a Godunov-type scheme provides a first-order accurate model 

that is conceptually based (Godunov 1959). It employs the Finite Volume (FV) framework to 

approximate the integral of the flow variables � relative to the shallow water equations (SWE) 

cast in a conservative form � as piecewise-constant per local discrete element but with inter-

elemental discontinuities; these discontinuities are combined via the solution of the Riemann 

problem to provide a sound approximation to the inter-elemental fluxes (Toro 2001). To 

achieve a second-order accurate formulation in a Godunov-type framework, the MUSCL 

interpolation approach is often employed (Van Leer 1979), which rests on (extrinsic) 

reconstruction of piecewise-linear solutions from the initial local piecewise-constant data.  

However, the MUSCL method compromises with larger and non-local calculation stencils. 

More recently, with the establishment of the discontinuous Galerkin (DG), a local second-

order (or higher-order) accurate Godunov-type formulation may be intrinsically derived from 

the conservation laws of the SWE, providing a more sophisticated formulation than the 

traditional FV framework (Kesserwani and Liang 2011). 

The incorporation of a topography discretization technique with Godunov-type SWE 

numerical solvers has been an issue of extreme relevance to their practical development. In 

respect of this, various discretization approaches have appeared, over the last two decades, 

which are featured with the ability to maintain a correct discrete balance between topography 

gradient and the spatial flux. Such a numerical model has been referred to be �well-balanced� 

or to satisfy the �C-property� (Bermúdez and Vázquez-Cendón 1994, Greenberg and LeRoux 

1996, LeVeque 1998). Among the popular topography discretization approaches, the 

sophisticated Upwind approach is the eldest. It was derived by Bermúdez and Vázquez-

Cendón (1994) for a first-order accurate formulation and was then adopted to integrate the 

topography within higher-order FV-based Godunov-type models (e.g. García-Navarro and 

Vázquez-Cendón 1999, Vulovic and Sopta 2002, Crnjaric-Zic et al. 2004). However, the 

Upwind approach is renowned for its complexity in implementation and its limitation to a FV 

approximation (Zhou et al. 2001, Kesserwani et al. 2010). The Surface Gradient Method 

(SGM) relies on numerical reconstruction to the free-surface elevation and discretises the 
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topography source term using a cell-centred pointwise approach. It was first reported in Nujic 

(1995) for a first-order Godunov-type model, and formally formulated in Zhou et al. (2001) 

for a second-order MUSCL scheme. Alternatively, Rogers et al. (2003) approached the SGM 

mathematically providing a new well-balanced set for the SWE (referred hereafter to Etta-

SWE) that incorporates the free-surface elevation as a main flow variable, and with which the 

topography source term discretizes in pointwise manner. The Etta-SWE approach was further 

improved and verified for a MUSCL second-order scheme in the work of Liang and 

Borthwick (2009). Another popular approach for constructing well-balanced shallow water 

numerical model is the one established by Audusse et al. (2004), which is known as the 

hydrostatic reconstruction approach (referred hereafter to Hydr-Rec). The Hydr-Rec method 

reconstructs the free-surface elevation � likewise to the SGM � but acts differently to balance 

the flux and topography gradients so that to further maintain the positivity of the water depth, 

and as such provides the further ability to cope with wetting and drying. The Hydr-Rec 

approach has been successfully applied� as a topography discretization technique � to various 

high-order Godunov-type models such as WENO-FV and DG methods (Xing and Shu 2006, 

Noelle et al. 2007), and further enhanced � as a wetting and drying condition � with both FV 

and DG second-order Godunov-type models (Liang 2010, Kesserwani and Liang 2012). As to 

the DG method, Xing and Shu (2006) demonstrated theoretically that it is by far the simplest 

approach to obtain the well-balanced shallow water numerical model. In light of this, 

Kesserwani et al. (2010) devised a second-order Runge-Kutta DG method (RKDG2) that is 

effortlessly well-balanced in which the local discrete topography is taken as piecewise-linear 

but globally continuous. This topography setting is particular to the RKDG2 framework 

which is experienced to be more costly than FV-based Godunov-type model. Unquestionably, 

this review is far from being complete and has only focused on the topography discretization 

approaches that will serve the purpose of this investigation. Nonetheless, for a more detailed 

review including the latest trends on the topic of source terms discretization within Godunov-

type models, the reader is referred, for instance, to the work of George (2008), LeFloch and 

Tanh (2011), and Murillo and García-Navarro (2010, 2012). 

Despite the notable progress in the design of topography discretization techniques, 

literature, to date, lacks a study comparing between techniques that are commonly used within 

Godunov-type shallow water models. From this perspective, the aim of this article to 

diagnostically compare popular topography discretization techniques used within Godunov-

type numerical flow solvers. The selected candidates mainly consists of the five techniques 

reviewed above; this study attempts to reveal their pros and cons while addressing questions 

that are believed to be of interest to hydraulic modellers, software developers and potential 

practitioners; these questions include: 
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(i) To what extent of mesh-resolution and/or problem�s complexity each of the currently 

existing topography discretization methods is reliably applicable? 

(ii) What is the topography discretization technique that provides the best trade-off between 

accuracy, efficiency, robustness for wider range of applications? 

The study namely focuses on the Upwind, SGM, Etta-SWE and Hydr-Rec approaches taken, 

respectively, with first- and second-order FV formulations, the RKDG2 second-order 

formulation and combined approaches incorporating the Hydr-Rec within the different 

second-order formulations. Herein, the key ingredient of each of the selected approaches will 

be described, and a total of seven approaches will be investigated using various hydraulic test 

cases with increasing level of complexity. The performance of each approach will be explored 

and discussed in light of the questions (i) and (ii), and relating to effect of wetting and drying. 

Finally, findings will be summarized and key-conclusions will be drawn. 

 

Figure 1. Local discretization of flow and topography data: (a) FV method using piecewise-

constant data, and with which MUSCL interpolation maybe (extrinsically) applied to produce 

piecewise-linear reconstructions; (b) DG2 evolution data that are inherently piecewise-linear. 
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2. DepthǦaveraged	Shallow	Water	Equations	(SWE)	

From the principles of mass and momentum conservation, the 1D mathematical model of the 

SWE can be cast in a conservative matrix form: 

( ) ( )t x   U F U S U       (1) 

In which ( x , t) are the space-time coordinates. U is the vector of the conserved quantities or 

of flow variables, F(U) is  the flux vector and S(U) is the vector containing the topography 

gradient term: 

h

q

 
  
 

U , 2 2

2

q

q gh

h

 
    
 

F  and 
0

 xgh z

 
    

S     (2) 

Where g (m2/s) is the constant gravitational acceleration, h (m) is the water depth, q = hu 

(m2/s) is the unit-width discharge expressed in terms of the velocity u (m/s). By involving the 

Jacobian matrix of the flux with respect to the flow vector (J = ∂F(U)/ ∂U), the system (1) can 

be expressed in a quasi-linear form (i.e. t x   U J U S ). J has two real eigenvalues Ȝ1,2 = u 

± c (where c gh  is the wave celerity) and has a complete set of independent real 

eigenvectors e1,2 = [1, Ȝ1,2]T.  

 

3. GodunovǦtype	numerical	methods	

A 1D computational domain [xmin; xmax] is subdivided into N uniform cells, via interface 

points xmin = x1/2 < x3/2 � < xN+1/2 = xmax, so that a random cell Ii = [xi-1/2; xi+1/2] is centred at xi = 

0.5(xi-1/2 + xi+1/2) and of length ǻx = xi+1/2 � xi-1/2. In what follow, the local approximate 

solution of the flow variables will be denoted by Uh and, consistently, the local approximation 

of topography function will be denoted by zh. 

