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Abstract

We present a critical evaluation of the above-ground biomass (AGB) map of Africa published in

this journal by Baccini et al (2008 Environ. Res. Lett. 3 045011). We first test their map against

an independent dataset of 1154 scientific inventory plots from 16 African countries, and find

only weak correspondence between our field plots and the AGB value given for the surrounding

1 km pixel by Baccini et al. Separating our field data using a continental landcover

classification suggests that the Baccini et al map underestimates the AGB of forests and

woodlands, while overestimating the AGB of savannas and grasslands. Secondly, we compare

their map to 216 000 × 0.25 ha spaceborne LiDAR footprints. A comparison between Lorey’s

height (basal-area-weighted average height) derived from the LiDAR data for 1 km pixels

containing at least five LiDAR footprints again does not support the hypothesis that the Baccini

et al map is accurate, and suggests that it significantly underestimates the AGB of higher AGB

areas. We conclude that this is due to the unsuitability of some of the field data used by Baccini

et al to create their map, and overfitting in their model, resulting in low accuracies outside the

small areas from which their field data are drawn.

Keywords: aboveground biomass, Africa, AGB, carbon, GLAS, LiDAR, MODIS, random

forest, regression tree, remote sensing, savanna, tropical forest

S Online supplementary data available from stacks.iop.org/ERL/6/049001/mmedia

1. Introduction

The ERL paper by Baccini et al (2008), ‘A first map of

tropical Africa’s above-ground biomass derived from satellite

imagery’, was a timely attempt to combine available field

and remotely sensed data to produce the first above-ground

biomass (AGB) map of a significant portion of sub-Saharan

Africa. The authors used passive optical remote sensing data,

which generally has not been found to be very sensitive to

AGB at higher biomass values (Zheng et al 2004, Lu 2006,
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Figure 1. (a) Location of the 1154 scientific inventory plots used to
compare to the Baccini et al AGB map; (b) AGB values from pixels
of the Baccini et al map containing inventory plots plotted against the
weighted average AGB of independent inventory plots; also shown is
the best fit line (solid), and the 1:1 line (dotted).

GOFC-GOLD 2009, Mitchard et al 2009). Still, Baccini et al

report a high accuracy, with the map explaining 82% of the

variance in AGB for 10% of field plots held back for validation,

with a root mean squared error (RMSE) of 50.5 Mg ha−1. They

then perform a test against spaceborne LiDAR height metrics

from across the whole spatial extent of the map, and report

an r 2 of 0.90 in a regression between mean LiDAR derived

height and AGB (averaged over 10 Mg ha−1 AGB classes).

We tested the Bacinni et al results against independent and

spatially extensive field data, and newly calculated spaceborne

LiDAR results, and found little support for the accuracy of the

map (figures 1, 2, table 1). Our conclusion is that this is due

to the low accuracy and limited spatial extent of the field data

used to train and validate the Random Forest model used to

produce the AGB map.

2. Test against field data

We first test the accuracy of the Baccini et al map directly

using AGB derived from 1154 scientific inventory plots from

16 African countries, ranging in size from 0.1–10 ha (mean

plot size 0.32 ha, mean 1.5 ha inventoried per 1 km pixel,

figure 1; for plot details, see the supplementary material,

available online at stacks.iop.org/ERL/6/049001/mmedia). In

order to ensure sufficient sampling within each 1 km pixel,

small plots (<0.5 ha) are included in this analysis only if the

1 km pixel in which they are located contains at least 0.5 ha

of inventory plots. If multiple field plots occurred within one

pixel, we calculated a mean AGB value, weighted by the square

root of plot size. There are on average 4.8 field plots per 1 km

pixel, so we compared field plots and the AGB map in a total of

239 pixels. The plots were collected from 1995 to 2010, with a

mean julian date corresponding to July 2005 (compared to the

remote sensing data in the Baccini et al map from 2000 to end

2003).