 

3.1. Finite volume (FV) approximation (first- and second- order) 

In an FV framework, a Godunov-type transformation to the conservative form (1) represents 

locally the flow variables as piecewise-constant, i.e. | [ ; ]
i

T

I i i ih q hU U  , and likewise for 

the topography data, i.e. |
ih I iz z  (see Figure 1a), yielding the semi-discrete formulation 

below: 

 1/ 2 1/ 2

1
| |

i iI i i I

d

dt x
    

h h
U F F S       (3) 

The fluxes, e.g. 
1/ 2iF  at the interfaces xi+1/2 (shared by adjacent cells Ii and Ii+1), are obtained 

by solving the local Riemann problem according to the approximate solver of Roe (1981): 
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 
2

1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

1

1
,

2

Roe p p p

i i i i i i i i

p

    
       



 
    

 
F F U U U U e     (4) 

that is supported with the following entropy fix (to reinforce capturing of transcritical flows): 

 
  

1/ 2 1/ 2 1/ 2*

1/ 2 2

1/ 2 1/ 2 1/ 2

, ,

1/ 2 /1/ 2 1/ 2 1/ 2

                            if   

/(2 ) / 2   if   

and min , max 0, 2

p p p

i i i
p

i
p p p p p

i i i

p p p

i i i ic

  


    

  

  



  

 
   

  
 

   

 


 



   (5) 

The mean eigenvalues 
1/ 2

p

i 
 , associated eigenvectors 

1/ 2

p

ie , and pth wave strengths 
1/ 2

p

i   

can be found via explicit formulae involving the Roe averages of the velocity and celerity, 

and the flow variables involved in 
1/ 2i


U  and 

1/ 2i


U  (Roe 1981); where 

1/ 2 1/ 2| ( )
ii I ix 

  hU U  and 
11/ 2 1/ 2| ( )

ii I ix


 
  hU U  denotes the limits of the approximate 

solution at the interface xi+1/2.  

To obtain a second-order accurate scheme, these limits are often interpolated using 

the MUSCL approach for reconstructing piecewise-linear solution from the initial piecewise-

local constant approximation (van Leer B, 1979), as shown in Figure 1a: 

 1/ 2 | 0.5
ii I i


   h hU U U      (6) 

 
11/ 2 1| 0.5

ii I i


   h hU U U      (7) 

Where     1

1

1

| |
| |

| |

i i

i i

i i

I I

i I I

I I







 
     

h h

h h h

h h

U U
U ĳ U U

U U
   (8) 

 ( ) max 0, min(1, )ĳ r r  is the minmod limiter that controls the variation of the slope 

components to avoid spurious oscillations that would possibly occur around discontinuities 

(Toro 2001). Finally, time-discretization in (3) is achieved using the explicit two-stage 

Runge-Kutta (RK) time stepping controlled by the Courant-Friedrich-Lewy (CFL) condition 

with a CFL number equal to 0.75. 

 Alternatively, to obtain a first-order scheme, it suffice to: (a) zero the gradient 

terms within (6) and (7), i.e. 
1/ 2 |

ii I


  hU U  and 

11/ 2 |
ii I 


  hU U , and (b) use only the first 

stage of the RK discretization to lift the solution to the next time level. 

 

3.2. Discontinuous Galerkin (DG) spatial approximation (second-order) 

The DG method conceptually extends the local FV interpretation to higher than first-order 

accuracy by integrating the Finite Element (FE) notion. The DG method is locally 

conservative and allows scaling in accuracy (Cockburn and Shu 2001). For a 1D second-order 
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DG discretisation (DG2), the sough solution is locally piecewise-linear (i.e. Figure 1b) and is 

spanned by two time-evolving FE coefficients, i.e.  0 1| ,
iI i i

h
U U U . It expands locally as: 

     0 1, ( ) ( )
/ 2i

i

i i iI

x x
x t t t x I

x


   

hU U U               (9) 

The semi-discrete local transformation of the conservative form (1) now produces two spatial 

operators for the update of the two local FE coefficients, respectively: 

0 0

1 1

( ) 0 0

0 ( ) 0

i i

i i

td

dt t

   
   

   

U L

U L
   (10) 

Where 
0

iL  and 
1

iL  are the DG2 local discrete representation to the flux and source terms 

vectors in (1), which can be manipulated to give (Kesserwani and Liang 2011): 

 0

1/ 2 1/ 2

1
|

ii i i I
x

    
 h

L F F S       (11) 

   
   

1 0 1 0 1

1/ 2 1/ 2

0 1 0 1

3
/ 3 / 3

3
/ 3 / 3

6

i i

i i

i i i I i i I i i

I i i I i i

x

x

       


       
h h

L F F F| U U F| U U

                         S | U U S | U U

 

 (12) 

Similar to the second-order version of the FV method, non-oscillatory solution around sharp 

gradients is ensured using the minmod limiter. However, the DG method further requires 

restricting the slope limiting process to the so-called troubled-slope components, which have 

been identified according to the discontinuity detector of Krivodonova et al. (2004). The 

fluxes, e.g. at the interface xi+1/2, are evaluated using the also the Roe Riemann solver (4) and 

(5), but with a direct involvement of the limits defined by the local piecewise-linear solutions 

at xi+1/2 (see Figure 1b). Finally, each of the local coefficients, 
0 ( )i tU  and 

1( )i tU , is advanced 

in time using the explicit double-stage RK time discretization, but with a CFL number equal 

to 0.3 (Cockburn and Shu 2001). 

 

4. Topography	discretization	techniques	

This section briefly summarises the key ingredient(s) of the topography discretization models 

that are commonly used within the Godunov-type methods presented in Section 3, and will be 

compared later in Section 5. The described techniques are all featured by the ability to verify 

the discrete balance with the flux gradient for unperturbed steady flows (i.e. satisfy the C-

property or provide a well-balanced scheme). 

 

4.1 Surface Gradient Method (SGM) 
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The SGM is widely used with FV Godunov-type schemes. It is credited to Zhou et al. (2001) 

where a theoretical verification of the C-property is available. Within the scheme (3)-(8) the 

operation of the SGM may be summarized as: 

1. Reconstruct (h + z = Ș) limits at interface xi+1/2 from the variable h and the topography z: 

1/ 2 ( ) 0.5 ( )i i i ih z h z 
       and 

1/ 2 1 1 1( ) 0.5 ( )i i i ih z h z 
        . 

2. Evaluate the discharge limits at interface xi+1/2: 

1/ 2 0.5 ( )i i iq q q
     and 

1/ 2 1 10.5 ( )i i iq q q
      

3. Set a single topography value at interface xi+1/2 defined by the average 

1/ 2 1/ 2 1/ 2( ) / 2i i iz z z  
     where 

1/ 2i iz z
   and 

1/ 2 1i iz z
  . 

4. Redefine the Riemann states at xi+1/2 according to the averaged topography 
1/ 2iz 

 : 

1/ 2 1/ 2 1/ 2

K K

i i ih z 
     and 

1/ 2 1/ 2 1/ 2/K K K

i i iu q h    (where ,K    ). From these, calculate 

the flux 
1/ 2iF  using equation (4), in which 

1/ 2 1/ 2 1/ 2[ , ]K K K T

i i ih q  U . 

5. Repeat steps 1-4 to further evaluate flux at 
1/ 2iF  interface xi-1/2. 

6. Set 
1/ 2 1/ 2( ) / 2i ih h h 
    and 

1/ 2 1/ 2( ) /x i iz z z x 
      and use them to evaluate 

|
iIh

S  in (3). 

 

4.2 Mathematically balanced set of SWE (Etta-SWE) 

Initially developed by Rogers et al. (2003) where all derivation details are presented. The 

Etta-SWE uses an alternative mathematical form of the SWE, in which the free-surface 

elevation Ș becomes the main flow variable, instead of h, so as to mathematically verify the 

C-property (Liang and Borthwick 2009). With this change of variables, the conservative 

vectorial form (1) is described according to the expressions below: 

q

 
  
 

U , 2
2( 2 )

2

q

q g
z

z
 



 
      

F  and 
0

 xg z
 

    
S     (13) 

For the scheme (3)-(8) the key-steps of the Etta-SWE may be summarized as: 

1. Directly evaluate Ș limits at interface xi+1/2:  

1/ 2 0.5 ( )i i i  
     and 

1/ 2 1 10.5 ( )ii i i  
      

2. Evaluate the discharge limits at interface xi+1/2: 

1/ 2 0.5 ( )i i iq q q
     and 

1/ 2 1 10.5 ( )i i iq q q
      

3. Repeat the steps 3-5 of the SGM. 

4. Set 
1/ 2 1/ 2( ) / 2i i   
    and 

1/ 2 1/ 2( ) /x i iz z z x 
     , and evaluate |

iIh
S  in (3). 
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4.3 Hydrostatic reconstruction approach (Hydr-Rec) 

Established by Audusse et al. (2004) and can further account for wet/dry fronts. Within the 

scheme (3)-(8), the contribution of the Hydr-Rec may be described as follows: 

1. Reconstruct (h + z = Ș) and evaluate the discharge limits at interface xi+1/2, i.e. do steps 1 

and 2 of the SGM.  

2. Record velocities at xi+1/2 obtained from the original topography data (i.e. 
1/ 2i iz z
   and 

1/ 2 1i iz z
  ): 

1/ 2 1/ 2 1/ 2

K K K

i i ih z     and 
1/ 2 1/ 2 1/ 2/K K K

i i iu q h   ; (where ,K    ). 

3. Topography discretization at interface xi+1/2 with wetting and drying: 

a) Re-define numerically 
,*

1/ 2 1/ 2 1/ 2

K K K

i i iz h    , (where ,K    ). 

b) Set a single z-value at xi+1/2 defined by the maximum, i.e. 
,* ,* ,*

1/ 2 1/ 2 1/ 2max( , )i i iz z z  
   . 

c) Preserve positivity of water at xi+1/2, i.e.  ,* ,*

1 / 2 1 / 2 1 / 2max 0,K K

i i ih z 
    , ( ,K    ). 

d) Find discharges incorporating the original velocities, i.e. 
,* ,*

1/ 2 1/ 2 1/ 2

K K K

i i iq h u    , and 

the free-surface elevations at xi+1/2, i.e. 
,* ,* ,*

1/ 2 1/ 2 1/ 2

K K

i i ih z 
    , associated to the 

positivity-preserving water depth the single value of the topography. 

e) Ensure that step d) do not possibly cancel the actual water level at a wet/dry front, i.e. 

i. Calculate  ,*

1 / 2 1 / 2 1 / 2max 0, K

i i iz  
  

      , i.e. after Step 3-b). 

ii. Adjust 
,* ,*

1/ 2 1/ 2 1/ 2

K K

i i i        and 
,* ,*

1/ 2 1/ 2 1/ 2i i iz z  
    .  

4. Find the flux 
1/ 2iF  using 

,* ,* ,*

1/ 2 1/ 2 1/ 2

K K

i i ih z 
    , and 

,* ,*

1/ 2 1/ 2 1/ 2/K K K

i i iu q h    (after step 3). 

5. Repeat steps 1-4 to evaluate flux at 
1/ 2iF  interface xi-1/2. 

6. Set 
,* ,*

1/ 2 1/ 2( ) / 2i ih h h 
    and 

,* ,*

1/ 2 1/ 2( ) /x i iz z z x 
     , and use them to evaluate 

|
iIh

S  in (3). 

 

4.4 Upwind decomposition (Upwind) 

Developed by Bermúdez and Vázquez-Cendón (1994) and is more sophisticated than the 

others. The Upwind approach projects, or decomposes, the source terms vector S onto the 

characteristic basis using the parameters involved within the Roe flux upwinding (4). The 

Upwind discretization is theoretically able to maintain the discrete balance among flux 

gradients and the topography gradient; for instance see within Vázquez-Cendón (1999), 

García-Navarro and Vázquez-Cendón (2000) for a demonstration of the C-property. 

 For the first-order version of scheme (3)-(8), the involvement of the Upwind approach 

may be briefly expressed as: 
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   1 1

1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

1
| | | | |

2iI i i i i i iI J J I J J 
     

     h
S S S       (14) 

where, 

1

11/ 2

1/ 2 1/ 2 1/ 22

1/ 2

0
 

0

i

i i i

i

J





  


 
  

 
R R




  and  1 2

1/ 2 1/ 2 1/ 2 1 2

1/ 2 1/ 2

1 1
i i i

i i   
 

 
   

 
R e e     (15) 

and,  

  1 11/ 2

2

0

i i i ih h z zi

x
g   



 
 
  

S  and   1 11/ 2

2

0

i i i ih h z zi

x
g   



 
 
  

S    (16) 

 For a MUSCL second-order scheme (3)-(8), the Upwind approach also applies but 

requires a preliminary incorporation of the SGM (i.e. Step 1) to soften the free-surface 

gradients prior to the action of the slope-limiter (to ultimately produce reliable water 

depth limits at the interfaces) 

 

4.5 Local P1-topography projection within the RKDG2 framework (RKDG2) 

In DG methods, the well-balanced property can be genuinely obtained by projecting the 

topography function onto the same space of local polynomial approximation (Xing and Shu 

2006). For the DG2 setting, the local P1-topography projection reads (Kesserwani et al. 2010): 

     0 1

/ 2i

i

h i i iI

x x
z x z z x I

x


   


               (17) 

1/ 2

1/ 2

0 1/ 2 1/ 2( ) ( )
( )

2

i

i

x

i i
i

x

z x z x
z z x dx





 
        (18) 

1/ 2

1/ 2

1 1/ 2 1/ 2( ) ( )
( )

2

i

i

x

i i i
i

x

x x z x z x
z z x dx

x





           (19) 

The local approximation of the topography gradient expresses as: 

  1

0 1 1 / 2 1 / 2( ) ( )
( )

/ 2 / 2i

i i i i

x h x i iI

x x z z x z x
z x z z

x x x

   
         

 (20) 

And the continuity property holds across the entire domain, namely at the interface xi+1/2: 

1

0 1 0 1

1 / 2 1 / 2 1 1 1 / 2( ) | ( ) ( ) |
i ih i I i i i i i h i Iz x z z z x z z z x



 
            (21) 

The local RKDG2 method taken with the P1-projection of the topography verifies exactly the 

C-property (Kesserwani and Liang 2011). 