We find a significant, but very weak correlation, between

our field plot AGB values and those in the Baccini et al map:

a linear regression gave r 2
= 0.28, p < 0.001 (F-test),

slope of 0.37, and RMSE of 145 Mg ha−1 (figure 1(b)). In

this the best fit line had an intercept and slope significantly

different from 0 and 1 respectively (p < 0.01). Errors range

from an overestimate of 295 Mg ha−1 to an underestimate of

−734 Mg ha−1; the Baccini et al map has a much smaller

range of AGB values than our field plots, with all higher AGB

plots underestimated. When the plots are grouped by landcover

type, using the Global Land Cover 2000 (GLC 2000) dataset

(Mayaux et al 2004), the AGB of forest and woodland classes

are underestimated by the Baccini et al map by ∼50%, while

shrubland/grassland classes are mostly overestimated (table 1,

only landcover classes where we had at least 10 ha of field plots

covering at least ten 1 km pixels were considered).

There are five possible explanations for this discrepancy

if the Baccini et al map is accurate; however regressions with

subsets of our field data do not support any of these hypotheses.

In all the following regressions the best fit lines are significant

(p < 0.01), and intercepts and slopes are significantly different

from 0 and 1 respectively (p < 0.05). First, this could be

caused by our field plots having a larger AGB range than the

AGB map. This is not the case, as excluding pixels with an

average AGB > 338 Mg ha−1 (the maximum in the Baccini

et al dataset) gives an r 2 of 0.12, slope of 0.36, and an RMSE

of 79.6 Mg ha−1 (n = 204 pixels): as would be expected the

RMSE is reduced by removing the high AGB plots, but the

overall accuracy (based on the r 2 and slope) actually decreases.

Second, the non-normal distribution of biomass for very small

plots (Chave et al 2003) may drive the poor fit. This is not the

case, as if we limit our field data to pixels that have a total plot

area �1 ha (1% coverage of the 1 km2 pixel), although the r 2

increases to 0.32, the slope does not change at 0.38 (n = 128),

and the RMSE of 169.5 Mg ha−1 is higher than for the whole

dataset; additionally we have four plots of 10 ha in size from

eastern Democratic Republic of Congo—these have an average

AGB value of 463 Mg ha−1, but the two Baccini et al pixels in

which they fall (of which these plots sample 15%), are given

AGB values of 273 and 283 Mg ha−1. Third, our independent

validation compares field-measured values from small plots to

1 km pixels (mean plot size = 0.3 ha, mean 4.8 plots per 1 km

pixel); such plots may not sample the whole pixel sufficiently

to accurately estimate its AGB. However, we do not think this

third hypothesis can explain the extent of the poor correlation,
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Figure 2. (a) AGB from 35 034 pixels from the Baccini et al map plotted against the mean Lorey’s height from that pixel, each estimated from
�5 ICESat GLAS footprints; also shown in red is the mean height estimated for each 10 Mg ha−1, with error bars showing standard errors;
(b) reprint of figure 7(a) from Baccini et al, showing the mean maximum height for each pixel averaged into 10 Mg ha−1 biomass classes,
with errors bars showing standard errors; (c) as for (a), but with Lorey’s height values transformed into estimates of AGB (using an equation
derived from African plot data), and with a 1:1 line shown in green.

Table 1. Difference between Baccini et al map and field plots by landcover class. (Note: the average AGB value from the Baccini et al map
and field plots are displayed, separated by the class from the GLC 2000 land cover class Mayaux et al 2004.)

GLC 2000 land cover class

Number of
pixels
sampled

Total number of
field plots within
sampled pixels

Total area of
field plots within
sampled pixels (ha)

Mean AGB
from Baccini
et al (Mg ha−1)

Mean AGB from
independent field
plots (Mg ha−1)

Difference

(Mg ha−1)

Closed evergreen lowland forest 29 38 75.1 202.5 445.1 −242.6
Submontane forest (900–1500 m) 11 16 20.2 210.0 438.1 −228.1
Deciduous woodland 66 308 76.7 20.2 36.5 −16.3
Deciduous shrubland
with sparse trees