 

4.6 Some relevant mix-mode approaches 
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Among the possible blends, it is strategic to look at mix-mode approaches incorporating the 

Hydr-Rec approach owing to its merit for representing wetting and drying. Therefore, the 

foreseeable mix-mode approaches for possible study are: 

 Etta-SWE & Hydr-Rec. Applies the Hydr-Rec after steps 1 and 2 of the Etta-SWE. It may 

be used to integrate wetting and drying into a shallow water model based on the Etta-

SWE model (Liang 2010, Wang et al. 2011). 

 RKDG2 & Hydr-Rec. Applies the Hydr-Rec with the local RKDG2 solution to the 

traditional SWE and the local P1-projection of the topography. However, it requires local 

incorporation of the free-surface gradients to stabilize the slope-limiting process (Xing 

and Shu 2006, Kesserwani et al. 2010). 

 Etta-SWE & RKDG2 & Hydr-Rec. Applies the RKDG2 & Hydr-Rec using the Etta-SWE, 

which, in effect, implicitly stabilizes the slope-limiting process (Kesserwani and Liang 

2012). In terms of performance, this merge is equivalent to the RKDG2 & Hydr-Rec 

merge, and hence will not be further investigated in this work. 

 Upwind & Hydr-Rec. This merge does not seem to be directly applicable as the Upwind 

approach requires keeping the original discontinuous topography limits at interfaces, 

whereas the Hydr-Rec, contradictorily, needs to impose a single continuous topography 

value of these two limits. Therefore, this prospective merge will not be further 

investigated in this work. 

 

Table 1. Verification of the C-property (i.e. h + z = 6m and q = 0) for the case of the 

differentiable topography (22); relative L2-errors (Er.) and CPU times produced by the 

second-order Godunov-type models.  

 N = 11 (coarse) N = 21 (medium) N = 41 (fine) 

  

Er. h 

 

Er. q 

 

CPU

 

Er. h 

 

Er. q 

 

CPU 

 

Er. h 

 

Er. q 

 

CPU 

Etta-SWE 

Hydr-Rec 

SGM 

Upwind 

RKDG2 

1.0e-18 1.2e-15 2.2s 3.4e-18 6.9e-15 8.2s 2.5e-18 2.3e-15 32.2s

1.8e-17 5.1e-15 2.3s 5.5e-18 8.4e-16 7.5s 2.5e-18 1.1e-15 28.2s

4.0e-18 1.1e-15 2.2s 4.0e-18 3.0e-15 7.9s 2.1e-18 1.3e-15 31.3s

4.0e-18 1.7e-15 2.2s 5.1e-18 1.0e-15 8.2s 1.5e-18 1.5e-15 30.6s

3.3e-17 3.7e-14 11s 2.5e-17 3.0e-14 38.5s 7.0e-17 3.4e-14 151s 

 

5. Results	and	comparisons	

This section assesses and compares the FV-based topography discretization techniques (i.e. 

SGM, Etta-SWE, Hydr-Rec and Upwind), the RKDG2 method and two of the mix-mode 

methods (i.e. Etta-SWE & Hydr-Rec and RKDG2 & Hydr-Rec). The FV-based approaches 
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are implemented with the first-order and the second-order Godunov-type model; whereas the 

mix-mode approaches are only considered with the second-order version. Steady analytical 

tests are selected to numerically verify the C-property (i.e. h + z = constant and q = 0) and to 

benchmark the models� performance for more complex steady flows (i.e. ∂th = 0 and q = 

constant ≠ 0). Unsteady dam-break flows over steps are introduced to elaborate further on the 

models� behaviour for conceivable challenging flow scenarios. These particular tests are 

mainly distinguished by the property of differentiability for the topography and the flow. 

Several mesh sizes are used during the simulations and the relative L2-Errors with respect to 

analytical solutions are measured (when applicable) and listed in Tables together CPU 

runtime costs. 

 

 

(a) (b) (c) 

Figure 2. Comparison between the topography discretization models for the first-order FV 

schemes; steady flow over differentiable topography: (a) N = 11, (b) N = 21, and (c) N = 41. 

 

5.1 Steady flows over a differentiable topography 

Two steady flow sub-cases are considered; the first for verifying numerically the C-property 

and the second for assessing the ability to simulate flow with non-zero velocity. The channel 

is 1000m long and the topography is featured by the differentiability property and follows a 

hump-shape between x = 125m and x = 875m, i.e. 

2 125
( ) 4.75

750

x
z x sin    

 
     (22) 

 For the first sub-case, the initial conditions are h + z = 6m and q = 0 m2/s with no 

external disturbance imposed during the simulations. Therefore the initial state should be 

maintained if the numerical model balances properly the flux gradient with the topography 

gradient. Since this is a still water test, the boundary condition (numerical) can be either 
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transmissive or reflective and do not affect the predictions. A series of simulations is carried 

out on computational grids with N = 11, 21, 41 cells, respectively, and up to t = 2000s. The 

relative L2-errors for the water depths and the discharges produced by the second-order 

Godunov-type models are listed in Table 1. The errors are in the range of machine precision 

and hence confirm that all the considered topography discretization techniques are able to 

balance the numerical flux with topography gradient for a differentiable topography. 

 

(a) (b) (c) 

Figure 3. Comparison between the topography discretization models for the second-order 

Godunov-type schemes; steady flow over differentiable topography: (a) N = 11, (b) N = 21, 

and (c) N = 41. 

 

 For the second sub-case, a steady flow with moving water is assumed whereby the 

flow undergoes a transcritical flow transition at the middle of the channel and a hydraulic 

jump downstream of the hump. A steady inflow boundary condition of 20m2/s is imposed and 

the outflow boundary is a water level of 7m. A simulation starts from an initial water height 

of 8m, and stops after a relatively long time evolution (i.e. t = 2000s). Sets of simulations are 

run, on the same meshes as before, and using the first- and second-order Godunov-type 

schemes, respectively. Figure 2 and Figure 3 present the respective predictions, where the 

numerical depths and discharges realized by the different topography discretization methods 

are compared with the analytical depth and discharge. The associated relative L2-errors are 

listed in Table 2 and Table 3, respectively. 

In the first-order model, as shown in Figure 2 and Table 2, the Upwind approach 

outperform the other approaches for all meshes; for the coarsest and medium meshes, its 

relative errors are noted to be one order of magnitude less than for the other techniques. The 
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Etta-SWE and the SGM are seen to produce similar outcomes (quantitative and qualitative) 

with an under-estimating tendency that is observed to reduce with the doubling and 

quadrupling in the mesh density. The Hydr-Rec has generally delivered close performance 

alike the others but showing a clear trend to over-estimate predictions; its good behaviour is 

namely noted in the capture of the hydraulic jump where � together with the Upwind � it 

surpasses the Etta-SWE and the SGM for the coarse and medium meshes. 

 

Table 2. L2-error (Er.) for flow variables and CPU times produced using the first-order 

scheme at t = 2000s; transcritical flow with shock over a differentiable topography. 

 N = 11 (coarse) N = 21 (medium) N = 41 (fine) 

  

Er. h 

 

Er. q 

 

CPU

 

Er. h 

 

Er. q 

 

CPU

 

Er. h 

 

Er. q 

 

CPU 

Eta-SWE 1.1e-02 7.4 e-03 2.5s 3.2e-03 8.0e-04 7.8s 5.3e-04 8.0e-04 30.7s

Hydr-Rec 8.8e-02 1.0e-02 1.2s 1.2e-03 3.6e-03 5.3s 8.8e-04 1.2e-03 19.4s

SGM 1.1e-02 7.4e-03 1.9s 3.2e-03 8.4e-04 7.1s 5.3e-04 8.0e-04 23s 

Upwind 4.2e-03 5.3e-03 1.3s 2.1e-04 9.7e-04 5.2s 8.8e-04 1.1e-03 20.1s

 

Table 3. L2-error (Er.) for flow variables and CPU times produced by the second-order 

schemes at t = 2000s; transcritical flow with shock over a differentiable topography. 

 N = 11 (coarse) N = 21 (medium) N = 41 (fine) 

  

Er. h 

 

Er. q 

 

CPU

 

Er. h 

 

Er. q 

 

CPU 

 

Er. h 

 

Er. q 

 

CPU 

Etta-SWE 9.3e-03 7.0e-03 6.5s 4.8e-04 2.5e-03 21.4s 7.1e-04 5.9e-04 80.0s

Hydr-Rec 7.2e-03 9.0e-03 4.4s 2.3e-03 3.8e-03 17.0s 1.7e-03 1.4e-03 62.7s

SGM 9.3e-03 7.0e-03 6.4s 4.8e-04 2.5e-03 22.0s 7.1e-04 5.9e-04 71.4s

Upwind 6.3e-03 4.9e-03 5.4s 3.7e-03 1.4e-03 20.2s 2.0e-03 8.0e-04 68.5s

RKDG2 6.0e-03 1.0e-12 25s 5.1e-04 3.2e-13 74.4s 7.9e-04 2.6e-13 316s 

 

With the second-order accurate models, as illustrates Figure 3 and Table 3, the Hydr-Rec 

and Upwind are detected to comparatively underperform contrasted against the Etta-SWE and 

the SGM that are noted to excel with the second-order scheme. For the coarse and medium 

meshes, the Etta-SWE and the SGM errors � relative to the second-order scheme � are 

observed to be one order-of-magnitude lower than their errors relative to the first-order model 

(i.e. Tables 2 vs. Table 3). Moreover, their predictive capability notes drastic improvement 

with mesh refinement. Consequently, it is worth commenting that among the FV-based 

topography discretization approaches, the Etta-SWE and the SGM appear to be more 
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appropriate to the second-order MUSCL scheme. The RKDG2 model could mimic the 

analytical profiles with an ideal accuracy. Remarkably, its level accuracy is noted to 

reasonably match the Etta-SWE and SGM on the fine mesh; however in this setting, the 

RKDG2 approach trades-off with an excessive runtime cost (Table 3). Overall, for steady 

flow over a differentiable topography, all the FV-based topography discretization approaches 

are applicable on reasonably fine meshes. However, these preliminary results suggest giving 

preference to Upwind and Hydr-Rec within a first-order scheme and to SGM and Etta-SWE 

within the second-order MUSCL scheme. The RKDG2 method, although provides the finest 

capture to flow transition, seems to be opportune for very coarse meshes where its runtime are 

relatively comparable. 

 

Table 4. Verification of the C-property for a fully wet-domain involving a non-differentiable 

topography; relative L2-error (Er.) for flow variables and CPU times. 

 N = 11 (coarse) N = 21 (medium) N = 41 (fine) 

  

Er. h 

 

Er. q 

 

CPU 

 

Er. h 

 

Er. q 

 

CPU 

 

Er. h 

 

Er. q 

 

CPU 

Eta-SWE 5.9e-18 3.3e-14 3.4s 1.0e-17 5.0e-14 12.3s 1.7e-18 1.3e-14 47.3s

Hydr-Rec 9.7e-18 4.0e-15 3.3s 4.0e-18 2.1e-15 12.0s 1.6e-18 3.7e-15 40.7s

SGM 5.7e-18 1.9e-14 3.5s 7.2e-18 5.3e-14 11.5s 2.0e-18 3.0e-15 44.0s

Upwind 5.7e-18 7.8e-15 3.6s 5.9e-18 2.3e-15 12.6s 2.3e-18 2.0e-14 45.2s

RKDG2 4.0e-17 1.8e-14 16.9s 2.6e-17 1.2e-14 56.5s 5.8e-17 5.2e-14 210s 

 

 

 

(a) (b) (c) 
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Figure 4. Comparison between the topography discretization approaches for the first-order 

FV schemes; steady flow over a non-differentiable topography: (a) N = 11, (b) N = 21, and (c) 

N = 41. 

 

 

(a) (b) 
(c) 

Figure 5. Comparison between the topography discretization approaches for the second-order 

Godunov-type schemes; steady flow over a non-differentiable topography: (a) N = 11, (b) N = 

21, and (c) N = 41. 

 

Table 5. L2-error (Er.) for flow variables and CPU times produced by the first-order FV 

schemes at t = 2000s; steady smooth flow over a non-differentiable topography. 

 N = 11 (coarse) N = 21 (medium) N = 41 (fine) 

  

Er. h 

 

Er. q 

 

CPU

 

Er. h 

 

Er. q 

 

CPU

 

Er. h 

 

Er. q 

 

CPU 

Eta-SWE 4.1e-04 3.0 e-02 1.4s 2.8e-04 1.4e-03 5.6s 1.1e-04 4.8e-04 21.6s

Hydr-Rec 4.4e-03 1.4e-02 1.2s 1.7e-03 5.2e-03 4.1s 8.0e-04 1.7e-03 16.0s

SGM 4.1e-04 3.0e-03 1.2s 2.8e-04 1.4e-03 4.4s 1.1e-04 4.8e-04 16s 

Upwind 4.3e-04 9.3e-05 1.0s 2.1e-04 6.0e-05 4.2s 9.4e-05 3.8e-05 14.8s

 

Table 6. L2-error (Er.) for flow variables and CPU times produced by the second-order FV 

schemes at t = 2000s; steady smooth flow over a non-differentiable topography. 

 N = 11 (coarse) N = 21 (medium) N = 41 (fine) 

  

Er. h 

 

Er. q 

 

CPU

 

Er. h 

 

Er. q 

 

CPU 

 

Er. h 

 

Er. q 

 

CPU 

Etta-SWE 3.6e-04 2.6e-03 3.2s 2.4e-04 1.2e-03 13.0s 8.0e-05 2.8e-04 48.1s
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Hydr-Rec 4.4e-03 1.5e-02 3.3s 1.7e-03 5.3e-03 12.0s 7.8e-04 1.7e-03 43.5s

SGM 3.6e-04 2.6e-03 3.8s 2.4e-04 1.2e-03 12.6s 8.0e-05 2.8e-04 45.5s

Upwind 3.8e-04 1.6e-03 3.7s 2.0e-04 3.2e-04 12.8s 8.8e-05 1.1e-04 41.8s

RKDG2 3.6e-04 1.7e-03 16s 1.6e-04 4.0e-04 60s 9.8e-05 2.3e-04 321s 

 

5.2 Steady smooth flows over a non-differentiable topography 

Similar aspects, as in Subsection 5.1, are studied herein for steady flows over the same spatial 

1D domain but with a non-differentiable topography (e.g. see within Figure 4). Again, in the 

first sub-case, the C-property is verified numerically for a quiescent flow conditions, defined 

by h + z = 12m and q = 0 m2/s, using the same model configurations, meshes and output time 

as in the previous test. As displays Table 3, for all the present topography discretizations have 

led to L2-errors that are in the range of round-off. Hence, they all seem to (numerically) 

satisfy the C-property irrespective of the mesh size, the accuracy-order of the numerical 

scheme and the differentiability property of the topography. 