44 196 42.1 14.8 4.3 10.4

Open deciduous shrubland 28 371 46.0 0.2 4.1 −3.9
Closed grassland 16 99 32.5 27.0 3.9 23.0

as the error increases when we only consider the 70 pixels that

have more than five field plots located within them (mean 13

plots per 1 km pixel for this reduced dataset): r 2
= 0.14,

slope = 0.42, RMSE = 170.2 Mg ha−1. Fourth, there is a

potential for changes in the landcover of our field plots (which

range from 1995 to 2010, compared to 2000 to 2003 for the

remote sensing data of Baccini et al); however considering

only field plots from 2000 to 2003 the results do not improve,

with r 2
= 0.36, slope = 0.39, and RMSE = 291 Mg ha−1

(n = 38). Finally, our fifth hypothesis relates to differences

in the choice of the allometric equations relating measured

tree parameters to AGB. The allometrics chosen differ between

our datasets and those of Baccini et al: Baccini et al use the

Brown et al (2005) equation involving diameter alone for the

majority of their field plots, whereas we use a combination

of the Chave et al (2005) ‘moist forest’ equation involving

diameter, height and wood density for our forest plots, and for

savanna/woodland vegetation we used either the Chave et al

(2005) ‘dry forest’ equation or locally derived area-specific

equations (see the supplementary material, available online at

stacks.iop.org/ERL/6/049001/mmedia). We tested the impact

of equation choice for 87 of our field plots where we have

access to the raw stem data (from savannas and tall forests

in Cameroon, Gabon and Uganda, with similar characteristics

to the field data used by Baccini et al): the plots had a mean

AGB of 363 Mg ha−1 using a combination of the Chave et al

(2005) dry and moist equations, and 376 Mg ha−1 using the

Brown et al (2005) equation involving diameter alone. A direct

comparison of individual plot values using both allometric

equations provides little support for bias at low or high biomass

values: linear RMA regression gave intercept = 3.2, slope =

0.98, r 2
= 0.97, p < 0.0001.

3. Test against LiDAR data

In our second test, we examine the spaceborne LiDAR

verification as performed by Baccini et al. To do this we

used a dataset of ICESat Geoscience Laser Altimeter System

(GLAS) footprints collected between 2003 and 2007, which

were processed to provide estimates of Lorey’s height, a basal-

area-weighted average height that can be estimated accurately

from GLAS waveforms (Lefsky et al 2005, Lefsky 2010).

We use Lorey’s height, as opposed to maximum height and

HOME as used by Baccini et al, because the evidence suggests

it can more accurately be determined from GLAS data, and

because it has a stronger relationship with AGB (Lefsky

et al 2005, Lefsky 2010). After cloud- and terrain-filtering

(Saatchi et al 2011), we selected pixels that contained �5

GLAS footprints (Baccini et al’s used three; each footprint

covers 0.20–0.25 ha), giving a total of 35 034 test pixels,

using 215 733 GLAS footprints. We find only a very weak
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relationship between Lorey’s height and Baccini et al’s AGB

values when considering individual pixel values (figure 2(a),

linear regression: slope = 0.02, r 2
= 0.045). We also

averaged Lorey’s height values in 10 Mg ha−1 bins, replicating

the display method used in figure 7 of the Baccini et al

study, and reproduced here as figure 2(b). We could not

replicate their strong relationship between mean height and

AGB, instead finding just a weak trend towards increasing

height with increasing AGB up to ∼80 Mg ha−1, and no

relationship thereafter. We extend this analysis further by using

Lorey’s height (HL)–AGB relationship derived from plot data

in Africa (AGB = 0.3542 (H 2.0528
L ), n = 75, r 2

= 0.85,

p < 0.001, Saatchi et al 2011); again this suggests the

Baccini et al map underestimates AGB in higher AGB areas,

and has a low accuracy throughout the range of AGB values

(figure 2(c), linear regression: slope = 0.05, r 2
= 0.01,

RMSE = 173 Mg ha−1).