The second sub-case considers a smooth steady subcritical flow where the constant 

discharge is 8m2/s and the initial water level is h + z = 12m. Inflow discharge and water level 

at the downstream are imposed as physical boundary conditions, which are completed by 

transmissive numerical boundary conditions. The same mesh characteristics and output time 

as before are used and similar series of simulations are undertaken using the first- and second- 

order models, respectively. The predicted depth and discharge produced by the different 

topography discretization techniques are compared in Figure 4 and Figure 5, respectively, for 

the first- and second-order schemes; Table 5 and Table 6 contain the associated L2-errors that 

are measured with respect to the analytical solutions. From these tables, it is noteworthy that 

the Upwind approach maintains the top position as being the best match to the first-order 

scheme; in this framework, it generates the lowest discharge errors amid any other possible 

configuration (including with the second-order schemes) and achieves depth errors with 

similar order of magnitude as for the errors produced by the other techniques that performed 

best with the second-order schemes (i.e. Tables 5 vs. Table 6). The Etta-SWE and the SGM 

maintain the same behaviour noted in the previous test; they delivered similar predictions and, 

again, seem to benefit most from the mesh refinement and the increase to second-order 

accuracy generating eventually the smallest depth errors overall. The RKDG2 method does 

not appear to predict the steady discharge with the same level of accuracy as for the case of 

the differentiable topography; yet it provides a close performance to the Upwind, SGM and 

Etta-SWE approaches with the second-order FV scheme. The Hydr-Rec, in contrast to the 

others approaches, fails to supply consistent predictions and hence exposes a clear disability 

in handling steady flow over a non-differentiable topography irrespective of the accuracy-

order of the FV model, the mesh size and despite the smooth character of the flow. 
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Consequently, Upwind, RKDG2, SGM, and Etta-SWE are observed to be reliably applicable 

for flow simulation involving non-differentiable topography contrasted with the standard 

Hydr-Rec, which its validity is questionable, so far. 

 

 

(a) (b) (c) 

Figure 6. C-property verification in a wet/dry domain involving non-differentiable 

topography; results produced by the second-order Godunov-type models using a mix-mode 

with the Hydr-Rec: (a) N = 11, (b) N = 21, and (c) N = 41. 

 

 

 

(a) (b) (c) 

Figure 7. Comparison between the topography discretization approaches reproduced by the 

second-order Godunov-type models and in a mix-mode with the Hydr-Rec: (a) N = 11, (b) N 

= 21 and (c) N = 41. 
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Table 7. L2-error for flow variables and CPU times at t = 2000s for the smooth over a non-

differentiable topography. Mix-mode approaches coupled with the Hydro-Rec within second-

order accurate Godunov-type models. 

 N = 11 (coarse) N = 21 (medium) N = 41 (fine) 

 Er. h Er. q CPU Er. h Er. q CPU Er. h Er. q CPU 

Hydr-Rec 4.4e-03 1.5e-02 3.3s 1.7e-03 5.3e-03 12.0s 7.8e-04 1.7e-03 43.5s

Etta-SWE 3.6e-03 1.2e-02 3.9s 1.5e-03 4.6e-03 15.0s 7.3e-04 1.7e-03 55.5s

RKDG2 3.6e-04 1.7e-03 18s 1.6e-04 4.0e-04 66s 9.8e-05 2.3e-04 354s 

 

 Finally a third sub-case is introduced to further investigate the Hydr-Rec approach 

and attempting to gain insight on possible reason(s) for its poor behaviour observed 

previously. For this purpose, the mix-mode variants Etta-SWE & Hydr-Rec and RKDG2 & 

Hydr-Rec (see subsection 4.6) are herein considered �taken together with the second-order 

MUSCL scheme. Their C-property ability of the Hydr-Rec variants is re-checked for a 

wet/dry initial condition (i.e. h + z = 7m and q = 0m2/s) and they are re-applied to simulate the 

second sub-case. Figure 6 displays the steady state profiles of the free-surface elevation and 

the discharge accomplished by the Hydr-Rec alternatives for the wet/dry C-property test, and 

Figure 7 contains their results for the steady moving water over the non-differentiable 

topography where their associated L2-Errors are listed in Table 7. As indicate Figure 6, all 

Hydr-Rec variants maintain the initial free-surface condition after 2000s and reproduce zero 

discharges; hence are able to balance flux and topography gradients for wet/dry domain with 

complex topography. On the other hand, when resolving the smooth steady flow over the non-

differentiable topography (wet domain), the Hydr-Rec variants supply dissimilar results. In 

effect, the incorporation of the Etta-SWE is found to provide insufficient gain in terms of 

accuracy, as reflects the depth errors in Table 7 and the discharges prediction displayed in 

Figure 7. In contrast, the Hydr-Rec & RKDG2 merge supplies conservative predictions 

without showing any signs of potential instability. These findings hence suggest that the 

Hydr-Rec and the RKDG2 are supremely compatible for steady flows over non-differentiable 

topographies as well as for the unsteady case as it is demonstrated subsections 5.3 and 5.4. 

 

5.3 Transient discontinuous flow over steps 

The transient dam-break flow over steps is considered to further explore the topography 

discretizations configurations, explored in subsection 5.2, for an unsteady flow over a non-

differentiable topography. This test case is featured by different types of water flow 
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discontinuities and a large abrupt change in the topography level at the step (i.e. from 0m to 

8m). The spatial domain is [0; 1500m] and the steps are represented by: 

1500 1500
2 8

8     if 
( )

0     otherwise

x
z x

   


      (23) 

The initial condition separates two still water levels as described below, 

1500
2

20 ( )      if  
( , )

15 ( )      Otherwise

z x x
h x t

z x

 
 


     (24) 

Transmissive boundary conditions are used for the upstream and the downstream boundary 

cells. Since no analytical solution is available for this test, alternative simulation results 

produced by a third order well-balanced RKDG model on a grid with 500 cells are treated as 

reference solutions (see Figure 8). Simulations are made on three meshes comprising 100, 200 

and 400 cells, respectively. The results at t = 16s and t = 61s, i.e. before and after the dam-

break wave reaches the 8m gap in the bed level, are collected in Figure 9. The upper panel 

within Figure 9 presents the zoom-in depth profiles at t = 16s achieved by the Etta-SWE, 

SGM, Upwind, Hydr-Rec (with the second-order FV scheme), RKDG2, and the two mix-

mode variants Etta-SWE & Hydr-Rec, and RKDG2 & Hydr-Rec. At t = 16s, all models 

delivered fairly similar predictions agreeing closely with the reference solution, namely for 

the finest mesh where all the predicted depth profiles seem to overlap. For coarser meshes, the 

RKDG2 approach seems also advantageous for the unsteady case as it delivers a more 

accurate capture to flow transition than all the FV-based models. 

 

Figure 8. Unsteady dam-break flow profiles over steps at t = 0s, 16s and 61s. Results 

produced by the RKDG3 model on a fine grid of 500 cells (Kesserwani and Liang 2011). 

 

At t = 61s, the corresponding zoom-in profiles of the water levels are presented in the 

lower panel within Figure 9. Apart from the FV-based Hydr-Rec variants, all the other models 



21 

have closely reproduced the reference solution with the same characteristics as for t = 16s. In 

this case, however, the anticipated poor behaviour of the FV-based Hydr-Rec variants is seen 

to expand leading to predictions that dissociate from the others. This further deterioration in 

performance is suspected to occur due to the comparatively high and sharp variation in the 

topography gradient at the steps (see next paragraph for the relevant analysis). On the other 

hand, the RKDG2 & Hydr-Rec variant is observed to succeed, again, in achieving consistent 

predictions in spite of the unsteadiness of flow and the largeness and sharpness of the 

topography gradients. 

 

(a) (b) (c) 

Figure 9. Magnified numerical depth profiles for the unsteady dam-break flow over steps. 

Upper panel: t = 16s, lower panel t = 61s; row (a) N = 100, row (b) N = 200, and row (c) N = 

400. 
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Figure 10. Action of the Hydr-Rec on the interface topography and relating to the velocity 

components (wet case): (a) FV configuration and (b) RKDG2 configuration. 

 

Supported by the present and past numerical experiments, it can be argued that the 

Hydr-Rec approach is radically compatible with the RKDG2 framework. In fact, the 

underlying reason for this compatibility rests on the continuity property provided by the local 

P1-projection of zh within the RKDG2 method, which perfectly helps the Hydr-Rec to avoid 

any artificial change in the topography, namely when intertwining with wetting and drying. 

To explain this further, Figure 10 demonstrates the local behaviour of the Hydr-Rec at the 

second step. As indicate Figure 10(a), the Hydr-Rec particularly records the original velocities 

u� and u+ that are associated with original discontinuous values z� and z+, but are required later 

for use with the new single topography value z±,* (i.e. obtained via the maximum; step 3-d in 

subsection 4.3). Fortunately, the RKDG2 discrete representation to the topography is 

continuous (i.e. z+ = z� = z±) and this property provides the Hydr-Rec no other option but to 

retrieve the original interface topography (i.e. used previously to calculate u� and u+). In 

contrast, with the FV method, the Hydr-Rec must cancel the lower value of the topography z+, 

to enforce continuity, and hence incompatibly associate its velocity value u+ for use with the 

new value z±,*, see Figure 10(a). From the analysis, it appears that the performance of FV-

based Hydr-Rec variants may be exposed to decrease in proportion with an increase in the 

height of a topographic step. Supported further by the past numerical experiments, it seems 

that the RKDG2 method is, by far, the best complement to the Hydr-Rec to obtain a second-

order accurate and conservative water wave model for flow simulations with uneven 

topographies with potential occurrence of wetting and drying. 

 

5.4 Experimental dam-break flow over a step with wetting and drying 

Another scenario of a breaking wave over a topographic step is assumed to further examine 

the performance of the Hydr-Rec variants when wetting and drying may occur. The 1D 

channel configuration is straight with one steep change in the bed level at the middle of 

channel, where an imaginary dam is initially assumed. The computational domain is [-10m; 

+10m] in which the bed level downstream of the dam is 0.071m and the height of the step is 

0.12m. Upstream of the dam, the initial condition of water level is 0.399m. In a first sub-case, 

a wet domain is assumed where the initial water level downstream of the dam is 0.075m. In a 

second sub-case, the level downstream of the dam is 0m assuming that the wave breaks over a 

dry zone. The Hydr-Rec variants are executed on a mesh with 100 cells. Figure 11 shows the 

numerical depth profiles reproduced for both sub-cases after 1s and 4s from the dam�s 

removal, together with the experimental depths (Vasquez and Roncal 2009). 
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 In the wet sub-case (Figure 11 � upper panel), the RKDG2 & Hydr-Rec provides the 

closest agreement with experimental data providing, eventually at t = 4s, improved capture to 

the shock induced by the step and the smooth zone thereafter than the two FV-based Hydr-

Rec variants. The Etta-SWE & Hydr-Rec variant does not appear to function better than the 

traditional Hydr-Rec, namely at t = 4s in the vicinity of the step where it achieves a poorer 

capture to flow. However, in this test, the behaviour of the FV-based Hydr-Rec variants 

remains quite satisfactory, contrasted with the observations in the previous test, and this is 

likely because of very low height of the step. In the wet/dry sub-case (Figure 11 � lower 

panel) all the Hydr-Rec variants are observed to perform globally well suggesting that the 

Hydr-Rec approach is functional as a wetting and drying condition within both the FV and the 

RKDG2 schemes. Nonetheless, taken as whole, the RKDG2 & Hydr-Rec merge is likely to be 

favoured as the best alternative for multipurpose shallow water flow simulations as it does not 

particularly risk collapsing in the wet cases in spite of the complexity of the flow and the non-

differentiability of the topography. 

 

(a) (b) 

Figure 11. Experimental dam-break over a step; numerical depth profiles produced by the 

second-order Godunov-type schemes incorporating Hydro-Rec. Upper panel: wet case, lower 

panel: wet/dry case, row (a) t = 1s, and row (b) t = 4s.  
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6. Summary,	discussions	and	conclusions	

This work has presented, assessed and compared several topography discretization techniques 

relevant to Godunov-type shallow water numerical models. Five different discretization 

approaches that satisfy the C-property, i.e. theoretically valid for lake at rest hypotheses, have 

been considered and their ability to resolve more complicated flows over topography has been 

thoroughly explored. Of these approaches, four are attributed to the FV formulation (up to 

second-order via MUSCL interpolation) in which the topography is locally represented as 

piecewise-constant with discontinuities at interfaces; whereas the fifth approach is particular 

to RKDG2 method (second-order) that locally integrates the topography as piecewise-linear. 

The five approaches have been reviewed in their basic form together with alternative mix-

mode forms; they have effectively consisted of: 

 The Upwind approach that locally decomposes, i.e. at interfaces, the topography source 

term via the projection onto the linearized characteristic basis and thereby discretizes the 

topography gradient term in harmony with the local upwinding of the flux. 

 The SGM that uses a cell-centred pointwise approximation to the topography gradient. It 

first reconstructs free-surface variable at interfaces (i.e. sum of actual depth components 

and topography values) and then redefines equivalent Riemann states associated to a 

locally-continuous topography at interface (i.e. averaged). 

 The Etta-SWE in which the underlying mathematical form of the SWE incorporates the 

free-surface component as a main variable. Technically, the Etta-SWE acts on flux and 

topography similar to the SGM. 

 The Hydr-Rec approach that lies on a depth-positivity-preserving condition to locally 

redefine the flux and source term, at interfaces, while satisfying the C-property. It first 

maintains the original velocities relative to discontinuous states of the discrete topography 

at interfaces. Afterwards, it imposes locally-continuous topography at interfaces (takes 

the maximum values) and accordingly redefines new depth components that preserve 

positivity. Finally, it employs Riemann states relevant to the positivity-preserving depth 

components and incorporating the original velocities to calculate flux, at interfaces, and 

discretizes the topography gradient as local pointwise. 

 The RKDG2 method that rests on a projection to the topography onto the local basis of 

first-order polynomial. The topography projection is continuous, including at the 

interfaces, and genuinely integrates the gradient term by a local pointwise manner. 

 Mix-mode approaches related to the Hydr-Rec, i.e. Etta-SWE & Hydr-Rec and RKDG2 

& Hydr-Rec. These approaches have been aimed to examine the effect of wetting and 
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drying condition, particular to the Hydr-Rec, on pertinent topography discretization 

techniques and to ultimately provide an improved variant to the traditional Hydr-Rec. 

 

The topography discretization approaches have been evaluated for a selection of hydraulic 

tests with uneven topographies that includes steady flows � covering the stationary case and 

cases with non-zero velocities incorporating smooth, gradual and/or rapid variations in the 

flow regime � and unsteady highly-perturbed flows. Qualitative comparisons among the 

approaches and against reference data (i.e. analytical solution, alternative simulations, or 

experiments) have been illustrated with particular analyses in relation to the issue of 

differentiability of the topography, the density of the mesh, the effect of wetting and drying 

(when applicable), and the impact of the accuracy-order (for the FV-based approaches). For 

the analytical steady tests, runtime costs and L2-errors have been recorded and used as a 

quantitative means to refine the performance analysis among the approaches. 