We are unable to explain this discrepancy between our

GLAS analysis and that of Baccini et al, though one factor

could be that the metric derived from the raw GLAS waveform

that we used (Lorey’s height) is different from the metric they

used (an estimate of canopy height, and the ratio of HOME

to height). As Lorey’s height is an average height weighted

by basal area, its value will always be lower than maximum

height for the same forest. However, it should be more sensitive

to AGB than any estimate of height alone, and yet it does

not appear to increase with AGB here. The result we report

here does appear to concur with the results of the field data

comparison, that is, that the Baccini et al map appears to have

a low accuracy, in contrast to those reported within the paper.

The possible causes of this low accuracy are fourfold: (i) the

quality of the field data, which were mostly not scientific plots;

(ii) the field data were not collected at a similar time to the

remote sensing data; (iii) some of the ‘field data’ points used by

Baccini et al are derived from a landcover map, itself derived

from remote sensing; (iv) the field data were from a very

limited spatial distribution, and not from across the continent.

These issues are discussed below.

4. Discussion of Baccini et al’s field data

We fully sympathize with the difficulties faced by Baccini

et al in obtaining sufficient numbers of high quality field plots

across a continent, as this is extremely challenging. However,

the field data used by Baccini et al are unlikely to be suitable

for developing an accurate AGB map, as in addition to likely

high randomly distributed inaccuracies, they are also likely to

have consistent biases. We shall specifically examine the three

datasets Baccini et al used in detail in order to highlight the

potential problems with these types of data.

(1) The commercial forest inventory plots in the Republic

of Congo (collected 2001–3) relied on measuring the

diameters of just 1% of stems >40 cm diameter, 0.5% of

stems 20–40 cm, and 0.2% of ‘commercial species only’

2–20 cm. This very low proportion of diameters measured

is likely to lead to inaccurate AGB estimates and, unless

the small proportion chosen for measurement is strictly

random (with regards to both species and diameters), will

lead to biased estimates. Additionally, logging companies,

until very recently, have not collected data to estimate

biomass stocks, but to assess the approximate density and

size-class distribution of timber trees. Therefore: (i) the

plot sizes and tree diameters may be inaccurate (indeed

it is not specified whether or not the trees were measured

here, often in such commercial inventories trees are placed

in broad DBH classes rather than measured to the nearest

mm); and (ii) the trees to be measured were unlikely to

be a strict random subset of all the trees present. Though

Réjou-Méchain et al (2011) did not find that commercial

forestry inventories have a strong bias towards commercial

species, as is often assumed, the above problems are

still sufficient to result in large errors in AGB estimates.

Baccini et al only used these data when at least three

biomass plots were located within the same 1 km pixel.

However, this averaging step will only reduce noise in

the dataset; it will not correct for any systematic biases

introduced by the methodology. This dataset makes up

65% of the pixels used by Baccini et al for training and

validation.

(2) The dataset used by Baccini et al from Cameroon involved

measuring the diameters of all stems greater than 10 cm

DBH for 3 ha × 1 ha plots within each of 61 pixels.

Unfortunately the diameters were only recorded as being

within 10 cm bands rather than measured to the nearest

millimetre, as is normal for scientific inventory plots: this

will reduce accuracy. The biomass results for these plots

appear very low for ‘dense humid forest’ from South-

Central Cameroon (mean c. 100 Mg ha−1, maximum

220 Mg ha−1, based on Baccini et al’s figure 3). Other

field plots published from within this area all have AGB

values >400 Mg ha−1 (Djuikouo et al 2010, Lewis et al

2009). Furthermore the plots were measured in 1994,

while the remote sensing dataset is from 2000 to 2003:

Baccini et al use Landsat TM scenes from 1990 and 2000

to exclude plots that have undergone ‘forest cover change’

over this period, but quite significant changes will not

necessarily be visible in TM data (GOFC-GOLD 2009).

The accuracy of this dataset is therefore hard to assess, but

it makes up only 4% of the pixels used in the Baccini et

al study.