 The numerical experiments confirm that all the candidates are unconditionally valid 

for the C-property � despite the mesh size and the accuracy-order of the numerical 

formulation � and conclude that the differentiability property of the topography is the most 

notable factor that may affect their behaviour in the simulation of steady and unsteady 

dynamic flows. 

 For a differentiable topography, all the discretization techniques are experienced to 

operate well for a reasonably fine mesh and despite the presence of compound flow 

transitions. With the first-order FV scheme, Upwind outperforms and Hydr-Rec may be 

positioned as second best for being comparatively fit on coarse meshes, whereas Etta-

SWE and SGM only reach a comparable performance to the others when the mesh is 

refined. However, this standing is seen to change when the FV-based discretization 

techniques are integrated in the context of a second-order MUSCL scheme; Etta-SWE 

and SGM show to benefit most from the mesh refinement and ultimately present the top 

performance whereas the functioning of Upwind and Hydr-Rec drop dramatically 

irrespective of the mesh density � the former namely notes local improvement at smooth 

flow zones (i.e. subcritical) whereas the latter does not improve in any respect. 

Nevertheless, for a differentiable topography, RKDG2 places ahead of all the FV-based 

performers achieving the most accurate and conservative predictions � specifically for 

very coarse mesh it also achieves comparable runtime. 

 For a non-differentiable topography, the traditional Hydr-Rec seems to be at risk of 

falling short contrasted with Upwind, Etta-SWE, SGM and RKDG2 that could somewhat 

attain the expected behaviour. In steady smooth flow, Upwind again excels with the first-

order scheme reaching unbeatable prediction for the discharge; with the second-order 

MUSCL scheme, Upwind notes minor degeneration in terms of discharge predictions but 
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remains leading with the second-order models. Etta-SWE and SGM reveal, again, a 

rational responsiveness to ameliorate with both mesh refinement and increase of 

accuracy-order, where they ultimately accomplish the most accurate resolution to the 

water depth. RKDG2 achieves second best in the prediction of the discharge, and best in 

the predictions of the water depth on the coarse meshes where it nearly matches the 

performance of Upwind with reasonable computational cost. The traditional Etta-SWE, 

SGM, Upwind and RKDG2 are also experienced to maintain stable in reproducing 

unsteady dam-break flows over non-differentiable topography where the candidates 

achieve consistent predictions on fine mesh and with the second-order accurate schemes; 

however, in this case, RKDG2 overtops the FV-based techniques in terms of providing a 

finer capture to the flow transients on a relatively coarse mesh. 

 The traditional Hydr-Rec is able to correctly incorporate both wetting and drying and the 

topography while satisfying the C-property. However, as opposed to the other candidates, 

it appears to have a knock-on effect when applied to reproduce moving water flows over 

non-differentiable topographies, which may impact its reliability. The merge Etta-SWE & 

Hydr-Rec does little improvement over the traditional Hydr-Rec and remain exposed to 

the same side effect as with the traditional Hydr-Rec. In contrast, the merge RKDG2 & 

Hydr-Rec does not show any sign of inconsistencies; it exactly maintains the behaviour of 

the traditional RKDG2 for wet domains, effectively uses the Hydr-Rec for modelling 

moving wet/dry fronts, and works unfailingly in any case, i.e. despite the differentiability 

of the topography and/or the complexity of flow. Analysis to the functioning of both 

approaches suggests that RKDG2�s discretization to the topography suits the operation of 

the Hydr-Rec so as to genuinely undergo wetting and drying without compromising the 

(original) discretization of the topography. 

To sum up, this study comes out with: (a) Upwind as the best complement to a first-

order Godunov-type scheme; (b) SGM, or alternatively Etta-SWE, as being mostly effective 

with the second-order MUSCL scheme; (c) RKDG2 as being highly suited for coarse mesh 

simulations; (d) Hydr-Rec as being able to better serve as a wetting and drying condition 

rather than a topography discretization approach, and to particularly fit the RKDG2 

framework to provide an accurate, conservative and sustainable shallow water numerical 

model for all-purposes simulations. 
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Notation 

x = space coordinate [m] 

t = time coordinate [m] 

h = water depth [m] 

q = flow discharge per unit width [m2/s] 

z = topography [m] 

u = velocity [m/s] 

Ș = free-surface elevation [m] 

c = wave celerity [m/s] 

g = acceleration due to gravity [m2/s] 

U = vector of the conserved quantities [-] 

F = spatial flux vector [-] 

S = vector containing the source term 

J = Jacobien matrix of the flux vector with respect to the flow vector 

Ȝ1,2 = real eigenvalues of J 

e
1,2 = real eigenvectors proper to the real eigenvalues Ȝ1,2 

N = number of computational cells 

Ii = computational cell 

xi+1/2 = interface point separating adjacent cells Ii and Ii+1 

xi = centre of cell Ii 

ǻx = length of a cell Ii 

|
iIh

U  = local approximate solution at cell Ii 

iIh
S |  = local approximation to S at cell Ii 

iIF|  = local approximation to F at cell Ii 

|
ih Iz  = local topography approximation at cell Ii  

1/ 2iF  = numerical flux at xi+1/2 

1,2

1/ 2i   = wave strengths relative to the Roe Riemann problem solution at xi+1/2 

1,2

1 / 2i 
  = eigenvalues relative to the Roe Riemann problem solution at xi+1/2 

1,2

1/ 2ie  = eigenvectors relative to the Roe Riemann problem solution at xi+1/2 

I = identity matrix  

1/ 2iJ 
  = approximate linearized Jacobian at xi+1/2 due to the Roe Riemann solver 

1/ 2iR  = matrix containing the eigenvectors 1,2

1/ 2ie  

1,2

1/ 2i   = threshold limits for the entropy fix to the Roe Riemann problem solution at xi+1/2 
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1/ 2 1/ 2| ( )
ii I ix 

  hU U  = left limit of the approximate solution at xi+1/2 

11/ 2 1/ 2| ( )
ii I ix


 
  hU U  = right limit of the approximate solution at xi+1/2 

 i
h

U  = slope limited gradient term relative to the MUSCL at cell Ii 

ĳ  = slope limiter function 

0,1( )i tU  = local finite element coefficients of the flow vector at cell Ii 

0,1

iz  = local finite element coefficients of the topography function at cell Ii 

0,1

iL  = spatial DG2 operators relative to the update of the coefficients 
0,1( )i tU  

1/ 2i

  = left limit of the free-surface elevation at xi+1/2 

1/ 2i

  = right limit of the free-surface elevation at xi+1/2 

1/ 2iz  = left limit of the topography at xi+1/2 

1/ 2iz
  = right limit of the topography at xi+1/2 

1/ 2iz
  = single topography value at xi+1/2 (within Etta-SWE and SGM) 

h  = averaged water depth for source term evaluation at cell Ii 

  = averaged free-surface for source term evaluation at cell Ii (within Etta-SWE) 

x z  = approximation to the topography gradient at cell Ii 

,*

1/ 2iz
  = numerical left limit of the topography, i.e. 

1/ 2 1/ 2 1/ 2

K K K

i i ih z     (K = +,-) 

,*

1/ 2iz
  = single topography value at xi+1/2 defined by the maximum (within Hydr-Rec) 
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