(3) Baccini et al’s dataset from Uganda is possibly the least

accurate. Again, very little description of these plots

is given in the paper, however the referenced Drichi

(2003) ‘National biomass study’ from the Uganda Forest

Department presents a landcover map of Uganda, with

the country divided into vegetation classes using SPOT

remote sensing data from 1990 to 1994, with data from

a field campaign involving 4000 small forest inventory

plots being used to give each vegetation class an average

AGB value. However, the actual field plots were not used

for this study, but instead Baccini et al interpolated AGB

values for their pixels from this ‘high resolution land cover

type map’, i.e. the proportion of each landcover class

within each 1 km MODIS pixel was multiplied by its AGB

value in order to give a weighted mean AGB value for that

4
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pixel. Landsat TM data was then used to select <0.2% of

the ∼236 000 pixel dataset (442 pixels are used, selected

using undefined criteria). The use of optical remote

sensing data to define the original landcover classes could

explain the high accuracies reported by Baccini et al, as

similar spectral information is used both to define and

later separate biomass values; this will inevitably lead to

higher accuracies than when truly independent field data

is used. Equally, the use of a single average AGB value

for each landcover class introduces pseudoreplication, as

multiple pixels containing the same landcover class will be

given identical AGB values (derived from the same plot

data), but are treated as independent data points by the

analysis. This dataset provides almost all the savanna and

woodland training points used in the Baccini et al map,

which is the landcover of 91% of the total area predicted

(Mayaux et al 2004).

5. Discussion

Given the likely quality of the field data, it is surprising that

the model Baccini et al develop appears to be so accurate

against their test data. For example, it performs well against

10% of data held back for testing (training: 96% variance

explained and RMSE 23.5 Mg ha−1 versus testing: 82% and

50.5 Mg ha−1). This apparent contradiction, with the model

performing well against the three datasets included in Baccini

et al, but not in the field data we compiled, may be because

of the circularity of using a landcover map partially derived

from remote sensing data to derive the Uganda dataset, the

pseudoreplication inherent in the Uganda dataset, and the small

biomass range in the Baccini et al dataset compared to our

dataset. However, an alternative explanation may be that the

complex Random Forest model developed using a suite of

MODIS variables to relate to AGB is not invariant across the

continent. This is a significant danger: the Baccini field plots

are located in three relatively small areas from approximately

1◦N–4◦N, and most vegetation types, or ecoregions, were not

sampled. In general using Random Forest (or other non-

parametric models) with limited and uneven spatial sampling

of variables, results in overfitting the training data and produces

large predictive errors outside the training regions (Genuer et al

2008). We suggest that their model may work relatively well

for these three regions containing training data, while being

poor in other regions, if, as is conceptually likely, the complex

interactions of reflectance data that correspond to different

AGB values within their model are not invariant across the full

extent of the predicted AGB map.

6. Conclusion

In conclusion, we present evidence that the Baccini et al

biomass map of Africa has large errors, with discrepancies

between their map and independent scientific inventory plots

resulting in an RMSE of 145 Mg ha−1, and field data averaged

by vegetation class suggesting that the AGB values for

forest areas are underestimated, and for savanna areas mostly

overestimated. Three major lessons should be taken from this

analysis, to avoid these types of errors in the future: these

apply equally to all studies that attempt to use point data to

extrapolate an ecological variable across a landscape. The first

lesson is that care must be taken to use good quality, unbiased

field data: if there are sufficient plots then it is not necessary

for the individual field data points to have a high accuracy,

but if they have inherent biases then the resulting map will

not be valid. The second lesson is that field data must be

drawn from across the spatial extent and ecological variability

of the prediction area; due to logistical constraints an even

spatial distribution of plots is rarely possible. However, if plots

are unevenly distributed then this must be considered in the

analysis, and ideally a map showing an estimated distribution

of accuracy should be included. Finally, accuracy assessments

should be done against truly independent datasets, not a small

random subset of the input data, which may suffer from the

same biases or be related in other ways than just the parameter

of interest.
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